CN1421043A - 等离子体加工系统及其方法 - Google Patents

等离子体加工系统及其方法 Download PDF

Info

Publication number
CN1421043A
CN1421043A CN00818236A CN00818236A CN1421043A CN 1421043 A CN1421043 A CN 1421043A CN 00818236 A CN00818236 A CN 00818236A CN 00818236 A CN00818236 A CN 00818236A CN 1421043 A CN1421043 A CN 1421043A
Authority
CN
China
Prior art keywords
plasma
substrate
process chamber
processing system
plasma process
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN00818236A
Other languages
English (en)
Other versions
CN1253918C (zh
Inventor
A·D·拜利三世
A·M·舍普
D·J·赫姆克尔
M·H·维尔科克森
A·库蒂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lam Research Corp
Original Assignee
Lam Research Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lam Research Corp filed Critical Lam Research Corp
Publication of CN1421043A publication Critical patent/CN1421043A/zh
Application granted granted Critical
Publication of CN1253918C publication Critical patent/CN1253918C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32623Mechanical discharge control means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3266Magnetic control means

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Drying Of Semiconductors (AREA)
  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

一种用来加工衬底的等离子体加工系统,它包括单室的、基本上方位对称的等离子体加工室,在其中等离子体被点燃并被保持以用于加工。该等离子体加工室不具有单独的等离子体发生室。该等离子体加工室具有上端和下端。该等离子体加工系统包括设在等离子体加工室上端的耦合窗口以及在衬底被置于用于加工的等离子体加工室中时处于由衬底所确定的平面上方的RF天线装置。等离子体加工系统还包括设在由衬底确定的平面上方的电磁铁装置。该电磁铁装置被构型成,当至少一个直流电流被馈送到电磁铁时在等离子体加工室的耦合窗口和天线附近的区域中引起可控磁场的径向变化。此径向变化可用来影响衬底上的加工均匀性。等离子体加工系统还包括耦合到电磁铁装置的直流电源。此直流电源具有控制器,用来改变至少一个直流电流的幅度,从而改变等离子体加工室的天线附近区域中的可控磁场的径向变化,以改善衬底上的加工均匀性。

