CN1443023A - 感应加热设备 - Google Patents

感应加热设备 Download PDF

Info

Publication number
CN1443023A
CN1443023A CN03106833A CN03106833A CN1443023A CN 1443023 A CN1443023 A CN 1443023A CN 03106833 A CN03106833 A CN 03106833A CN 03106833 A CN03106833 A CN 03106833A CN 1443023 A CN1443023 A CN 1443023A
Authority
CN
China
Prior art keywords
conversion equipment
equipment
conversion
turn
resonance current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN03106833A
Other languages
English (en)
Other versions
CN1262149C (zh
Inventor
弘田泉生
藤田笃志
宫内贵宏
北泉武
藤井裕二
新山浩次
大森英树
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Publication of CN1443023A publication Critical patent/CN1443023A/zh
Application granted granted Critical
Publication of CN1262149C publication Critical patent/CN1262149C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power
    • H05B6/062Control, e.g. of temperature, of power for cooking plates or the like
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/04Sources of current

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Inverter Devices (AREA)
  • Induction Heating Cooking Devices (AREA)
  • General Induction Heating (AREA)

Abstract

一种感应加热设备,可以在抑制锅振动噪声的情况下加热铝锅等。在第二转换装置57接通期间,能量在扼流线圈54处积累,同时具有比第二转换装置57的接通时间或第一转换装置55的激励时间短的周期的谐振电流在加热线圈59处产生,使得在第二转换装置57断开期间,即第一转换装置55接通期间,在扼流线圈54处积累的能量传输到第二平滑电容器62。然后输出功率从平滑电容器62提供给加热线圈59,从而减小输入电压的脉动电流引起的锅振动噪声。