Description

等离子体加工系统及其方法
发明背景
相关案件的引用
本申请涉及到下列当前提交的美国专利申请:
专利申请No.09/439661,名称为“IMPROVED PLASMA PROCESSINGSYSTEMS AND METHODS THEREFOR”,(律师案号:No.LAM1P122/P0527);
专利申请No.09/470236,名称为“PLASMA PROCESSING SYSTEM WITHDYNAMIC GAS DISTRIBUTION CONTROL”,(律师案号:No.LAM1P123/P0557);
专利申请No.09/439671,名称为“TEMPERATURE CONTROL SYSTEM FORPLASMA PROCESSING APPARATUS”,(律师案号:No.LAM1P124/P0558);
专利申请No.09/440418,名称为“METHOD AND APPARATUS FORPRODUCING UNIFORM RATES”,(律师案号:No.LAM1P125/P0560);
专利申请No.09/440794,名称为“MATERIALS AND GAS THEMISTRIESFOR PLASMA PROCESSING SYSTEMS”,(律师案号:No.LAM1P128/P0561);
专利申请No.09/439759,名称为“METHOD AND APPARATUS FORCONTROLLING THE VOLUME OF PLASMA”,(代理人案号:No.LAM1P129/P0593)。
这里将上述各个专利申请作为引用包括进来。
本发明涉及到用来加工诸如用于集成电路(IC)制造的半导体衬底或用于平板显示器的平板(例如玻璃、塑料等)之类的衬底的装置和方法。更确切地说,本发明涉及到改进的等离子体加工系统,它能够在衬底表面上以高度加工均匀性来加工衬底。
等离子体加工系统已经存在了一些时日。多年来,采用感应耦合等离子体源、电子回旋共振(ECR)源、电容性源之类的等离子体加工系统,已经被不同程度地引入和应用来加工半导体衬底和显示屏。
在典型的等离子体加工应用中,加工源气体(例如腐蚀剂气体或淀积源气体)被引入到加工室中。然后提供能量以便在加工源气体中点燃等离子体。在等离子体被点燃之后,利用以用诸如电容性方法、感应方法、通过微波的方法之类的各种众所周知的方法耦合到等离子体的额外的能量来维持等离子体。然后将此等离子体用于加工任务,例如在衬底上选择性地刻蚀或淀积薄膜。等离子体加工系统通常在本技术领域中是众所周知的,参考文献中有大量涉及到各种市售系统的细节。因此,为了简便起见,此处不详细描述涉及到等离子体加工的一般原理。
在衬底的加工过程中,工艺工程师努力改进的一个重要参数是加工的均匀性。例如,在刻蚀环境中,刻蚀均匀性是成品率的一个重要决定因素,亦即,高水平的刻蚀均匀性有利于提高无缺陷加工衬底的百分比,这意味着制造成本更低。此处所用的术语刻蚀均匀性指的是衬底表面上整个刻蚀工艺的均匀性,包括刻蚀速率、微观负载、掩模选择性、下层选择性、临界尺寸控制、以及侧壁角度和粗糙度等外观特性。例如,若刻蚀是高度均匀的,则衬底上不同点处的刻蚀速率可望倾向于基本上相等。在这种情况下,在衬底的其它区域仍然腐蚀不充分时,衬底的另一个区域不太可能被不适当地过腐蚀。此外,在许多应用中,这些严格的加工要求在衬底加工的不同阶段可能是相互矛盾的。这常常是由于存在着必须用极为不同的等离子体加工要求来处理的多个薄膜。例如,在加工单个衬底以获得所希望的加工性能时,可能需要明显地改变气体压力、等离子体密度、以及化学组成。
除了加工均匀性外,还存在着工艺工程师关心的其它问题。在对制造厂家来说最为重要的一个问题是加工设备所有权价格,这包括例如获得和维护系统的成本、为了保持可被接受的加工性能所需的加工室清洗频率、系统元件的寿命等。于是,所希望的刻蚀工艺常常是力图在不同的所有权价格与工艺参数之间找到适当的平衡,以便以较低的成本得到质量较高的工艺。而且,当衬底上的图形变得更小,因而工艺要求变得更高(例如临界尺寸更小,形状比更高、产率更快)时,工艺工程师总是在寻找新的方法和装置,以便以更低的成本来得到质量更高的加工效果。
发明概述
在一个实施方案中,本发明涉及到用来加工衬底的等离子体加工系统,它包括单室的、基本上方位对称的等离子体加工室,用于加工的等离子体在其中被点燃并被维持。此等离子体加工室不具有单独的等离子体发生室。此等离子体加工室具有上端和下端。
等离子体加工系统包括排列在等离子体加工室上端的耦合窗口以及当衬底被置于加工用的等离子体加工室中时设置在由衬底所确定的平面上方的RF天线装置。等离子体加工系统还包括排列在由衬底确定的平面上方的电磁铁装置。电磁铁装置被构造成当至少一个直流电流被馈送到电磁铁时,在等离子体加工室的耦合窗口和天线附近的区域中引起可控磁场的径向变化。此径向变化可用来影响衬底上的加工均匀性。
等离子体加工系统还包括耦合到电磁铁装置的直流电源。此直流电源具有控制器来改变至少一个直流电流的幅度,从而改变等离子体加工室的天线附近区域中的可控磁场的径向变化,以改善衬底上的加工均匀性。
在另一个实施方案中,本发明涉及到在用等离子体增强工艺对衬底进行加工的过程中用来控制加工均匀性的方法。此方法包括提供具有单室的、基本上方位对称结构的等离子体加工室,在衬底加工过程中,等离子体被在加工室中点燃并维持,此等离子体加工室不具有单独的等离子体发生室。
此方法还包括提供设在等离子体加工系统上端的耦合窗口以及提供RF天线装置,当衬底被置于用于加工的等离子体加工室中时此天线装置设在由衬底确定的平面上方。此方法还包括提供排列在衬底确定的平面上方的电磁铁装置。此电磁铁装置被构造成当至少一个直流电流被馈送到电磁铁时,在等离子体加工室的耦合窗口和天线附近区域中引起可控磁场的径向变化。此径向变化可用来影响衬底上的加工均匀性。
此外,还包括提供耦合到电磁铁装置的直流电源;将衬底置于等离子体加工室中;将反应气体通入等离子体加工室中;由反应气体触发等离子体;以及改变等离子体加工室的天线附近区域中的可控磁场的径向变化以改善衬底上的工艺均匀性。
在又一个实施方案中,本发明涉及到用来加工衬底的等离子体加工系统,它包括单室的、基本上方位对称的等离子体加工室,用于加工的等离子体在其中被点燃并被维持。此等离子体加工室不具有单独的等离子体发生室。此等离子体加工室具有上端和下端。
等离子体加工系统包括设在等离子体加工室上端的耦合窗口,以及当衬底被置于加工用的等离子体加工室中时设在由衬底确定的平面上方的RF天线装置。
还包括耦合到射频(RF)天线的第一RF电源以及设在由衬底确定的平面上方的第一磁铁装置。此磁铁装置被构造成由于从磁铁装置发出的磁力线而在等离子体加工室的耦合窗口和天线附近区域中引起可控磁场的径向变化。此径向变化可用来影响衬底上的加工均匀性。
此外,还包括用来在加工过程中支持等离子体加工室中的衬底的衬底支持装置以及耦合到衬底支持装置的第二RF电源。第二RF电源可独立于第一RF电源控制。还包括用来改变等离子体加工室的天线附近区域中的可控磁场的径向变化以改善衬底上的加工均匀性的装置。
下面在本发明的详细描述中参照附图来更详细地描述本发明的这些和其它的特点。
附图的简要说明
这里是用举例的方法而不是用限制的方法来说明本发明,其中:
图1根据本发明一个实施方案示出了一个等离子体加工系统,它包括示例性RF天线装置和示例性的上部磁铁装置。
图2A示出了可以在图1的加工室中产生的某些示例性磁力线,以利于等离子体加工室中可控磁场强度和布局的径向变化。
图2C示出了可控磁场强度径向变化的典型布局。
图2B是当图1的等离子体加工系统的电磁铁线圈中的直流电流被控制时,可以产生的另一种径向发散的磁场布局的示例性图解。
图3A-3H示出了根据本发明的实施方案可以用于本发明等离子体加工系统的各种RF天线装置。
图4A-4F示出了根据本发明的实施方案可以用于本发明等离子体加工系统的各种磁场发生装置。
图5A-5C示出了根据本发明的实施方案可以用于本发明等离子体加工系统的各种磁性桶形装置。
图6A-6C示出了根据本发明的实施方案可以用于本发明等离子体加工系统的各种磁化图形。
图7根据本发明一个实施方案示出了一个简化流程图,表示借助于改变可控磁场强度和/或布局的径向变化而控制工艺均匀性过程中涉及到的各个步骤。
优选实施方案的详细描述
现参照附图所示本发明的一些优选实施方案来详细地描述本发明。在下列描述中,为了提供对本发明的透彻理解,提出了大量具体的细节。但对于本领域的技术人员来说,本发明显然可以不采用某些或全部具体细节而加以实施。在其它的情况下,为了不无谓地使本发明难以理解,没有详细地描述那些众所周知的工艺步骤和/或结构。