Description

感应加热设备
技术领域
本发明涉及感应加热设备,如感应加热烹调单元,在感应加热烹调单元内能够有效地加热高导电性和低渗透性负载,例如铝锅;本发明还涉及感应加热型热水器、加湿器、熨斗等等。
背景技术
就常规感应加热设备例如感应加热烹调设备来说,例如日本专利申请No.1989-246783中公开了能够在加热铝锅时防止锅振动噪声和功率因数减少的技术,并且例如在日本专利申请No.2001-160484中公开了用于减小转换损耗和用于利用高频波加热铝锅的技术。
图9是包括在上述日本专利申请No.1989-246783中的电路。在图9中,用来整流100v的AC(交流)电源以便输出DC(直流)电压的桥接电路2包括两个半导体闸流管3、4和两个二极管5、6。半导体闸流管3、4控制导向角并且在启动操作的基础上将DC电压减小到大约20v以便设置低输出功率。如果负载检测器24检测到适合负载的存在,则输出控制器26通过改变DC电压控制输出功率。
而且,输入波形整形器23激励晶体管10以便根据输入设置单元25输出的信号生成预定波形的输入电流,并且输入电流检测器22从而增加功率因数。通过晶体管10接通时在扼流线圈8内积累能量并且然后通过在晶体管10断开时将能量经由二极管9传输到电容器11实现功率因数的增加。
此外,为了加热铝锅,通过改变加热线圈18的匝数和谐振电容器19的电容将流过加热线圈18的电流的频率从20kHz增加到50kHz。
然而,上述的现有具有许多问题:即,为了有效地加热铝锅和铁锅,需要能够改变加热线圈18的匝数的成本昂贵且复杂的电路结构;和为了适应50kHz的谐振频率,需要将转换装置15、17的激励频率设置为同样的50kHz,因此在转换装置15、17内引起了巨大的转换损耗;和如果采用谐振点跟踪方法减少转换损耗,因此需要诸如控制电路之类的附加电路和改变用于输出功率改进的电路的电源电压。
日本专利申请No.2001-160484具有上述问题,如图10到12所示。
在日本专利申请No.2001-160484中,流过加热线圈18和谐振电容器19的谐振电流的频率设置为提供给晶体管15、17的激励信号的频率的至少两倍,响应来自用于检测流过加热线圈18的电流的谐振电流检测器30的信号,因而通过增加流过加热线圈18的电流的频率同时抑制晶体管15、17的转换损耗实现铝锅的加热。
在用于低输出功率模式的输出控制方法中,如图11A所示,晶体管15在它的集电极电流Ic1的信号从正值变成零时的第一瞬间断开,而晶体管17在它的集电极电流Ic2的信号从正值变成零时的第三瞬间断开。此外,在高输出功率模式中,如图11B所示,晶体管15在它的集电极电流的信号从正值变成零时的第二瞬间断开,而晶体管17也在它的集电极电流Ic2的信号从正值变成零时的第二瞬间断开。
或者,在低输出功率模式中,如图12A所示,晶体管15在接通后经过时间t1时断开,时间t1比谐振电流的半周期短,而晶体管17在它的集电极电流Ic2从正值降低到零时的第三瞬间断开。然而,在高输出功率模式中,如图12B所示,晶体管15在它的集电极电流Ic1从第一时间(对应谐振电流的一半周期的晶体管15的接通时间)的正值降低为零时的瞬间断开,而晶体管17在它的集电极电流Ic2的信号从正值变成零时的第三瞬间断开。
然而,日本专利申请No.2001-160484的现有技术感应加热设备具有如下的某些缺点。即,通过图11A、11B中的控制方法不能实现连续输出工致,并且通过图12A、12B中的控制方法不能实现良好的输出控制,因为接通时间的变化引起太多的输出功率变化。而且,因为通过图11A、11B和图12A、12B的控制方法不能平滑流过加热线圈18的电流的包络,因此出现锅振动噪声,其频率是工业用输入功率频率的两倍。
日本专利申请No.1989-246783具有锅振动噪声产生的问题,在其中,通过降低提供给倒相器的输入功率控制输出功率。然而,即使将这种方法与日本专利申请No.2001-160484公开的方法结合也不能实现适合的输出控制,因为谐振电流减弱因而不能维持。
发明内容
因此,本发明的目的是提供能够利用充足的大输出功率加热铝锅的感应加热设备,其中可以利用优良的可控性连续不断地调整输出功率同时抑制转换装置中的锅振动噪声和转换损耗的产生。
根据本发明,如果通过加热线圈产生的磁场加热具有高导电性和低渗透性的负载,则流过转换装置或反并联二极管(用作反向导电装置)的谐振电流以比转换装置的激励时间短的周期谐振,同时进一步通过增强和平滑电路增强和平滑DC电压,然后为了维持谐振电流的振幅比激励时间内的某个值高,将该DC电压提供用于倒相器,以便通过降低转换装置的激励频率抑制转换装置的转换损耗,并且同时将具有比激励频率高的频率的谐振电流提供用于加热线圈。因此,可以使用高输出功率加热具有高导电性和低渗透性的负载,例如铝等。
而且,提供了用于增强和平滑供应给倒相器的输入DC电压的增强和平滑电路以便在转换装置的激励时间期间抑制谐振电流的峰到峰值减弱到零,在加热高导电性和低渗透性负载的情况下,可以通过将转换装置的激励时间改变成比谐振电流的一个周期大而稳定地控制输出功率,和/或可以减小转换装置的负担(接通损耗)。
根据本发明的第一方面,提供了感应加热设备,包括:
具有转换装置的倒相器、与转换装置并联的反并联二极管(用作反向导电装置)、加热线圈和谐振电容器,其中倒相器通过接通转换装置产生流过加热线圈的谐振电流;
增强和平滑电路;和
控制电路,用于控制转换装置的接通时间,
其中,如果通过加热线圈产生的磁场加热高导电性和低渗透性负载,则流过转换装置或反并联二极管的谐振电流以比转换装置的接通时间短的周期谐振,并且通过增强和平滑电路增强和平滑DC电压,然后为了维持谐振电流的振幅等于或高于接通时间期间的预定值,将该DC电压提供给倒相器。从而,通过降低转换装置的激励频率抑制转换装置的转换损耗,并且同时将具有比激励频率高的频率的谐振电流提供用于加热线圈。因此,可以使用高输出功率加热具有高导电性和低渗透性的负载,例如铝等。
而且,提供了用于增强和平滑供应给倒相器的输入DC电压的增强和平滑电路以便在转换装置的激励时间期间抑制谐振电流的峰到峰值减弱到零,在加热高导电性和低渗透性负载的情况下,可以通过将转换装置的激励时间改变成比谐振电流的一个周期大而稳定地控制输出功率,和/或可以减小转换装置的负担(接通损耗)。
根据本发明的第二方面,提供感应加热设备,包括:
包括具有第一串联连接器的谐振电路的倒相器,第一串联连接器包括串联的第一转换装置和第二转换装置;与第一转换装置并联的第一反并联二极管(用作第一反向导电装置);与第二转换装置并联的第二反并联二极管(用作第二反向导电装置);和与第一和第二转换装置并联的第二串联连接器,包括加热线圈和谐振电容器,其中倒相器通过接通第一和第二转换装置谐振;
增强和平滑电路;和
控制电路,用于排他地接通第一和第二转换装置,
其中,如果通过加热线圈产生磁场加热高导电性和渗透性负载,则流过第一转换装置或第一反并联二极管的谐振电流以比第一转换装置的接通时间短的周期谐振,并且通过增强和平滑电路增强和平滑DC电压,然后为了维持谐振电流的振幅等于或高于接通时间期间的预定值,将该DC电压提供给倒相器。因为使用两个转换装置代替了仅仅一个转换装置,从而可以减小转换装置的负担,并且同时通过改变转换装置的激励时间比值和/或激励频率,可以根据负载实现良好和准确的输出功率控制。
而且,提供了用于增强和平滑供应给倒相器的输入DC电压的增强和平滑电路以便在转换装置的激励时间期间抑制谐振电流的峰到峰值减弱到零,在加热高导电性和低渗透性负载的情况下,可以通过将转换装置的激励时间改变成比谐振电流的一个周期大而稳定地控制输出功率,和/或可以减小转换装置的负担(接通损耗)。
根据本发明的第三方面,具体地说,通过包括在倒相器中的至少一个转换装置的接通时间确定DC电压的增强电平。即,通过调整激励时间和增强电平实现适合的输出功率控制。
根据本发明的第四方面,具体地说,增强和平滑电路包括:
平滑电容器,与包括第一和第二转换装置的第一串联连接器并联;和与第二转换装置串联的扼流线圈,
其中,第二转换装置接通时,能量在扼流线圈处积累,然后通过断开第二转换装置能量经由第一反并联二极管传输到平滑电容器。因而,供应给扼流线圈的脉动DC电压的包络平滑和增强,同时能量在第二平滑电容器处积累。并且将这个作为电源的平滑DC电压提供给包括第一和第二转换装置的谐振电路。因此,本发明第二方面描述的感应加热设备安全地以简单电路结构具体化。
根据本发明的第五方面,具体地说,在通过加热线圈产生的磁场加热高导电性和低渗透性负载的情况下,流过第二转换装置或第二反并联二极管的谐振电流以比第二转换装置的接通时间短的周期谐振。因此,利用第一和第二转换装置之间负担的平均分配,谐振电流的频率能够容易地增加,使得第二转换装置的激励时间(或接通时间)变得比谐振电流周期长。因而,在扼流线圈处积累的能量的数量变大并且增强电平增加,使得本发明第二方面描述的操作,即控制流过第一转换装置的谐振电流的峰到峰值在第一转换装置的激励时间期间不降为零的操作,容易地具体化。
根据本发明的第六方面,具体地说,通过具有当第二转换装置接通时用于向扼流线圈提供能量的附加平滑电容器,可以防止在扼流线圈处积累能量的高频分量泄漏进电源。
根据本发明的第七方面,具体地说,在最大输出功率模式,控制电路在接通第一转换装置随后谐振电流的第二周期开始之后谐振电流流过时输出第一转换装置的断开信号,或者在接通第二转换装置随后谐振电流的第二周期开始之后谐振电流流过时输出第二转换装置的断开信号。因此,在最大输出功率可以减少第二和第一转换装置的接通损耗。
根据本发明的第八方面,在最大输出功率模式中,控制电路在接通第一转换装置随后谐振电流的第二周期开始之后谐振电流从其峰值减小到零时的周期内输出第一转换装置的断开信号,或者在接通第二转换装置随后谐振电流的第二周期开始之后谐振电流从其峰值减小到零时的周期内输出第二转换装置的断开信号。因此,当谐振电流流过时可以断开第一和第二转换装置。而且,当谐振电流正向流过第一和第二反并联二极管时分别接通第一和第二转换装置。
根据本发明的第九方面,其中通过加热线圈产生的磁场加热高导电性和低渗透性负载,流过第一转换装置和第一反并联二极管的第一谐振电流或流过第二转换装置和第二反并联二极管的第二谐振电流以第一或第二转换装置的激励时间的大约2/3为周期谐振,使得当谐振电流达到第二峰值时转换装置断开。因此,在断开转换装置任意之一时的谐振电流的数量变得比在谐振电流的第三峰值处断开转换装置任意之一时的谐振电流的数量大。
因此,在断开第二转换装置后,可以容易地执行稳定交换用于电流正向流过第一反并联二极管,并且防止了第一转换装置接通模式的出现,从而减少了转换损耗和高频噪声。类似地,在断开第一转换装置后,这些也可以发生在第二转换装置和第二反并联二极管中。在后面将描述的本发明第四或第五方面中,第二转换装置的激励时间变得比谐振电流的激励时间长,使得在扼流线圈处积累的能量的数量增加。因此,增强电平也增加,使得能够更有效地执行上述操作。
根据本发明的第十方面,其中通过加热线圈产生的磁场加热高导电性和低渗透性负载,第一和第二转换装置的激励时间的比值设置为大约1,并且流过第一转换装置或第一反并联二极管的谐振电流以第一转换装置的激励时间的大约2/3为周期谐振。因此,当谐振电流以它们的正向流过第一和第二反并联二极管时第一和第二转换装置接通,同时当谐振电流以它们的正向流过第一和第二转换装置时第二转换装置断开。
而且,因为谐振电流以第一和第二转换装置的激励时间的大约2/3为周期谐振,所以转换装置能够在谐振电流的第二峰值周围断开。因此,当谐振电流减弱少量时转换装置断开。因而,交换被稳定地执行,用于谐振电流在断开第一和第二转换装置后以它们的正向流过第二和第一反并联二极管,从而能够抑制转换装置的接通模式出现和避免转换装置的转换损耗和高频噪声。此外,频率为转换装置的激励频率三倍的谐振电流可以提供用于加热线圈。
根据本发明的第十一方面,在启动加热操作中,通过改变第一和第二转换装置的激励时间的比值和然后通过改变激励频率增加输出功率,从而能够容易地检测负载。即在低输出功率模式下,可以通过改变激励时间的比值稳定地改变传输给高导电性和低渗透性负载例如铝,或铁质负载的输出功率,因此能够在低输出功率模式下准确地检测负载。
而且,在达到激励时间的预定比值、激励时间,或输出功率后,为了在高导电性和低渗透性负载情况下的相位的特定范围内激励和断开转换装置,激励时间的比值设置为恒定值。当维持激励时间的比值为恒定值时,断开相位和激励频率改变,使得可以在不显著增加转换装置损耗的情况下调整输出功率。
根据本发明的第十二方面,在启动加热操作时,第一转换装置的激励时间设置为比谐振电流的谐振周期短,然后通过改变第一和第二转换装置的激励时间比值直到达到某个激励时间或激励时间的某个比值而增加输出功率。在此期间,可以准确和安全地检测负载是否是高导电性和低渗透性。如果检测到的负载是高导电性和低渗透性,则分散地增大第一转换装置的激励时间以便降低输出功率,然后通过不断地增大激励时间的长度将输出功率从低电平稳定地增大到期望电平。
根据本发明的第十三方面,在通过加热线圈产生的磁场加热铁质负载或非磁性负载的情况下,谐振电流以比第一和第二转换装置的激励时间长的周期谐振。并且如果利用最大输出功率加热铁质材料或非磁性不锈钢负载,则为了在电流正向流过第一和第二转换装置时断开第一和第二转换装置,谐振补偿电容器与谐振电容器并联,从而产生比高导电性和低渗透性负载大的电容。因而在铁质材料或非磁性不锈钢负载的情况下,谐振周期变长并且同时谐振电流增大。而且由于DC电压Vdc由扼流线圈增强,谐振电流的幅值变大。因此,如果通过在能够使转换装置在电流正向流过转换装置时断开的范围内建立最大输出功率抑制接通转换损耗,最大输出功率可以比现有技术的最大输出功率大。
在现有技术的感应烹调设备中,为了改变传输给负载的磁场强度(安培-匝数),通过改变加热线圈的匝数实现使用相同倒相器的铝质锅和铁质锅的选择性加热。然而,根据本发明,通过第二转换装置和扼流线圈的增强操作实现转换匝数的效果,并且通过使用谐振补偿电容器调整谐振电容,以便可以通过使用相同的加热线圈加热宽范围材料的负载。
根据本发明的第十四方面,可以在没有将谐振补偿电容器连接到谐振电容器即低电容的情况下开始本发明实施例的操作,并且逐渐地增加输出,同时无论负载是铁质材料或高导电性和低渗透性均可检测。如果发现负载是铁质,则停止其操作并且通过接通继电器将谐振补偿电容器与谐振电容器并联,即高电容且激励频率重新设置在低频率。
然而,如果检测到负载是高导电性和低渗透性,则输出继续增大直到达到激励时间的某个比值或某个输出功率,然后固定激励时间的比值但改变转换装置的激励频率以便达到适合的输出功率。因此,根据具有高导电性和低渗透性负载和铁质负载之间的辨别结果,利用低输出功率,选择适合的谐振电容和适合的激励方法,因而实现适合的输出功率。
附图说明
通过下面优选实施例结合附图的描述,本发明的上述和其他目的和特征将变得很清楚,其中:
图1示出了根据本发明第一实施例的感应加热设备的电路;
图2描述了根据本发明第一实施例的感应加热设备各部分的电流或电压的波形;
图3示出了根据本发明第一实施例的感应加热设备各部分的电流或电压的其他波形;
图4提供了根据本发明第一实施例的感应加热设备的输入功率的控制特性;
图5提供了根据本发明第二实施例的感应加热设备的电路;
图6提供了根据本发明第三实施例的感应加热设备的电路;
图7描述了根据本发明第三实施例的感应加热设备各部分的电流或电压的波形;
图8提供了根据本发明第三实施例的感应加热设备各部分的电流或电压的其他波形;
图9示出了常规感应加热设备电路的例子;
图10是常规感应加热设备电路的另一个例子;
图11示出了图10中的常规感应加热设备各部分的电流或电压的波形;
图12示出了图10中的常规感应加热设备各部分的电流或电压的其他波形;和
图13描述了图10中的常规感应加热设备各部分的电流或电压的其他波形。
具体实施方式
(实施例1)
现在参照附图描述本发明的第一实施例。
图1示出了本发明第一实施例的感应加热设备的电路图。电源51是200v低频率工业用AC电源,电源51连接到桥接电路52的输入端。第一平滑电容器53和包括扼流线圈54和第二转换装置57的串联连接器连接到桥接电路52的输出端之间。加热线圈59面对要加热的铝锅61。在此,锅61不仅可以由Al、Cu制成,而且可以由Al、Cu质材料制成。
数字标号50表示倒相器。第二平滑电容器62的低电位端和第二转换装置57的发射极连接到桥接电路52的负极端,第二平滑电容器62的高电位端连接到第一转换装置55(IGBT:绝缘控制极双极晶体管)的集电极(高电位端)。第一转换装置(IGBT)55的低电位端连接到扼流线圈54和第二转换装置(IGBT)57的高电位端的接合点。包括加热线圈59和谐振电容器60的串联连接器与第二转换装置57并联。
第一二极管56(作为第一反向导电装置的第一反并联二极管)以反并联方式(第一二极管的负极连接到第一转换装置55的集电极)连接到第一转换装置55,而第二二极管58(作为第二反向导电装置的第二反并联二极管)以反并联方式连接到第二转换装置57。缓冲电容器64与第二转换装置57并联。包括谐振补偿电容器65和继电器66的串联连接器与谐振电容器60并联。来自用于检测电源51提供的输入电流的输入电流检测器67的检测信号和来自用于检测流过加热线圈59的电流的谐振电流检测器的另一个检测信号供应给控制电路63,而控制电路63输出激励信号到第一转换装置55和第二转换装置57的控制极和继电器66的激励线圈(未示出)。
如上所述构造的感应加热设备的操作将在下面详细说明。电源51的功率当其流过桥接电路52时经历全波整流,并且然后全波整流功率供应给连接到桥接电路52输出端的第一平滑电容器53。第一平滑电容器53作为用于提供具有高频率电流的倒相器50的电源。
图2A和2B提供了图1电路中各个部分的电流和电压的波形,并且在图2A的情形下,输出功率例如2KW比图2B中的功率大。参照图2A,示出了流过第一转换装置55和第一二极管56的电流的波形Ic1;流过第二转换装置57和第二二极管58的电流的波形Ic2;第二转换装置57的集电极和发射极之间的电位差波形Vce2;供应给第一转换装置55的控制极的激励电压波形Vg1;供应给第二转换装置57的控制极的激励电压波形Vg2;和流过加热线圈59的电流的波形IL。如图2A、2B所示,第一和第二转换装置55、57排他地接通。
如果输出功率是2KW(图2A),则控制电路63从时间t0到时间t1,即图2A中Vg2的曲线图中示出的激励时间(或接通时间)T2(大约24μs),输出接通信号到第二转换装置57的控制极。在激励时间T2期间,包括第二转换装置57、第二二极管58、加热线圈59和谐振电容器60的第一闭环电路谐振,其中加热线圈59的匝数(40T)、谐振电容器60的电容(0.04μF)和激励时间T2的确定使得铝锅的谐振周期(1/f)大约为激励时间T2的2/3。扼流线圈54在第二转换装置57的激励时间T2期间以磁能形式存储平滑电容器53的静电能。
接下来,第二转换装置57当流过其的谐振电流在谐振电流的第二峰值之后减小到零时,即当第二转换装置57的集电极电流正向流动时,在时间t1处断开。
然后,因为第二转换装置57断开,所以扼流线圈54连接到转换装置57集电极的一端的电位增强,并且如果扼流线圈54该端的电位超过第二平滑电容器62的电位,则存储在扼流线圈54内的磁能通过使第二平滑电容器经由第一二极管56充电而释放。第二平滑电容器62的电压增强到(在本发明的实施例中增强到500v)比桥接电路52的峰值DC输出电压(例如283v)高。增强电平取决于第二转换装置57的接通时间,所以,接通时间较长时,第二平滑电容器62的电压较高。