在一个实施方案中,本发明涉及到一种能够实现高度加工均匀性控制的改进了的等离子体加工系统。此示例性的改进的等离子体加工系统包括单室的、基本上方位对称的(即平行于晶片平面的各个剖面具有几乎圆形的形状)等离子体加工室,它用来产生等离子体并容纳用于加工的等离子体。此改进的等离子体加工系统还包括上部磁铁装置和在加工过程中处于由衬底确定的平面上方的RF天线装置。
RF天线装置和上部磁铁装置被安置成使等离子体加工室中处于衬底上方足够远处的可控磁场强度和布局存在非无效径向变化量,以致可以获得引起的加工均匀性变化,同时确保衬底处的磁场强度低。在优选实施方案中,可控磁场强度和布局的这一径向变化主要在靠近RF天线/真空界面的功率耦合区域附近。可控磁场强度和布局的径向变化使得它可以以非无效方式影响加工均匀性。借助于有目的地将等离子体加工系统设计成产生能够影响加工均匀性的可控磁场强度和布局的径向变化的图形,然后提供改变此径向变化的方法,提供了一种均匀性调节控制盘,使工艺工程师能够调整工艺以改善均匀性。
在一个例子中,借助于使RF天线装置与上部磁铁装置不共平面而产生了可控磁场强度和布局的上述径向变化。可选择地或另外地,还可以通过提供包括二个或更多个彼此可以共平面或不共平面的电磁铁线圈的上部磁铁装置来产生可控磁场强度和布局的径向变化。多个电磁铁线圈可以(但不要求)被馈以具有相反方向的直流电流,以便引起上述可控磁场强度和布局的径向变化。
为了容易制造和操作简单,等离子体加工室最好被构造成(虽然不限制为)单室的、基本上方位对称的等离子体加工室。换言之,本发明的等离子体加工室最好由产生和容纳用于衬底加工的等离子体的单个加工室组成(从而不需要产生等离子体的分立的加工室),且最好还是基本上方位对称的以便提高均匀性。用举例的方法而不是用限制的方法,加工室可以采取单圆柱形或圆顶形状。
在一个优选实施方案中,加工室采用单个圆柱形加工室,其中等离子体被点燃和容纳以用于加工任务而不需要采用用于等离子体产生和用于加工的单独的室。
在一个示例性的改进的等离子体加工系统中,还提供了磁性桶形装置,它被构型为迫使离开衬底出现多个等离子体密度梯度。在一个优选实施方案中,磁性桶形装置被设在等离子体加工室周边附近。磁性桶形装置(最好但不是必须)包括围绕等离子体加工室周边沿轴向设于加工室壁内侧或外侧的永久磁铁。不管具体如何实现,磁性桶形装置都被构造成迫使等离子体密度梯度集中到远离衬底的加工室壁附近。以这种方式,由于衬底上的等离子体密度梯度的变化被最小化或明显减小了,故均匀性被进一步提高。由于上述可控磁场强度和布局的径向变化的结合,改进的等离子体加工系统中的加工均匀性的改进远大于许多现有等离子体加工系统中可能得到的改进。
磁性桶形装置有助于降低壁上的等离子体损耗,因此示例性的改进了的等离子体加工系统可以更有效地利用源产生的等离子体。因此,对于一个给定的源功率,一般能够得到比通常加工系统更高的密度,这又提供了更宽的加工窗口。在许多情况下,可以容易地获得所希望的加工密度,在示例性的改进了的系统中,为了产生这一密度通常只需要较少的源功率。如本领域技术人员能够理解的那样,设定较低的源功率有助于减小可能的晶片损伤机制并进一步加宽允许的系统的加工窗口。
对反应器的等离子体分析(例如基于由壁上的Bolm损耗所平衡的体离化的分析)也预计对于给顶功率淀积的电子温度将由于降低了等离子体损耗面积而被降低。在一个实施方案中,借助于组合磁性桶形装置而完成了这一点。电子温度的这一降低通常导致可能引起被处理的电子电路损伤的晶片上的电位降低。消除等离子体引入损伤的这一根源易于明显增强这一装置的工作窗口。
还观察到在某些淀积等离子体化学中,桶形场易于降低壁上总的聚合物淀积,从而减少适合于越来越大的晶片的加工室中所要求的增大了的表面面积所期望的加工室清洗时间。
在确定得到的加工效果方面,晶片上的平均密度也可以起很大的作用。通过采用磁性桶形装置来降低壁上的等离子体损耗,此处公开的均匀性控制机制基本上独立于平均密度。
此外,优选地利用将较高磁场区域施加到远离晶片处而得到晶片处很低的磁场,晶片处很低的磁场有利于所公开的均匀性控制发明。利用磁性桶形装置来有效地利用源所产生的密度,因而是非常有好处的。
参照附图和下列讨论,可以更好地理解本发明的特点和优点。图1示出了根据本发明一个实施方案的等离子体加工系统100,它包括示例性RF天线装置102和示例性上部磁铁装置104。在图1的例子中,RF天线装置102和上部磁铁装置104排列在等离子体加工室106上方。如此处稍后将要讨论的那样,RF天线装置102和上部磁铁装置104也可以有其它的位置。
RF天线装置102耦合到RF电源112,RF电源112可以将频率约为0.4-50MHz的RF能量馈送给RF天线装置102。频率范围约为1-30MHz更好。在刻蚀的优选实施方案中,馈送到RF天线装置102的RF频率最好约为4MHz。
图1实施方案的上部磁铁装置104包括二个沿相反方向通以直流电流的同心磁性线圈。上部磁铁装置104耦合到可变直流电源114,可变直流电源114被用来改变馈送到上部磁铁装置104的电磁铁线圈的直流电流的幅度和/或方向,以便改变区域110中可控磁场强度和布局的径向变化,从而获得用于给定工艺的衬底表面上所需要的加工均匀性等级。
衬底122设在衬底支持装置124上,衬底支持装置124被耦合到偏压RF电源系统128,以便独立控制撞击到晶片上的带电粒子的能量。偏压RF电源128可以馈送具有周期性但不一定是正弦波的频率约为0.3-50MHz,约为2-30MHz更好,最好是约为13.5MHz的RF能量。衬底122表示待要加工的工件,它可以表示例如待要刻蚀、淀积、或进行其它加工的半导体衬底,或待要加工成平板显示器的显示板。在一个实施方案中,最好利用磁性桶形装置,但不是绝对必须,衬底应该被支持在磁性桶形装置内部最下方,以避免可能出现在存在于从磁性桶形装置过渡到非磁性部分处的约束变化面附近的等离子体加工混合物中的任何轴向梯度。制造和成本情况可以确定加工过程中磁性桶形装置和衬底相对位置的实际范围。
如图1所示,等离子体加工室106具有简单的大致圆柱形状。换言之,等离子体加工室106的用来点燃和用于保持加工衬底的等离子体的部分最好由单个室组成,虽然所讨论的方法也可以实现为多室的反应器。有利的是不需要使加工室的制造复杂化并引入额外的等离子体输运问题(例如必须有一种将产生的等离子体从等离子体发生室恰当地输送到用来加工衬底的加工室中的机构)的单独的等离子体发生室。而且,衬底上方基本上垂直的加工室侧壁以及简单的圆柱形状,使加工室的侧壁更容易制造,更不容易受到可以剥落最终沾污衬底的颗粒状物质的淀积的影响,并简化了加工室的清洗问题。可以预见,侧壁上的弯曲虽然使反应器的设计复杂化了,但它还是可以被使用并在加工室的清洗和处置方面可以具有进一步的优点。单室的、基本上方位对称的等离子体加工室的准确结构和形状,可能决定于特定制造厂家在成本、维修方便以及制造能力之间作出的平衡。
在图1中,RF天线装置102和上部磁铁装置104是不共平面的,亦即沿等离子体加工室的轴108被空间偏移,以便在等离子体加工室内靠近RF天线装置102、耦合窗口/真空的界面的区域110处引起可控磁场强度和布局的径向变化。图2A示出了图1的加工室106中可能产生的一些示例性磁力线,以利于等离子体加工室中可控磁场强度和布局的径向变化。
有利的是现存在着可控磁场强度和布局的非无效径向变化,这是在改进了的等离子体加工系统中有目的地产生的,并有目的地构造成能够对衬底表面处的加工均匀性具有非无效的作用。例如,图2A中的磁力线以具有接近加工室146半径144一半的半径从高磁场强度环发散。通过提供一种机制来改变这一有目的地产生的可控磁场强度和布局的径向变化,能够比现有技术等离子体加工系统更精细地将衬底表面上的工艺均匀性调整到一个较高程度。
当在窗口/真空界面附近测量时,来自B线圈的B磁场的范围约为0-1500高斯,更优选约为0-200高斯,最优选约为0-50高斯。图2B是当图1的电磁铁线圈104的直流电流被控制时可以产生的另一个径向发散的磁场布局的示例性说明。对于图2B的例子,磁力线沿对应于图1中的轴从高磁场区域发散。可以用图1的线圈104来控制封闭和开放磁力线的准确布局。此外,所述磁力线的角度的变化范围和绝对幅度取决于磁性线圈的实际结构。例如,可以将各个磁铁制成不共平面,以便提供磁力线比图1更指向轴的例子。最佳b线圈的结构与加工室的直径、磁性桶形装置的存在和强度、天线和设有反应器的等离子体加工区域是互相依赖的。可以根据本发明的原理来确定结构。图2C示出了径向变化的典型图形。在1000情况下的B磁场强度在轴上具有单个局部最大值,而在1002情况下存在着限定半径处的二个位置对称的局部最大值以及轴上的一个局部最大值。在本发明中,利用电磁铁装置能够控制这些类型的布局变化。
图1还示出了磁性桶形装置132,它包括围绕等离子体加工室周边沿轴向设置的多个永久磁铁。如所示,磁性桶形装置132被构型为可以使等离子体密度梯度远离衬底,同时在晶片处保持非常小的磁场。在图1的示例性实施方案中,磁性桶形装置132包括具有各自的围绕加工室交替的径向磁化因子(例如N、S、N、S、等等)的32个永磁铁尖端。但每个加工室的磁铁尖端的实际数目可以根据各个等离子体加工系统的具体结构而变化。