同样地,当包括第二平滑电容器62、第二转换装置57或第一二极管56、加热线圈59和谐振电容器60的第二闭环电路谐振时,作为DC电源的第二平滑电容器62的电压电平增强。因此,图2A中Ic1的曲线图示出的流过第一转换装置55的谐振电流的峰到峰值和图2A中Ic2的曲线图示出的流过第二转换装置57的另一个谐振电流的峰到峰值不减小到零,使得能够利用高输出功率感应地加热铝锅并且通过连续不断地增大和减小功率电平控制输出功率。
并且如图2A中Vg1和Vg2的曲线图所示,控制电路63在时间t2处即在用于防止两个转换装置同时接通的从t1开始的某个暂停期间d1过后输出另一个激励信号到第一转换装置55的控制极。谐振电流开始流过第二闭环电路。在这种情形下,激励时间T2以类似T1的方式建立,以便第二转换装置57接通时,谐振电流以激励时间T1的大约2/3的周期流过。
因此,流过加热线圈59的电流IL具有如图2A所示的波形,以便激励周期(T1、T2和暂停d1的总和)大约是谐振电流周期的三倍,其中第一和第二转换装置55、57均考虑。因而,如果第一和第二转换装置55、57的激励频率大约是20kHz,则流过加热线圈59的谐振电流的频率大约是60kHz。
图3示出了工业用电源51的输如电压波形、包括加热线圈59和谐振电容器60的串联连接器的电压波形Vc2和流过加热线圈59的电流波形IL。桥接电路52的输出电压具有通过图3所示的工业用电源51电压的全波整流获得的脉动电流波形,但是因为利用第二平滑电容器62平滑流过加热线圈59的电流的包络,如图3中IL的曲线图所示,所以可以防止在工业用电源频率两倍的频率时产生的锅振动噪声,例如通过图13中IL的曲线图中示出的现有技术的加热线圈的电流IL。
图2B中的波形是以低功率模式例如450W获得。图2B中的波形Ic1、Ic2、Vc2、Vg1和Vg2分别对应于图2A中的波形Ic1、Ic2、Vc2、Vg1和Vg2。在此,通过建立分别比第一和第二转换装置55、57的激励时间T1、T2短的第一转换装置55的激励时间T1’和第二转换装置57的激励时间T2’执行输出功率的控制。
在图2A中,如果第二转换装置57在流过第一二极管56的电流达到最大值时的时间t5处接通,则输出功率达到最小值或接近最小值。然而,如果在流过第一转换装置55的电流开始从零增大到用于第二时间(时间t6处)的正值之后,该电流通过谐振重新达到零(未示出)时,第一转换装置55断开同时第二转换装置57接通,则获得最大输出功率(谐振点功率控制)。
通过上述原理,在低输出功率模式例如输出功率设置在450W的情况下,激励时间T1’比最大输出功率例如2KW的激励时间短,但是第一转换装置55在电流以图2B所示的正向流过第一转换装置55的时间t3’处断开。因而,随着第一转换装置55在最大输出功率和低输出功率模式的两种情况下断开,缓冲电容器64和加热线圈59借助于加热线圈59处的积累能量谐振,第一转换装置55集电极的电位减小,并且第一转换装置55的发射极和集电极之间的电压差慢慢地增大,使得开关损耗的减小。
因此,第一转换装置55的断开损耗可以减小。此外,因为当第二转换装置57接通时正向供应的电压电平可以降低到零或比较小的值,所以可以防止接通损耗或噪声出现。
接下来,在启动操作时,控制电路63在恒定频率(大约21kHz)处控制继电器66断开或者激励第一和第二转换装置55、57。第一转换装置55的激励时间比谐振电流的谐振周期短,并且激励时间的比值和输出功率设置为最小。然后,激励时间的比值慢慢地增大。在此同时控制电路63通过参照输入电流检测器67和谐振电流检测器68的检测输出检测负载锅(load pot)61的材料。如果控制电路63发现材料为铁质,则控制电路63停止加热和控制继电器66接通,并且以低输出功率重新启动加热。此时,控制电路63将第一和第二转换装置55、57的激励时间的比值和输出功率设置为最小,然后不断地增大激励时间的比值直到获得期望的输出功率,同时维持恒定频率(大约21kHz)。
然而,如果发现材料不是铁质并且当达到激励时间的预定比值时,以这样的模式执行操作,即谐振电流的周期变得比第一转换装置55的激励时间短,如图2B所示。在此,建立激励时间使得输出功率较低。
图4提供了第一和第二转换装置55、57的激励频率恒定时第二转换装置57的输入功率对接通时间的曲线图。在如图4所示本发明的实施例中,在1/2周期的点周围可以获得大约2KW的输出,并且当使第二转换装置57的激励时间从曲线图中的该点缩短时,输出可以线性地减小。因此,通过建立激励时间或激励时间比值的下限(Tonmin)和上限(Tonmax)实现稳定控制。
如上所述,如果通过根据本发明实施例的加热线圈59产生的磁场加热高导电性和低渗透性例如铝、铜等的负载,则流过第一转换装置55和第一二极管56的谐振电流通过加热线圈59和谐振电容器60以比两个转换装置的激励时间T1、T2短的周期谐振,使得频率比第一转换装置55的激励频率高(在此实施例中高1.5倍)的电流可以提供用于加热线圈59。而且,因为作为高频电源的平滑电容器62的电压分别通过扼流线圈54和第二平滑电容器62增强和平滑,所以谐振电流的振幅可以在每个激励周期T、T’内增强,因而谐振电流增强的振幅甚至可以在进入谐振电流的第二周期后维持,并且因此通过在进入谐振电流的第二周期后改变每个转换装置的激励停止时间可以获得较大的输出功率范围。
此外,作为增强器的扼流线圈54根据第二转换装置57的激励时间改变增强电平。例如,随着第二转换装置57的接通时间变长,由于扼流线圈54的增强操作平滑电容器62的电压变高,并且能够使用在输出功率控制中。
而且,因为在通过第二转换装置57接通而在扼流线圈54积累的能量经由第一二极管56传输到第二平滑电容器62时执行增强操作,所以脉动电流的输入可以通过简单电路结构转变成平滑高电压的电源。此外,因为加热线圈59具有高频电流、从平滑高电压的电源获得和平滑的电流包络,所以能够抑制锅振动噪声的产生。
此外,如果通过加热线圈59产生的磁场加热高导电性和低渗透性例如铝、铜等的负载,则流过第二转换装置57和第二二极管58的谐振电流以比第二转换装置57的激励时间T2短的周期谐振。因此,当考虑总谐振电流(Ic1和Ic2之和)时,可以看出,在第一和第二转换装置的激励时间期间的总谐振电流的波数增加。
而且,通过具有当第二转换装置57接通时用于向扼流线圈54提供能量的第一平滑电容器53,可以防止在扼流线圈54处积累能量的高频分量泄漏进电源51。
此外,在最大输出功率模式中,控制电路63在接通第一转换装置55随后谐振电流的第二周期开始之后谐振电流流过时输出第一转换装置55的断开信号,或者在接通第二转换装置57随后谐振电流的第二周期开始之后谐振电流流过时输出第二转换装置57的断开信号。因此,第二转换装置57和第一转换装置55的接通损耗可以减少。
并且,在最大输出功率模式中,控制电路63在接通第一转换装置55随后谐振电流的第二周期开始之后谐振电流从其峰值减小到零时的周期内输出第一转换装置55的断开信号,或者在接通第二转换装置57随后谐振电流的第二周期开始之后谐振电流从其峰值减小到零时的周期内输出第二转换装置57的断开信号。因此,可以抑制第二转换装置57或第一转换装置55的接通损耗。此外,在减少它的激励时间的情况下,可以降低输出功率,并且也可以抑制接通损耗,因为每个转换装置即使在低输出功率模式也不容易激励进接通模式。
而且,如果第一和第二转换装置55、57的激励时间的比值设置在大约1,并且同时通过加热线圈59产生的磁场加热高导电性和低渗透性的负载,则流过第一转换装置55和第一二极管56的谐振电流以第一转换装置55的激励时间的大约2/3的周期谐振。从而,在第一和第二转换装置55、57两者的激励时间的一个周期期间内可以分配谐振电流的三个波数。因此,具有大约三倍于激励频率的高频分量的电流可以提供用于加热线圈59。并且同时,可以做出稳定输出功率控制,因为当电流流过第一二极管56时可以开始第一转换装置55的激励并且当电流正向流过第一转换装置55时可以停止它的激励,这些同样也可以应用于第二转换装置57和第二二极管58。
此外,在启动操作中,通过改变第一和第二转换装置55、57的激励时间的比值并且然后通过改变激励频率增加输出功率,从而使得负载容易检测。也就是说,通过改变激励时间的比值,传输给高导电性和低渗透性例如铝等的负载或传输给铁质负载的输出功率可以在低输出功率模式下稳定不断地改变,并且从而可以在低输出功率模式下准确地检测负载。
而且,在达到激励时间的预定比值、激励时间,或输出功率后,为了在高导电性和低渗透性负载情况下的相位的特定范围内激励和断开转换装置,激励时间的比值设置为恒定值。当维持激励时间的比值为恒定值时,断开相位和激励频率改变,使得可以在不显著增加转换装置损耗的情况下调整输出功率。
此外,在启动操作时,第一转换装置55的激励时间设置为比谐振电流的谐振周期短,然后通过改变第一和第二转换装置55、57的激励时间比值直到达到某个激励时间或激励时间的某个比值而增加输出功率。在此期间,可以准确和安全地检测负载是否是高导电性和低渗透性。如果检测到的负载是高导电性和低渗透性,则分散地增大第一转换装置55的激励时间以便降低输出功率,然后通过不断地增大激励时间的长度将输出功率从低电平稳定地增大到期望电平。
此外,在通过加热线圈59产生的磁场加热铁质负载或非磁性负载情况下,谐振电流以比第一和第二转换装置55、57的激励时间长的周期谐振。并且如果利用最大输出功率加热铁质材料或非磁性不锈钢负载,则为了在电流正向流过第一和第二转换装置55、57时断开第一和第二转换装置55、57,谐振补偿电容器65与谐振电容器60并联,从而产生比高导电性和低渗透性负载大的电容。因而在铁质材料或非磁性不锈钢负载的情况下,谐振周期变长并且同时谐振电流增大。此外,因为通过扼流线圈54增强DC电压Vdc,所以谐振电流的振幅变大。因此,如果通过在能够使转换装置在电流正向流过转换装置时断开的范围内建立最大输出功率抑制接通转换损耗,最大输出功率可以比现有技术的最大输出功率大。
在现有技术的感应烹调设备中,为了改变传输给负载61的谐振频率和磁场强度(安培-匝数),通过同时改变加热线圈59和谐振电容器的匝数实现使用相同倒相器的铝质锅和铁质锅的选择性加热。然而,根据本发明,通过第二转换装置57和扼流线圈54的增强操作实现转换匝数的效果,并且通过使用谐振补偿电容器65调整谐振电容,以便可以通过相同的加热线圈59加热宽范围材料的负载。
而且,可以在没有将谐振补偿电容器65连接到谐振电容器60即低电容的情况下开始本发明实施例的操作,和不断地增加输出;同时无论负载是铁质材料或高导电性和低渗透性均可检测。如果发现负载是铁质,则停止操作并且通过接通继电器66将谐振补偿电容器65连接到谐振电容器60以便获得高电容。然后操作可以在低激励频率下重新开始,获得较长的谐振周期和增大的电流。并且同时因为通过扼流线圈54和第二平滑电容器62增强DC电压Vdc,所以谐振电流变大。因此,如果通过在能够使转换装置在电流正向流过转换装置时断开的范围内建立最大输出功率抑制接通转换损耗,最大输出功率可以比现有技术的最大输出功率大。
然而,如果检测到负载是高导电性和低渗透性,则输出继续增大直到达到激励时间的某个比值或某个输出功率,然后固定激励时间的比值但改变激励时间以便将输出功率增大到某个值。因此,两种情形均可执行所谓的软启动操作,也就是,首先以低输出功率检测负载的材料,然后以稳定方式将输出功率增大到某个输出值或极限值。
而且,在图1中,第一平滑电容器53和第二平滑电容器62的电容的比值可以依据情形的不同而适应性地确定。例如,如果前者的电容设置为1000μF而后者的电容设置为15μF,流过加热线圈59的电流的包络的平滑电平增加。在这种情形下,有利于将扼流线圈插入第一平滑电容器53的输入功率线路。相反,如果前者的电容设置为10μF而后者的电容设置为100μF,则可以抑制功率因数的降低,但是在这种情况下,需要费用较高的第二平滑电容器62因为需要具有高击穿电压。
在图1中,应注意到第二平滑电容器62的低电位端可以连接到桥接电路52的正极并且缓冲电容器64可以与第一转换装置55并联以便具有相同的效果。
此外,谐振电容器60的低电位端可以连接到第一转换装置55的集电极(高电位);并且通过将电容器60的电容分成两个,分开的电容器分别地连接到第一转换装置55的集电极和第二转换装置的发射极(低电位)从而获得相同的效果。并且连接到第一或第二转换装置55、57的谐振电路不限于本发明的实施例。可以对本发明优选实施例中公开的内容做出适当的更改。
尽管在本发明优选实施例中对感应加热烹调设备做出了描述,但是本发明同样也适合于其他类型的用于加热高导电性和低渗透性例如铝锅的负载的感应加热设备,如热水器和熨斗等。
(实施例2)
现在参照附图描述根据本发明第二优选实施例的感应加热设备。图5示出了本发明第二优选实施例的电路图。本发明第一和第二实施例的电路结构的区别在于在第二实施例中,第一平滑电容器71和扼流线圈72位于电源51和桥接电路52之间。
现在描述本发明第二实施例的操作。数字标号50表示倒相器,控制电路63如同本发明第一实施例一样分别地接通和断开第一和第二转换装置55、57以便获得需要的输入功率。在第一实施例的图1中,当第一转换装置55接通时,电流流过加热线圈59并且同时电流的一部分从扼流线圈54返回到第一平滑电容器53。与此相反,通过采用第二实施例的结构,桥接电路52阻塞返回电流,以便没有电流返回到第一平滑电容器,从而输入功率能够有效地传输到加热线圈59和锅61。因为高频电流流过桥接电路52中的二极管,所以快速二极管(fast diode)优选用于桥接电路52中的二极管类型。
同样,根据第二实施例,没有电流返回到第一平滑电容器71。结果,输入功率没有浪费地提供用于电路,以便因而实现更加有效的能够加热铝锅的感应加热设备。
(实施例3)
现在参照附图描述根据本发明第三优选实施例的感应加热设备。图6示出了本发明第三优选实施例的电路结构。电源51是工业用电源,电源51通过桥接电路52整流并且经由扼流线圈80供应给晶体管87的集电极。晶体管87的集电极连接到二极管82的正极并且二极管82的负极连接到平滑电容器81具有高电位的第一端。平滑电容器81具有低电位的第二端连接到桥接电路52的负极。
数字标号79表示倒相器,和扼流线圈83的一端连接到平滑电容器81的第一端而扼流线圈83的另一端连接到晶体管88的集电极。包括加热线圈89和谐振电容器91的串联连接器连接到晶体管88的两端,并且包括谐振电容器92和继电器93的另一个串联连接器与谐振电容器91并联。控制电路85激励晶体管88并且同时通过监控来自用于检测电源51提供的输入电流的输入电流检测器67和用于检测流过加热线圈89的电流的谐振电流检测器94的两个检测信号而检测锅负载的材料。并且根据检测结果,控制电路85输出控制信号或激励信号以便增强控制电路86、继电器93和晶体管88。增强控制电路86根据控制电路85输出的控制信号输出激励信号到晶体管87。
现在描述上述结构的操作。控制电路85控制用于作为增压换流器的扼流线圈80的晶体管87的接通和断开。因而,桥接电路52的输出Vdc被增强和平滑,并且经由二极管82供应给平滑电容器81的两端。增强和平滑电压用作提供倒相器79的高频电流的电源。扼流线圈83经由二极管82和扼流线圈80连接到桥接电路52的正极,并且扼流线圈83在晶体管断开时用作晶体管88的零电流转换。
此外,二极管84以反并联方式连接到晶体管88,并用作沿晶体管88内电流的反向返回的谐振电流的电流通道。晶体管88在接通时产生谐振电流以便给负载90提供高频磁场,该谐振电流的频率由加热线圈89和谐振电容器91确定。
通过使用微型计算机等,控制电路85根据输入功率控制晶体管88。如果控制电路85检测到加热线圈89加热的锅90是高导电性和低渗透性材料例如铝等,则控制电路85激励晶体管88,如图7所示,同时继电器93断开;但是如果控制电路85检测到锅90为铁质材料,则控制电路85通过激励晶体管88实现最大输出功率,如图8所示,同时接通继电器93以便给谐振电容器91填加电容。
图7提供了根据本发明第三优选实施例的电路的各部分的波形,其中包括流过晶体管88和二极管84的电流Ic、晶体管88的集电极和发射极之间的电压Vce、流过加热线圈89的电流IL,和由控制电路85供应给晶体管88的电压Vge。
控制电路85传输激励信号给晶体管88的控制极并且控制接通晶体管88。然后加热线圈89和谐振电容器91产生的谐振电流流过晶体管88。因为谐振电流的频率至少两倍于激励信号的频率,所以谐振电流最终变成零,然后谐振电流反向流过二极管84;但是因为谐振电流连续不断地流过加热线圈89,所以由谐振频率确定的高频磁场提供给锅90。也就是说,可以如同第一实施例的激励频率增加至少两倍的情况一样实现相同效果。
在提供如上所述的需要输出功率之后,控制电路85在电流流过二极管84时断开晶体管88,并且在预置时间周期之后,控制电路85重新接通晶体管88,可以按照期望重复这个过程。
如图8所示,如果锅90的材料是铁质,则晶体管88的激励周期T’是暂停时间T2’和谐振周期T1’之和,由加热线圈89的电感以及谐振电容器91和谐振补偿电容器92的电容之和确定;并且考虑到转换损耗通常将激励频率(1/T’)设置为20~30kHz。
反之,如果控制电路85检测到锅90的材料是铝等,则谐振电容器92不增加从而提高谐振频率并且通过晶体管87和扼流线圈80增大增强电平。
同样地,在晶体管88的激励周期T期间,由减小Ic的衰减,通过减小暂停周期T2和通过维持谐振电流Ic的振幅在遍及整个所需波数内在某个值之上实现最大输出功率,如图7所示。
在此,由与锅90连接的加热线圈89的电感和谐振电容器91的电容确定的谐振频率设置为至少是晶体管88的激励频率1/T的两倍,即在仅仅一个转换操作中的谐振电流的至少两个周期的恒定频率。这是因为如果铝锅等被加热,锅的表层电阻与谐振频率的平方根成比例。在上述方法中,通过增加表层效果同时抑制转换损耗,能够实现铝锅、多层锅等的加热。
同样,根据本发明第三优选实施例,如果通过在加热线圈89处产生的磁场加热高导电性和低渗透性的负载90,则流过转换装置88和二极管84的谐振电流以比转换装置88的激励时间短的周期谐振。并且通过调整用于增强DC电压Vdc的扼流线圈80、转换装置87、二极管82,和用于平滑增强电压的平滑电容器81可以实现谐振电流的零电流转换,其中调整扼流线圈80是为了维持谐振电流的振幅在激励时间期间比某个电平高。简单地说,转换装置88的激励频率设置为比谐振频率低,并且执行零电流转换,使得铝锅可以在避免锅振动噪声同时减小转换损耗的情况下加热。
根据本发明的感应加热烹调设备,包括:与电源并联的桥接电路;与桥接电路DC输出端并联的第一平滑电容器;扼流垫圈,其两端之一连接到桥接电路DC输出端的正极;第一半导体转换装置,其发射极连接到扼流线圈的另一端;第二半导体转换装置,其集电极连接到扼流线圈的另一端并且其发射极连接到DC输出端的正极;与第一半导体转换装置并联的第一二极管;与第二半导体转换装置并联的第二二极管;串联连接器,包括串联的加热线圈和谐振电容器,与第二半导体转换装置并联;连接到第二半导体转换装置的发射极和第一半导体转换装置的集电极的第二平滑电容器;和用于控制第一和第二半导体转换装置以便实现某个输出的控制器。
根据本发明的另一个感应加热烹调设备,包括:与电源并联的滤波电容器;与电源串联的扼流线圈;连接到扼流线圈的桥接电路;第一半导体转换装置,其发射机连接到桥接电路DC输出端的正极;第二半导体转换装置,其集电极连接到DC输出端的正极并且其发射极连接到DC输出端的负极;与第一半导体转换装置并联的第一二极管;与第二半导体转换装置并联的第二二极管;串联连接器,包括并联的加热线圈和谐振电容器,与第二半导体转换装置并联;连接到第二半导体转换装置的发射极和第一半导体转换装置的集电极的第二平滑电容器;和用于控制第一和第二半导体转换装置以便实现某个输出的控制器。
虽然已经参照优选实施例对本发明作了描述,但是应理解本领域内的技术人员可以在不背离本发明下面权利要求所限定的精神和范围的情况下做出各种改变和更改。