通常,磁铁尖端的数目应该足够高以确保远离衬底存在着强的等离子体密度梯度。但由于磁铁尖端处相对于加工室桶形其余部分的损耗最大,故太多的磁铁尖端可能降低密度增强作用。举例来说,对于某些工艺,真空-壁界面处大约15-1500高斯的磁场强度可能是合适的。真空-壁界面处大约100-1000高斯的磁场强度可能更优选。真空-壁界面处的磁场强度最好是大约800高斯。应该理解的是,磁性桶形装置132的使用提高了晶片表面上的等离子体均匀性,并可能不是所有的工艺所要求的。但若高的均匀性是关键的,则具有磁性桶形装置可以是非常有好处的。
在优选实施方案中,RF天线装置最好排列在RF耦合窗口上方,以便有利地简化加工室和/或RF耦合窗口和/或磁性桶形装置的结构和构造。但预计借助于将RF天线装置置于加工室上其它位置也可以获得所希望的磁场强度和布局的可控径向变化。举例来说,图3A示出了根据本发明原理设计的一种等离子体加工系统,其RF天线装置102围绕耦合窗口120的周边设置。但最好是将RF天线装置定位,以便当衬底被设在等离子体加工室中用于加工时处在衬底所形成的平面上方。而且,RF天线应该足够靠近上部磁铁装置,以利于在B磁场强度和布局的可控径向变化的较高的B场强区域附近形成等离子体。
在图1的示例性实施方案中,具有3-D叠层构造的RF天线被用来提高方位对称耦合,当衬底上需要高等级加工均匀性时,此方位对称耦合是重要的。但还应该指出的是,这一3-D叠层构造不是在所有情况都要求的。在许多情况下,这种天线的固有方位对称耦合不是必须的(例如,在用诸如平面螺旋天线之类的不具有固有方位对称耦合特性的天线已经可获得可接受的均匀性的情况下)。在图3B(平面螺旋线圈)、图3C(具有厚度各不相同的不同数目圈数的RF天线)、图3D(具有垂直排列的不同数目圈数的RF天线)、图3E(包含多个分别驱动的天线的RF耦合源)、以及图3F(可以是所示单个线圈或可以涉及到一起驱动的或用多个独立电源驱动的多个线圈的钟罩天线)中,可以看到可使用的其它RF天线装置的例子。而且,RF天线装置可以具有诸如D形、多个天线等的不同类型的其它非轴环绕构造。
关于使用的RF频率,作为一般的准则,在这些装置中出现的典型介电常数和物理尺寸的情况下,例如<13MHz的较低的RF频率,易于使天线的任何固有方位不对称耦合特性更不明显。因此,在较低的RF频率下可以使用更宽的天线构造阵列。举例来说,当RF频率低,例如4MHz时,在改进了的等离子体加工室中可以使用平面螺旋天线来获得高质量的刻蚀。在相对高,例如13MHz和以上的RF频率下,天线的固有方位不对称耦合特性能够变得更明显,并能够负面影响工艺均匀性。因此,耦合特性是固有方位不对称的天线(例如简单螺旋天线)可能不适合于要求高等级工艺均匀性的某些工艺。在这种情况下,使用具有固有方位对称耦合特性的天线可以是有保证的。
在优选实施方案中,RF天线装置最好与电磁铁线圈、等离子体加工室、以及衬底同轴。但这不是绝对的要求。对于不需要同轴RF天线提供的高等级工艺均匀性的某些工艺,或在采用不对称抽气的加工室中,RF天线装置可以不采用这一同轴构造,以便在加工室结构中出现不对称性。有目的地引入可控磁场强度和布局的可控径向变化以及控制可控磁场强度和布局的这一径向变化的能力,以便精细地调整衬底表面上的工艺均匀性,仍然是可取的。
关于RF天线装置的尺寸,RF天线装置的尺寸通常最好(但不是绝对必须)小于加工室的剖面,以便使等离子体集中在衬底上方区域并防止等离子体到加工室壁的过分扩散,这种扩散不利地需要更多的功率来运行等离子体加工系统并加剧壁的腐蚀。在磁性桶形装置被设在加工室外面的如图1示出的改进的等离子体加工系统中,RF天线装置的投影最好保持在磁性桶形装置确定的区域之内,以便降低等离子体到加工室壁的扩散。若磁性桶形装置被设在加工室内部(以多个靠近内壁的磁铁结构的形式或以位于衬底轴附近以将等离子体密度梯度推向加工室壁的磁铁结构形式),则RF天线装置的投影最好保持在靠近加工室壁的高等离子体密度梯度区域内。
在图1中,RF耦合窗口是平面的。但可预见RF耦合窗口也可以具有其它形状,例如在示例性图3A那样,其中耦合窗口材料还向下延伸形成帽形,或在示例性图3G中那样,其中窗口为圆顶形。图3H示出了圆顶形的窗口与圆顶形天线的组合。注意,并不需要RF耦合窗口的半径要等于等离子体加工室的半径。
在较低的RF频率(例如低于大约13MHz)下,天线与等离子体之间的电容性耦合被减小了,这减轻了耦合窗口130的轰击。由于轰击减轻了,故有可能不需要半导体窗口或使用法拉第屏蔽。实际上,可以预见可以由诸如SiC或AlxNy或SixNy等介电材料有利地制作耦合窗口130,也可以与SiC结合以使耦合窗口与加工室中的等离子体环境更兼容。
图1还示出了上部磁铁装置,它包括两个同心电磁线圈。应该指出的是,也可以提供二个以上的电磁铁线圈,特别是如果希望精细等级的均匀性控制的话。虽然这种多线圈构造的优点是即使当电磁铁线圈装置和RF天线装置共平面时,也能够产生可控磁场强度和布局的所需径向变化,这不是绝对必须的。如所述,当电磁铁线圈装置与RF天线装置沿加工室的轴不共平面时,不管涉及到的线圈数目如何,也能够得到可控磁场强度和布局的这种径向变化。
通常,借助于改变馈送到电磁铁线圈的直流电流的幅度和/或方向,可以改变径向分散的磁场布局。如在图1的例子的情况下,若涉及到多个电磁铁线圈,则可以控制馈送到涉及的多个电磁铁线圈的一个或多个直流电流的幅度和/或方向,以便在衬底表面上具有所需要的均匀性效果。当然也可以以其它方式来控制可控磁场强度和布局的径向变化。举例来说,借助于绕不同于108的轴旋转或沿加工室的轴移动、沿相同的平面移动和/或倾斜上部磁铁装置而物理上移动上部磁铁装置,也可以沿径向改变磁场布局。作为进一步的例子,绕磁性线圈引入和移动磁力线挡板材料也可以调整磁场布局。
由于借助于控制主要产生于靠近RF天线装置102的区域110附近的磁场强度和布局的径向变化有利于均匀性的控制,故衬底与上部磁铁装置之间的距离是一个重要的参数。这是因为磁场布局径向分量的改变也影响到轴向分量。加工衬底时,衬底表面处的磁场强度最好应该相当地弱(例如小于大约15高斯),而靠近RF天线装置的轴线位置处应该强(例如靠近真空-窗口处约为15-200高斯)。若在邻近晶片的太大的体积内磁场强度变得太弱,则等离子体会几乎接近在应有的位置上没有均匀性控制机制的扩散轮廓。虽然对于反应器的设计出的加工窗口中的某些区域来说这种扩散分布可以是足够均匀的,但与具有磁场强度和布局的可控径向变化相关的优点被明显地削弱了。
记住这些考虑,当径向变化的磁场强度和布局被改变时,距离应该小得足以能够控制加工均匀性。但此距离不应该过分小,以致由于加工过程中由晶片位置处过大的磁场引起或增强的晶片中流动的电流的变化或被加工的晶片上的被刻蚀的图形的改变而引起衬底损伤。此外,若源到晶片的距离太小,则轴向扩散开始主导加工均匀性。控制均匀性所需的径向变化标准长度就变得接近待要被控制的非均匀性的尺寸。由于磁场强度和布局的局部径向变化的数目和所需的控制精度的增大而导致磁场结构不是最佳。换言之,若加工室太小,则其物理边界控制着加工均匀性,以至于使得本发明的原理虽然还可应用,但却迫使结构过分复杂且不会得到所希望的均匀性与前述其它实际考虑的如成本和可靠性等之间的最佳平衡。
在优选实施方案中,衬底与上部磁铁装置之间的距离的确定(在某些情况下可以凭经验来确定)可以考虑,可控磁场布局的径向发散分量和轴向分量的强度以及避免当直流电流被提供给电磁铁线圈装置来调整工艺均匀性时过分的衬底损伤。在一个示例性实施方案中,对于设计为用来加工直径小于大约470mm的半导体衬底的衬底加工室来说,20cm的直径是合适的。
在图1的实施方案中,上部磁铁装置设在RF耦合窗口上方。但这不是绝对的要求。图4A示出了一种实现方法,其中至少一个线圈104a被围绕加工室106的周边设置。图4A的实现方法还示出了使用二个彼此也是不共平面的线圈。虽然这种实现方法可以被适当地采用,但没有任何一个要求(多线圈或不共平面)是绝对必须的。注意,在图4A中,线圈可以按需要被排列在窗口130的上方或下方。但线圈最好被排列在衬底平面上方并靠近RF天线,以便有目的地影响产生的磁场强度和布局的径向变化。
在优选实施方案中,上部磁铁装置与天线、加工室以及衬底同轴,以便简化等离子体云与衬底的对准。但预计在某些等离子体加工室中,例如在采用不对称抽气的加工室中或在要求更复杂的磁场布局的加工室中,使上部磁铁装置偏离于加工室轴和/或衬底轴以改善工艺结果,可能更有利。图4B示出了一个这样的实现方法,其中线圈104a和104b中的至少一个偏离于加工室轴线。同样,虽然磁铁线圈是平的,但这不是绝对必须的,可以预见例如为了进一步使加工室中的磁场布局成形,诸如图4C所示的圆顶形或其它三维形状的线圈也可以是有用的。
此外,并不要求线圈必须直接重叠天线。举例来说,在图4D的实施方案中,电磁铁线圈104b被示为重叠RF天线102。但这不是实现图4E的情况。
而且,虽然上部磁铁装置的优选实现方法是电磁铁线圈,但也可以采用例如由NdFeB或SmCo族磁性材料制成的足够强的永久磁铁装置来有目的地产生磁场布局的上述径向发散。在采用永久磁铁实现的情况下,可以借助于物理上移动上部磁铁装置的元件和/或借助于提供适当的结构性或磁路元件,例如借助于插入具有高导磁率的结构作为上部磁铁装置和耦合窗口的有效磁路的一部分以适当地改变磁力线,来改变得到的磁场布局的径向发散。同样,可以采用铁磁元件和电磁铁的组合。
在图4F的实施方案中,额外的磁场产生装置104C也可以被置于加工室外面或加工室内部由衬底形成的平面的下方,以便降低磁场强度和/或进一步补偿衬底表面处剩余的磁场强度和/或布局的变化。在这种情况下,可以降低因为基于上部磁铁装置的磁场的重叠强轴向分量造成的对衬底的潜在损伤。
虽然在优选实施方案中已经演示了简单性和对称性,可以预料,用剖面非圆形(例如六角形或正方形或其它几何形状)的磁铁线圈,或用不平行于系统主轴的轴,也能够获得相似的均匀性控制变化。
在图1的示例性等离子体加工系统中,真空加工室、抽气、桶形磁场、天线以及等离子体加工室的磁铁线圈的结构,最好与加工室本身、RF天线装置、以及衬底的轴同轴。虽然这一实现方法在非常有利之处在于它能最好地利用典型的衬底加工的固有对称性和扩散特性,但也可能有这样的情况,其中真空加工室和磁性结构与加工室、RF天线装置、和/或衬底的轴不同轴是合适的。举例来说,某些等离子体加工系统可以实现不对称抽气。在这类情况下,借助于在真空加工室和/或磁性结构中设计一定程度的不对称性以修正气流穿过加工室的不对称性,可以用来增强均匀性。
而且,并不要求RF天线的投影必须大于上部磁铁装置的投影。亦即,不要求上部磁铁装置的剖面小于RF天线的剖面。只要此二者被构造成可以导致等离子体加工室中等离子体/窗口界面附近的磁场强度和布局的可控径向变化,就能够按需要确定RF天线和上部磁铁装置的相对尺寸。
如在优选实施方案的情况下那样,若涉及到用来改善某些重要工艺的加工均匀性的磁性桶形装置,则磁性桶形装置的设计也是重要的。通常,磁性桶形装置应该产生足够强的磁场来强迫大部分等离子体密度梯度远离衬底并靠近加工室壁。等离子体加工室中真空/壁界面处的磁场强度应该相对地高,例如15-1500高斯,更优选是约为100-1000高斯,而在一个实施方案中,约为800高斯。但衬底中心处的磁场强度应该保持较低,例如低于大约15高斯,更优选地小于大约5高斯。
虽然图1示出了磁性桶形装置包括跨越等离子体加工室的几乎整个高度的各个磁铁,但这不是一个要求。举例来说,图5A示出了磁性桶形装置,其磁铁132不从加工室顶部跨越到加工室底部。通常,永久磁铁的尺寸最好被定为使得由磁性桶形装置产生的磁场的轴向梯度在衬底表面层面处保持较低。在一个实施方案中,磁性桶形装置的磁性部分从衬底上方(例如接近加工室的顶部)延伸到衬底平面下方的某个位置(例如下方1.5英寸),以便尽量减小或明显地减小磁性桶形装置产生的磁力线的轴向梯度。
虽然此实现方法是非常有利和优选的,但可以预计,对于某些工艺有可能采用仅仅在衬底平面一侧设有加工室磁铁(亦即磁性桶形装置的磁铁)的等离子体加工系统。举例来说,若加工均匀性要求能够容忍磁性桶形装置产生的磁力线的某种轴向梯度的存在,则可以不必要求加工室磁铁延伸到衬底平面二侧。作为另一个例子,可以有二组加工室磁铁,衬底平面的每一侧上一组(例如图5B中的132组和180组),以便确保衬底表面处由磁性桶形装置产生的磁力线的轴向梯度保持较低,同时强迫大部分等离子体密度梯度远离衬底并靠近加工室壁。而且,虽然图1的实施方案示出了磁性桶形装置的尖端在真空外面,但这不是绝对的要求。举例来说,图5B中的第二组磁铁(标号180)在真空内部。
而且,虽然永久磁铁被用来实现优选实施方案中的磁性桶形装置,但也有可能用电磁铁来实现磁性桶形装置。
如所述,虽然本发明的一个重要特点是取消了等离子体发生室,但要理解的是,虽然同一个加工室能够被用来点燃、产生和保持用于加工的等离子体,但并不绝对必须将衬底保持在同一个加工室中。如图5B所示,可以提供额外的加工室106b来容纳支承衬底并便于衬底输运的支架。借助于采用单个室106a来产生和保持用于加工任务的等离子体,已经解决了许多等离子体和化学输运问题以及加工室壁吸附问题,从而不绝对必须要求位于同一个加工室中的吸盘装置和排气通路。换言之,只要被加工的衬底表面被暴露于用来产生和保持用于加工的等离子体的单个室中的等离子体,并有均匀性控制按钮以精细调整径向发散的磁场布局,就能够获得非常有利的工艺效果。若磁性桶形装置也被用来迫使产生的等离子体的等离子体密度梯度远离衬底表面并向着壁,则即使吸盘装置和一部分或整个衬底被置于一个加工室中且待要加工的衬底表面被暴露于在另一个加工室中被点燃和保持的用于加工的等离子体,也可以获得高度均匀的工艺。
而且,虽然磁性桶形装置的磁铁被以围绕加工室交替的径向磁化图形方位对称地(例如沿加工室的轴)排列,但可以想到磁化图形也可以是不交替的。举例来说,磁铁组可以被分成多个亚组,其中各个亚组可以具有相同数目或不同数目的磁铁。这可能适合于解释特殊加工室中遇到的不对称问题。各个磁铁的轴也可以沿与径向不同的方向被排列。这种实现方法再次适合于解释特殊加工室中遇到的任何不对称问题。
在一个特别有利的实施方案中,磁性桶形装置的磁铁的某些或全部磁铁可以被制成能够绕其轴旋转,以改变磁化图形。图6C示出了一个这样的实现方法。作为变通或额外地,借助于物理地移动磁铁或改变流过磁铁的电流量(例如若涉及到电磁铁),可以使各个磁铁的幅度可变。
而且,虽然图1的实施方案示出了磁性桶形装置的尖端处于轴向,但这不是绝对的要求。举例来说,某些或全部尖端可以被制作成棋盘图形(例如图6A)或水平图形(例如图6B),其中各个磁铁可以被设置成平行于衬底平面。在某些等离子体加工系统中,由于某些等离子体加工系统的特性使这些安排是合适的,因为它们能够确保更大程度的等离子体密度梯度远离衬底。
图7示出了根据本发明一个实施方案的简化流程图,说明了在借助于改变可控磁场强度和/或布局的径向变化来控制工艺均匀性的过程中涉及到的各个步骤。在步骤702中,提供了单室的、基本上方位对称的等离子体加工室。如所示,此加工室被用来点燃和保持用于加工的等离子体,从而无须分立的等离子体发生室并消除了与之相关的等离子体输运问题。在步骤704中提供了RF天线。在步骤706中提供并安置了上部磁铁装置,使得RF天线和上部磁铁装置一起导致可控磁场强度和/或布局的非无效径向变化。
在步骤708中,衬底被置于用于加工的等离子体加工室中。在步骤710中,反应气体(例如淀积源气体或腐蚀剂源气体)流入到等离子体加工室中并在其中点燃等离子体。在步骤712中,RF天线附近的可控磁场强度和/或布局的径向变化被设定为可以改善衬底表面上加工均匀性的配置。可以在加工之前完成这一配置以预先确定配置,或可以在等离子体加工过程中实时完成设定以调整加工均匀性。
如本领域技术人员能够理解的那样,本发明可以容易地被用来以主动的时基方式控制工艺均匀性,使得能够比在没有均匀性控制时所能实现的在更宽的加工范围内完全控制晶片的加工。举例来说,由于在等离子体产生和保持过程中,磁性桶形装置使得能够非常有效率地利用源的能量,且上部磁铁装置使得加工均匀性控制能够在整个等离子体密度范围内得以保持,故可以预见能够在本发明的等离子体加工系统中可以采用更宽范围的等离子体密度(例如大约每立方厘米109-1013个离子)。同样,由于磁性桶形装置允许在较低的压力下保持等离子体,故在加工衬底的过程中可望继续使用更宽范围的压力(例如,<1mT-大约100mT)。于是,单个反应器可以被用于具有宽的加工窗口的不同的工艺,这就为工艺工程师提供了在现有技术等离子体加工系统中无法得到的灵活性。
而且,可以预计适当的反馈机构可以被用来实时监测衬底上的加工均匀性并实时修正可控磁场强度和布局的径向变化,以便获得所需的最佳加工均匀性效果。可选择地或者另外地,可控磁场强度和布局的径向变化可以被调节到不同的配置,以便获得给定刻蚀工艺中各个不同刻蚀步骤的适当的均匀性控制。注意,这些配置可以利用或不利用反馈机构来完成,并可以在通过单个薄膜的刻蚀时,或在逐个薄膜的刻蚀时来执行。在不利用反馈机构的情况下,可以凭经验或用其它方法预先确定各个步骤适当的均匀性配置,并在刻蚀过程中加以使用。
虽然通过几个优选实施方案已经描述了本发明,但在本发明范围内存在各种改变、变换和等效方案。举例来说,虽然整个优选实施方案中采用了刻蚀加工,目的是简化讨论,但应该理解的是,均匀性控制适用于任何半导体加工工艺,例如淀积。因此应当认为后面所附的权利要求书被解释为包括了落入本发明真实思想和范围内的全部改变改变、变换以及等效方案。