Claims (14)

1、一种感应加热设备,其特征在于,包括:
具有转换装置的倒相器、与转换装置并联的反向导电装置、用于通过产生磁场加热负载的加热线圈,和谐振电容器单元,其中,倒相器通过接通转换装置产生流过加热线圈的谐振电流;
控制电路,用于控制转换装置的接通时间,和
增强和平滑电路,用于增强和平滑输入的DC电压以便向倒相器提供增强和平滑DC电压,
其中,如果负载是高导电性和低渗透性材料,则流过转换装置或反向导电装置的谐振电流以比转换装置的接通时间短的周期谐振并且谐振电流的振幅保持在接通时间期间等于或高于预定值。
2、一种感应加热设备,其特征在于,包括:
包括具有第一串联连接器的谐振电路的倒相器,第一串联连接器包括串联的第一转换装置和第二转换装置;与第一转换装置并联的第一反向导电装置;与第二转换装置并联的第二反向导电装置;和包括用于通过产生磁场加热负载的加热线圈和与第一或第二转换装置并联的谐振电容器单元的第二串联连接器,其中,倒相器通过接通第一和第二转换装置谐振;
控制电路,用于排他地接通第一和第二转换装置;和
增强和平滑电路,用于增强和平滑输入的DC电压以便向倒相器提供增强和平滑DC电压,
其中,如果负载是高导电性和低渗透性材料,则流过第一转换装置或第一反向导电装置的谐振电流以比第一转换装置的接通时间短的周期谐振并且谐振电流的振幅保持在接通时间期间等于或高于预定值。
3、如权利要求1或2所述的设备,其特征在于,其中,DC电压的增强电平通过包括在倒相器中的至少一个转换装置的接通时间确定。
4、如权利要求2所述的设备,其特征在于,其中,增强和平滑电路包括:
平滑电容器,与包括第一和第二转换装置的第一串联连接器并联;和与第二转换装置串联的扼流线圈,
其中,当第二转换装置接通时,能量在扼流线圈中积累,然后通过断开第二转换装置能量经由第一反向导电装置传输到平滑电容器。
5、如权利要求2所述的设备,其特征在于,其中,如果负载是高导电性和低渗透性材料,则流过第二转换装置或第二反向导电装置的谐振电流以比第二转换装置的接通时间短的周期谐振。
6、如权利要求4所述的设备,其特征在于,还包括附加平滑电容器,用于在第二转换装置接通时将能量提供给扼流线圈。
7、如权利要求2所述的设备,其特征在于,其中,在最大输出功率模式中,控制电路在接通第一转换装置随后谐振电流的第二周期开始后谐振电流流过时输出第一转换装置的断开信号,或者在接通第二转换装置随后谐振电流的第二周期开始之后谐振电流流过时输出第二转换装置的断开信号。
8、如权利要求2所述的设备,其特征在于,其中,在最大输出功率模式中,控制电路在接通第一转换装置随后谐振电流的第二周期开始之后谐振电流从其峰值减小到零时的周期内输出第一转换装置的断开信号,或者在接通第二转换装置随后谐振电流的第二周期开始之后谐振电流从其峰值减小到零时的周期内输出第二转换装置的断开信号。
9、如权利要求2所述的设备,其特征在于,其中,如果负载是高导电性和低渗透性材料,流过第一转换装置或第一反向导电装置的第一谐振电流和流过第二转换装置或第二反向导电装置的第二谐振电流分别地以第一或第二转换装置的接通时间的大约2/3为周期谐振。
10、如权利要求2所述的设备,其特征在于,其中,第一和第二转换装置的接通时间的比值设置为大约1,并且如果负载是高导电性和低渗透性材料,则流过第一转换装置或第一反并联二极管的谐振电流以第一转换装置的接通时间的大约2/3为周期谐振。
11、如权利要求2所述的设备,其特征在于,其中,在加热操作的启动中,通过改变第一和第二转换装置的接通时间的比值然后通过改变第一和第二转换装置的激励频率增加输出功率。
12、如权利要求11所述的设备,其特征在于,其中,在启动加热操作时,第一转换装置的接通时间设置为比谐振电流的谐振周期短,然后通过改变第一和第二转换装置的接通时间比值增加输出功率;并且在达到预定接通时间或接通时间的预定比值后,增加第一转换装置的接通时间以便降低输出功率,然后通过逐步地增加接通时间将输出功率从低电平增加到期望电平。
13、如权利要求2所述的设备,其特征在于,其中,如果负载是铁质材料或非磁性不锈钢,则谐振电流以比第一或第二转换装置的接通时间长的周期谐振;在使用最大输出功率加热铁质材料或非磁性不锈钢负载的情况下,为了在电流正向流过第一和第二转换装置的每一个时断开第一和第二转换装置,谐振电容器单元的电容被增大到大于负载为高导电性和低渗透性材料情形下的电容。
14、如权利要求13所述的设备,其特征在于,其中,当启动加热操作时,谐振电容器单元设置为具有第一电容并且逐渐地增加设备的输出功率;当增加输出功率时,检查负载是铁质材料还是高导电性和低渗透性材料,并且如果发现负载是铁质材料,则加热操作停止并且谐振电容器转换成具有第二电容,第二电容比第一电容大,然后加热操作以降低的激励频率重新开始;但是如果检测到负载是高导电性和低渗透性材料,则输出功率继续增大直到达到接通时间的预定比值或预定输出功率,然后接通时间比值维持在大体上恒定的值并且改变转换装置的接通时间,直到达到目标输出功率。
CNB031068332A 2002-03-01 2003-03-03 感应加热设备 Expired - Fee Related CN1262149C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002056565 2002-03-01
JP2002056565A JP3884664B2 (ja) 2002-03-01 2002-03-01 誘導加熱装置