Claims (41)

1.一种用来加工衬底的等离子体加工系统,它包括:
单室的、基本上方位对称的等离子体加工室,在其中等离子体被点燃并保持以用于所述加工,所述等离子体加工室不具有单独的等离子体发生室,所述等离子体加工室具有上端和下端;
设在所述等离子体加工室上端的耦合窗口;
当所述衬底被置于用于所述加工的所述等离子体加工室中时,处于所述由所述衬底确定的平面上方的RF天线装置;
设在由所述衬底确定的所述平面上方的电磁铁装置,所述电磁铁装置被构型成,当至少一个直流电流被馈送到所述电磁铁装置时,在所述等离子体加工室的所述耦合窗口和天线附近的区域中引起可控磁场的径向变化,所述径向变化可用来影响所述衬底上的加工均匀性;
耦合到所述电磁铁装置的直流电源,所述直流电源具有控制器来改变所述至少一个直流电流的幅度,从而改变所述等离子体加工室中所述天线附近的所述区域中的所述可控磁场的所述径向变化,以改善所述衬底上的所述加工均匀性。
2.如权利要求1所述的等离子体加工系统,其特征在于,所述RF天线装置被设在所述耦合窗口上方。
3.如权利要求1所述的等离子体加工系统,其特征在于,所述RF天线装置和所述电磁铁装置沿所述等离子体加工室的轴线在空间上偏置,以便产生所述可控磁场中的所述径向变化。
4.如权利要求1所述的等离子体加工系统,其特征在于,所述电磁铁装置包括至少二个电磁铁。
5.如权利要求2所述的等离子体加工系统,其特征在于,所述电磁铁装置包括二个同心的电磁铁线圈,所述二个同心的电磁铁线圈中的第一个被构型成沿第一方向通有第一直流电流,所述二个同心的电磁铁线圈中的第二个被构型成沿与所述第一方向相反的第二方向通有第二直流电流。
6.如权利要求1所述的等离子体加工系统,其特征在于,所述耦合窗口是一个电介质窗口。
7.如权利要求1所述的等离子体加工系统,其特征在于,所述耦合窗口基本上是非平面的。
8.如权利要求1所述的等离子体加工系统,其特征在于,所述耦合窗口基本上是平面的。
9.如权利要求1所述的等离子体加工系统,其特征在于,所述天线基本上是平面的。
10.如权利要求1所述的等离子体加工系统,其特征在于,所述天线基本上是非平面的。
11.如权利要求1所述的等离子体加工系统,其特征在于,所述衬底是一种半导体晶片。
12.如权利要求1所述的等离子体加工系统,其特征在于,所述衬底是一种用于平板显示器制造的玻璃或塑料板。
13.如权利要求1所述的等离子体加工系统,其特征在于,所述RF天线装置关于所述等离子体加工室的轴线基本上对称。
14.如权利要求1所述的等离子体加工系统,其特征在于,与所述等离子体加工室相关的对所述等离子体加工室中的等离子体密度分布具有非无效影响的结构被构造成关于所述等离子体加工室的轴线基本上对称。
15.如权利要求1所述的等离子体加工系统,其特征在于,所述等离子体加工室的输出端口关于所述等离子体加工室的轴线基本上对称。
16.如权利要求1所述的等离子体加工系统还包括可移动的吸盘装置,所述可移动的吸盘装置被构型成在用来装载与卸除所述衬底的第一位置和用来加工所述衬底的第二位置之间运动。
17.如权利要求1所述的等离子体加工系统还包括围绕所述等离子体加工室周边设置的磁性桶形装置。
18.如权利要求1所述的等离子体加工系统还包括围绕所述等离子体加工室周边设置的磁性桶形装置,基本上对称的磁力线挡板系统围绕着所述磁性桶形装置。
19.如权利要求18所述的磁性桶形装置,其特征在于,所述对称的磁力线挡板系统包括围绕所述磁性桶形装置的周边连续设置的磁力线挡板,所述磁力线挡板靠近所述磁性桶形装置的磁性元件。
20.如权利要求17所述的等离子体加工系统,其特征在于,所述磁性桶形装置包括设在所述等离子体加工室外面并基本上平行于所述等离子体加工室的轴线的多个永久磁铁。
21.如权利要求20所述的等离子体加工系统,其特征在于,所述多个永久磁铁仅仅跨越所述上端与所述下端之间的所述等离子体加工室的高度的一部分。
22.如权利要求1所述的等离子体加工系统,其特征在于,所述加工包括对所述衬底进行刻蚀。
23.如权利要求1所述的等离子体加工系统还包括:
构型成在所述加工过程中支持所述衬底的衬底支座;
耦合到所述衬底支座的第一RF电源,所述第一RF电源可独立于耦合到所述RF天线装置的第二RF电源而被控制。
24.如权利要求1所述的等离子体加工系统,其特征在于,对所述可控磁场的所述径向变化的改变包括改变所述可控磁场的幅度分量。
25.如权利要求1所述的等离子体加工系统,其特征在于,对所述可控磁场的所述径向变化的改变包括改变所述可控磁场的布局分量。
26.一种用于在利用等离子体增强工艺对衬底进行加工时控制加工均匀性的方法,它包括:
提供具有单个室的、基本上方位对称结构的等离子体加工室,在所述衬底的所述加工过程中等离子体在其中被点燃并保持,所述等离子体加工室不具有单独的等离子体发生室;
提供设在所述等离子体加工系统上端的耦合窗口;
提供RF天线装置,在所述衬底被置于用于所述加工的所述等离子体加工室中时该天线装置处于由所述衬底确定的平面上方;
提供设在由所述衬底确定的所述平面上方的电磁铁装置,所述电磁铁装置被构型成当至少一个直流电流被馈送到所述电磁铁装置时,在所述等离子体加工室的所述耦合窗口和天线附近区域中引起可控磁场的径向变化,所述径向变化可用来影响所述衬底上的加工均匀性;
提供耦合到所述电磁铁装置的直流电源;
将所述衬底置于所述等离子体加工室中;
使反应气体流入所述等离子体加工室中;
从所述反应气体触发所述等离子体;
改变所述等离子体加工室的所述天线附近区域中的所述可控磁场的所述径向变化,以改善所述衬底上的所述加工均匀性。
27.如权利要求26所述的方法还包括提供围绕所述等离子体加工室周边设置的磁性桶形装置。
28.如权利要求26所述的方法,其特征在于,所述的将所述衬底置于所述等离子体加工室中的操纵包括,将所述衬底置于使所述磁性桶形装置产生的磁力线的轴向梯度最小化的位置。
29.如权利要求26所述的方法,其特征在于,所述改变所述径向变化的操作包括至少下列之一:改变所述直流电流的幅度、改变所述直流电流的方向、移动所述RF天线中的一个、相对于所述衬底移动所述电磁铁装置、以及移动所述电磁铁装置附近的大量磁力线挡板材料。
30.如权利要求29所述的方法,其特征在于,所述改变所述可控磁场的所述径向变化是改变所述直流电流的幅度。
31.如权利要求29所述的方法,其特征在于,所述改变所述可控磁场的所述径向变化是相对于所述衬底移动所述电磁铁装置中的一个。
32.如权利要求29所述的方法,其特征在于,所述改变所述可控磁场的所述径向变化是相对于所述电磁铁装置移动所述大量磁力线挡板材料。
33.一种用来加工衬底的等离子体加工系统,它包括:
单室的、基本上方位对称的等离子体加工室,在其中等离子体被点燃并保持以用于所述加工,所述等离子体加工室不具有单独的等离子体发生室,所述等离子体加工室具有上端和下端;
设在所述等离子体加工室上端的耦合窗口;
在所述衬底被置于用于所述的所述等离子体加工室中时处于由所述衬底确定的平面上方的RF天线装置;
耦合到所述RF天线的第一RF电源;
设在由所述衬底确定的所述平面上方的第一磁铁装置,所述磁铁装置被构型成由从所述磁铁装置发出的磁力线而在所述等离子体加工室的所述耦合窗口和天线附近区域中引起可控磁场的径向变化,所述径向变化可用来影响所述衬底上的加工均匀性;
构型成在所述加工过程中支持所述等离子体加工室中的所述衬底的衬底支持装置;
耦合到所述衬底支持装置的第二RF电源,所述第二RF电源可独立于所述第一RF电源而被控制;
用来改变所述等离子体加工室的所述天线附近区域中的所述可控磁场的所述径向变化以改善所述衬底上的所述加工均匀性的装置。
34.如权利要求33所述的等离子体加工系统,其特征在于,所述装置是用来相对于所述衬底移动所述磁铁装置和所述RF天线之一的装置。
35.如权利要求33所述的等离子体加工系统,其特征在于,所述磁性装置包括至少一个电磁铁线圈,且所述装置是用来改变馈送到所述至少一个电磁铁线圈的直流电流的幅度的装置。
36.如权利要求33所述的等离子体加工系统,其特征在于,所述装置是用来移动所述磁铁装置附近的大量影响磁力线的材料的装置。
37.如权利要求33所述的等离子体加工系统还包括围绕所述等离子体加工室周边设置的磁性桶形装置。
38.如权利要求37所述的等离子体加工系统,其特征在于,所述磁性桶形装置包括设在所述等离子体加工室外面并基本上平行于所述等离子体加工室的轴线的多个永久磁铁。
39.如权利要求38所述的等离子体加工系统,其特征在于,所述多个永久磁铁仅仅跨越所述上端与所述下端之间的所述等离子体加工室的高度的一部分。
40.如权利要求33所述的等离子体加工系统,其特征在于,所述等离子体加工室基本上是圆柱形的。
41.如权利要求33所述的等离子体加工系统,其特征在于,所述等离子体加工室具有至少一个弯曲的侧壁。
CNB008182361A 1999-11-15 2000-11-14 等离子体加工系统及其方法 Expired - Lifetime CN1253918C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/439,661 1999-11-15
US09/439,661 US6341574B1 (en) 1999-11-15 1999-11-15 Plasma processing systems

Publications (2)

Publication Number Publication Date
CN1421043A true CN1421043A (zh) 2003-05-28
CN1253918C CN1253918C (zh) 2006-04-26

Family

ID=23745623

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB008182361A Expired - Lifetime CN1253918C (zh) 1999-11-15 2000-11-14 等离子体加工系统及其方法

Country Status (10)

Country Link
US (1) US6341574B1 (zh)
EP (1) EP1230666B1 (zh)
JP (1) JP4704645B2 (zh)
KR (1) KR100768019B1 (zh)
CN (1) CN1253918C (zh)
AT (1) ATE353472T1 (zh)
AU (1) AU1918801A (zh)
DE (1) DE60033312T2 (zh)
TW (1) TW478297B (zh)
WO (1) WO2001037315A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101385112B (zh) * 2006-02-15 2011-04-20 瓦里安半导体设备公司 具有主动式场束缚的电磁铁
CN102354798A (zh) * 2011-08-17 2012-02-15 华南理工大学 一种磁控波束可变的等离子体天线阵列
CN103839742A (zh) * 2012-11-28 2014-06-04 中微半导体设备(上海)有限公司 用于等离子体处理器的磁场分布调节装置及其调节方法
CN103943489B (zh) * 2013-01-21 2016-09-14 东京毅力科创株式会社 多层膜的蚀刻方法
CN106024658A (zh) * 2015-03-31 2016-10-12 株式会社日立国际电气 半导体器件的制造方法及衬底处理装置
CN106134294A (zh) * 2013-11-29 2016-11-16 首尔大学校产学协力团 能通过磁场控制使等离子体成形的等离子体处理设备