Publications (2)

Publication Number Publication Date
CN1443023A true CN1443023A (zh) 2003-09-17
CN1262149C CN1262149C (zh) 2006-06-28

Family

ID=27678602

Family Applications (2)

Application Number Title Priority Date Filing Date
CNU032033710U Expired - Fee Related CN2618402Y (zh) 2002-03-01 2003-03-03 感应加热设备
CNB031068332A Expired - Fee Related CN1262149C (zh) 2002-03-01 2003-03-03 感应加热设备

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CNU032033710U Expired - Fee Related CN2618402Y (zh) 2002-03-01 2003-03-03 感应加热设备

Country Status (8)

Country Link
US (1) US6770857B2 (zh)
EP (1) EP1341401B1 (zh)
JP (1) JP3884664B2 (zh)
KR (1) KR100517447B1 (zh)
CN (2) CN2618402Y (zh)
DE (1) DE60322994D1 (zh)
ES (1) ES2312675T3 (zh)
HK (1) HK1056813A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101438621B (zh) * 2006-05-11 2011-09-21 松下电器产业株式会社 感应加热烹调器、感应加热烹调方法、感应加热烹调程序、共振音检测装置、共振音检测方法及共振音检测程序
CN101208994B (zh) * 2005-05-04 2011-11-02 E·G·O·电气设备制造股份有限公司 为感应装置中的多个感应线圈提供功率的方法和设备
CN101848566B (zh) * 2009-03-23 2013-02-20 台达电子工业股份有限公司 加热装置
CN108429356A (zh) * 2017-02-15 2018-08-21 三星电机株式会社 无线电力发送器
CN108523626A (zh) * 2017-03-02 2018-09-14 佛山市顺德区美的电热电器制造有限公司 电烹饪设备及其检锅装置和方法

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2405710B1 (en) * 2002-06-26 2015-05-06 Mitsui Engineering and Shipbuilding Co, Ltd. Induction heating method and unit
US7022952B2 (en) * 2003-08-26 2006-04-04 General Electric Company Dual coil induction heating system
DE102004021217A1 (de) * 2004-04-29 2005-12-08 Ema Indutec Gmbh Verfahren zur Ansteuerung eines Umrichters, insbesondere zur Erzeugung von Wirkleistung für die induktive Erwärmung
US7420828B2 (en) * 2005-06-02 2008-09-02 Matsushita Electric Industrial Co., Ltd. Induction heating apparatus
CN101199236B (zh) * 2005-06-17 2011-05-04 松下电器产业株式会社 感应加热装置
US8884197B2 (en) 2007-02-03 2014-11-11 Western Industries, Inc. Induction cook top with heat management system
US8872077B2 (en) * 2005-08-01 2014-10-28 Western Industries, Inc. Low profile induction cook top with heat management system
JP4492559B2 (ja) * 2006-02-28 2010-06-30 パナソニック株式会社 誘導加熱調理器
JP4978059B2 (ja) * 2006-05-31 2012-07-18 パナソニック株式会社 誘導加熱装置
US20090084776A1 (en) * 2007-10-02 2009-04-02 Chuan-Pan Huang Induction device for a humidifier
ES2388028B1 (es) * 2010-03-03 2013-08-23 Bsh Electrodomésticos España, S.A. Encimera de cocción con al menos una zona de cocción y procedimiento para accionar una encimera de cocción.
US20110279097A1 (en) * 2010-05-13 2011-11-17 David Wise System and method for using condition sensors/switches to change capacitance value
US8476562B2 (en) 2010-06-04 2013-07-02 Watlow Electric Manufacturing Company Inductive heater humidifier
US9554425B2 (en) 2011-12-06 2017-01-24 Panasonic Intellectual Property Management Co., Ltd. Induction heating device
USD694569S1 (en) 2011-12-30 2013-12-03 Western Industries, Inc. Cook top
US9777930B2 (en) 2012-06-05 2017-10-03 Western Industries, Inc. Downdraft that is telescoping
US9897329B2 (en) 2012-06-08 2018-02-20 Western Industries, Inc. Cooktop with downdraft ventilator
JP6920582B2 (ja) * 2016-08-23 2021-08-18 パナソニックIpマネジメント株式会社 誘導加熱装置
KR101968553B1 (ko) 2017-01-04 2019-04-12 엘지전자 주식회사 Wpt 구현 가능한 전자 유도 가열 조리기 및 pfc 전력 변환 장치
CN107858496B (zh) * 2017-12-18 2023-09-08 常熟市龙腾滚动体制造有限公司 钢棒热处理生产线
KR102040221B1 (ko) * 2017-12-20 2019-11-04 엘지전자 주식회사 간섭 소음 제거 및 출력 제어 기능이 개선된 유도 가열 장치
KR102040219B1 (ko) * 2018-01-03 2019-11-04 엘지전자 주식회사 간섭 소음 제거 및 출력 제어 기능이 개선된 유도 가열 장치
KR102633797B1 (ko) 2018-08-31 2024-02-06 엘지전자 주식회사 사용 편의성이 개선된 유도 가열 방식의 쿡탑
KR20200106784A (ko) 2019-03-05 2020-09-15 엘지전자 주식회사 사용 편의성이 개선된 유도 가열 방식의 쿡탑
CN112449451B (zh) * 2019-08-29 2023-03-21 台达电子工业股份有限公司 电磁炉与其操作方法
KR102201189B1 (ko) * 2019-09-05 2021-01-08 엘지전자 주식회사 유도 가열 장치
KR20210078142A (ko) 2019-12-18 2021-06-28 엘지전자 주식회사 고온 센싱이 가능한 유도 가열 방식의 쿡탑
KR20210078138A (ko) 2019-12-18 2021-06-28 엘지전자 주식회사 박막의 열 변형을 줄인 유도 가열 방식의 쿡탑
WO2021145702A1 (en) * 2020-01-16 2021-07-22 Samsung Electronics Co., Ltd. Induction heating apparatus and method of controlling the same
KR20210103201A (ko) 2020-02-13 2021-08-23 엘지전자 주식회사 다양한 물체를 가열하기 위한 유도 가열 방식의 쿡탑
KR20210106071A (ko) 2020-02-19 2021-08-30 엘지전자 주식회사 사용 편의성이 개선된 유도 가열 방식의 쿡탑
KR20210123043A (ko) 2020-04-02 2021-10-13 엘지전자 주식회사 복수의 부품의 온도에 기초한 출력 제어 알고리즘이 적용된 유도 가열 방식의 쿡탑
KR20210123041A (ko) 2020-04-02 2021-10-13 엘지전자 주식회사 박막의 유도 가열을 이용하여 물체를 가열하는 유도 가열 방식의 쿡탑
KR20220120160A (ko) * 2021-02-23 2022-08-30 엘지전자 주식회사 유도 가열 방식의 쿡탑
EP4429406A1 (en) 2023-03-09 2024-09-11 Electrolux Appliances Aktiebolag Induction hob and operation method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0612699B2 (ja) * 1985-11-27 1994-02-16 株式会社東芝 誘導加熱調理器
GB2199454B (en) * 1986-11-29 1990-10-03 Toshiba Kk Induction heated cooking apparatus
JP2685212B2 (ja) * 1988-03-29 1997-12-03 株式会社東芝 電磁調理器
JPH08148266A (ja) * 1994-11-22 1996-06-07 Sanyo Electric Co Ltd 電磁調理器
US6528770B1 (en) * 1999-04-09 2003-03-04 Jaeger Regulation Induction cooking hob with induction heaters having power supplied by generators
JP4345165B2 (ja) 1999-12-02 2009-10-14 パナソニック株式会社 誘導加熱調理器
JP2001246783A (ja) 2000-03-02 2001-09-11 Seiko Epson Corp キャリブレーション方法、キャリブレーション装置およびキャリブレーション制御プログラムを記録した記録媒体

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101208994B (zh) * 2005-05-04 2011-11-02 E·G·O·电气设备制造股份有限公司 为感应装置中的多个感应线圈提供功率的方法和设备
CN101438621B (zh) * 2006-05-11 2011-09-21 松下电器产业株式会社 感应加热烹调器、感应加热烹调方法、感应加热烹调程序、共振音检测装置、共振音检测方法及共振音检测程序
CN101848566B (zh) * 2009-03-23 2013-02-20 台达电子工业股份有限公司 加热装置
CN108429356A (zh) * 2017-02-15 2018-08-21 三星电机株式会社 无线电力发送器
CN108429356B (zh) * 2017-02-15 2021-07-02 株式会社Wits 无线电力发送器
CN108523626A (zh) * 2017-03-02 2018-09-14 佛山市顺德区美的电热电器制造有限公司 电烹饪设备及其检锅装置和方法

Also Published As

Publication number Publication date
US6770857B2 (en) 2004-08-03
EP1341401A2 (en) 2003-09-03
CN1262149C (zh) 2006-06-28
EP1341401B1 (en) 2008-08-20
KR100517447B1 (ko) 2005-09-29
EP1341401A3 (en) 2006-04-12
DE60322994D1 (de) 2008-10-02
CN2618402Y (zh) 2004-05-26
KR20030071638A (ko) 2003-09-06
JP3884664B2 (ja) 2007-02-21
ES2312675T3 (es) 2009-03-01
US20030164373A1 (en) 2003-09-04
JP2003257607A (ja) 2003-09-12
HK1056813A1 (en) 2004-02-27

Similar Documents

Publication Publication Date Title
CN1262149C (zh) 感应加热设备
JP4310292B2 (ja) 誘導加熱装置
CN1767698A (zh) 逆变器电路和感应加热式烹调装置及它们的操作方法
JP5909402B2 (ja) 電力変換装置およびそれを用いた誘導加熱装置
CN1604441A (zh) 功率因数改良电路
CN101044797A (zh) 高频加热电源设备
US20090057298A1 (en) Device for Inductive Energy Transmission with Resonant Circuit
CN1882202A (zh) 感应加热烹调器
CN112272423B (zh) 电磁感应加热控制方法、电磁加热装置和存储介质
JP3831298B2 (ja) 電磁誘導加熱装置
JP2008010165A (ja) 誘導加熱装置
JP2013013163A (ja) インバータ装置およびそれを用いた誘導加熱装置
JP3907550B2 (ja) 誘導加熱調理器
CN1868238A (zh) 高频加热装置
JP3460997B2 (ja) 誘導加熱装置
CN210807711U (zh) 一种驱动定频磁控管的变频电源电路以及微波炉
JP4797542B2 (ja) 誘導加熱装置
KR102175634B1 (ko) 동작 안정성을 향상한 조리 기기 및 그 동작방법
JP2006302595A (ja) 誘導加熱装置
CN1747300A (zh) 谐振变换器
JP3932976B2 (ja) 誘導加熱装置、およびこれを用いた誘導加熱調理器と炊飯器
JP3833159B2 (ja) 誘導加熱装置
JP4613687B2 (ja) 誘導加熱装置
JP5621252B2 (ja) インバータ装置
JP2011150799A (ja) 誘導加熱装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20060628

Termination date: 20190303