Families Citing this family (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100745495B1 (ko) * 1999-03-10 2007-08-03 동경 엘렉트론 주식회사 반도체 제조방법 및 반도체 제조장치
JP2003514388A (ja) * 1999-11-15 2003-04-15 ラム リサーチ コーポレーション 処理システム用の材料およびガス化学剤
US6320320B1 (en) 1999-11-15 2001-11-20 Lam Research Corporation Method and apparatus for producing uniform process rates
US6322661B1 (en) 1999-11-15 2001-11-27 Lam Research Corporation Method and apparatus for controlling the volume of a plasma
US6744213B2 (en) 1999-11-15 2004-06-01 Lam Research Corporation Antenna for producing uniform process rates
US6518705B2 (en) 1999-11-15 2003-02-11 Lam Research Corporation Method and apparatus for producing uniform process rates
US6900596B2 (en) * 2002-07-09 2005-05-31 Applied Materials, Inc. Capacitively coupled plasma reactor with uniform radial distribution of plasma
US8617351B2 (en) 2002-07-09 2013-12-31 Applied Materials, Inc. Plasma reactor with minimal D.C. coils for cusp, solenoid and mirror fields for plasma uniformity and device damage reduction
US7067034B2 (en) * 2000-03-27 2006-06-27 Lam Research Corporation Method and apparatus for plasma forming inner magnetic bucket to control a volume of a plasma
US20070042580A1 (en) * 2000-08-10 2007-02-22 Amir Al-Bayati Ion implanted insulator material with reduced dielectric constant
US6939434B2 (en) * 2000-08-11 2005-09-06 Applied Materials, Inc. Externally excited torroidal plasma source with magnetic control of ion distribution
US7294563B2 (en) * 2000-08-10 2007-11-13 Applied Materials, Inc. Semiconductor on insulator vertical transistor fabrication and doping process
US7223676B2 (en) * 2002-06-05 2007-05-29 Applied Materials, Inc. Very low temperature CVD process with independently variable conformality, stress and composition of the CVD layer
US7166524B2 (en) * 2000-08-11 2007-01-23 Applied Materials, Inc. Method for ion implanting insulator material to reduce dielectric constant
US6893907B2 (en) 2002-06-05 2005-05-17 Applied Materials, Inc. Fabrication of silicon-on-insulator structure using plasma immersion ion implantation
US7137354B2 (en) * 2000-08-11 2006-11-21 Applied Materials, Inc. Plasma immersion ion implantation apparatus including a plasma source having low dissociation and low minimum plasma voltage
US7094316B1 (en) 2000-08-11 2006-08-22 Applied Materials, Inc. Externally excited torroidal plasma source
US20050230047A1 (en) * 2000-08-11 2005-10-20 Applied Materials, Inc. Plasma immersion ion implantation apparatus
US7288491B2 (en) * 2000-08-11 2007-10-30 Applied Materials, Inc. Plasma immersion ion implantation process
US7303982B2 (en) * 2000-08-11 2007-12-04 Applied Materials, Inc. Plasma immersion ion implantation process using an inductively coupled plasma source having low dissociation and low minimum plasma voltage
US7465478B2 (en) * 2000-08-11 2008-12-16 Applied Materials, Inc. Plasma immersion ion implantation process
US7320734B2 (en) * 2000-08-11 2008-01-22 Applied Materials, Inc. Plasma immersion ion implantation system including a plasma source having low dissociation and low minimum plasma voltage
US7479456B2 (en) * 2004-08-26 2009-01-20 Applied Materials, Inc. Gasless high voltage high contact force wafer contact-cooling electrostatic chuck
US7430984B2 (en) * 2000-08-11 2008-10-07 Applied Materials, Inc. Method to drive spatially separate resonant structure with spatially distinct plasma secondaries using a single generator and switching elements
US7183177B2 (en) * 2000-08-11 2007-02-27 Applied Materials, Inc. Silicon-on-insulator wafer transfer method using surface activation plasma immersion ion implantation for wafer-to-wafer adhesion enhancement
US7037813B2 (en) * 2000-08-11 2006-05-02 Applied Materials, Inc. Plasma immersion ion implantation process using a capacitively coupled plasma source having low dissociation and low minimum plasma voltage
US6633132B2 (en) * 2001-01-23 2003-10-14 Wafermasters Inc. Plasma gereration apparatus and method
DE10147998A1 (de) * 2001-09-28 2003-04-10 Unaxis Balzers Ag Verfahren und Vorrichtung zur Erzeugung eines Plasmas
JP2003323997A (ja) * 2002-04-30 2003-11-14 Lam Research Kk プラズマ安定化方法およびプラズマ装置
US20030230385A1 (en) * 2002-06-13 2003-12-18 Applied Materials, Inc. Electro-magnetic configuration for uniformity enhancement in a dual chamber plasma processing system
TWI283899B (en) 2002-07-09 2007-07-11 Applied Materials Inc Capacitively coupled plasma reactor with magnetic plasma control
US6842147B2 (en) * 2002-07-22 2005-01-11 Lam Research Corporation Method and apparatus for producing uniform processing rates
KR100465907B1 (ko) * 2002-09-26 2005-01-13 학교법인 성균관대학 자장이 인가된 내장형 선형 안테나를 구비하는 대면적처리용 유도 결합 플라즈마 소오스
KR100421249B1 (ko) * 2002-11-19 2004-03-04 박장식 스퍼트링 자기회로 제작
US6876155B2 (en) * 2002-12-31 2005-04-05 Lam Research Corporation Plasma processor apparatus and method, and antenna
US7355687B2 (en) * 2003-02-20 2008-04-08 Hunter Engineering Company Method and apparatus for vehicle service system with imaging components
US7022611B1 (en) 2003-04-28 2006-04-04 Lam Research Corporation Plasma in-situ treatment of chemically amplified resist
KR100523851B1 (ko) * 2003-05-07 2005-10-27 학교법인 성균관대학 대면적처리용 내장형 선형안테나를 구비하는 유도결합플라즈마 처리장치
US8974630B2 (en) * 2003-05-07 2015-03-10 Sungkyunkwan University Inductively coupled plasma processing apparatus having internal linear antenna for large area processing
US7075771B2 (en) * 2003-05-21 2006-07-11 Tokyo Electron Limited Apparatus and methods for compensating plasma sheath non-uniformities at the substrate in a plasma processing system
US7190119B2 (en) * 2003-11-07 2007-03-13 Lam Research Corporation Methods and apparatus for optimizing a substrate in a plasma processing system
US20050211546A1 (en) * 2004-03-26 2005-09-29 Applied Materials, Inc. Reactive sputter deposition plasma process using an ion shower grid
US7695590B2 (en) * 2004-03-26 2010-04-13 Applied Materials, Inc. Chemical vapor deposition plasma reactor having plural ion shower grids
US7291360B2 (en) * 2004-03-26 2007-11-06 Applied Materials, Inc. Chemical vapor deposition plasma process using plural ion shower grids
US20050211171A1 (en) * 2004-03-26 2005-09-29 Applied Materials, Inc. Chemical vapor deposition plasma reactor having an ion shower grid
US7244474B2 (en) * 2004-03-26 2007-07-17 Applied Materials, Inc. Chemical vapor deposition plasma process using an ion shower grid
US7527713B2 (en) * 2004-05-26 2009-05-05 Applied Materials, Inc. Variable quadruple electromagnet array in plasma processing
US7686926B2 (en) * 2004-05-26 2010-03-30 Applied Materials, Inc. Multi-step process for forming a metal barrier in a sputter reactor
US8058156B2 (en) 2004-07-20 2011-11-15 Applied Materials, Inc. Plasma immersion ion implantation reactor having multiple ion shower grids
US7767561B2 (en) * 2004-07-20 2010-08-03 Applied Materials, Inc. Plasma immersion ion implantation reactor having an ion shower grid
JP2006073790A (ja) * 2004-09-02 2006-03-16 Tokyo Institute Of Technology プラズマエッチング装置
US7666464B2 (en) * 2004-10-23 2010-02-23 Applied Materials, Inc. RF measurement feedback control and diagnostics for a plasma immersion ion implantation reactor
US7428915B2 (en) * 2005-04-26 2008-09-30 Applied Materials, Inc. O-ringless tandem throttle valve for a plasma reactor chamber
US7312162B2 (en) * 2005-05-17 2007-12-25 Applied Materials, Inc. Low temperature plasma deposition process for carbon layer deposition
US20060260545A1 (en) * 2005-05-17 2006-11-23 Kartik Ramaswamy Low temperature absorption layer deposition and high speed optical annealing system
US7422775B2 (en) * 2005-05-17 2008-09-09 Applied Materials, Inc. Process for low temperature plasma deposition of an optical absorption layer and high speed optical annealing
US7312148B2 (en) * 2005-08-08 2007-12-25 Applied Materials, Inc. Copper barrier reflow process employing high speed optical annealing
US7323401B2 (en) * 2005-08-08 2008-01-29 Applied Materials, Inc. Semiconductor substrate process using a low temperature deposited carbon-containing hard mask
US7335611B2 (en) * 2005-08-08 2008-02-26 Applied Materials, Inc. Copper conductor annealing process employing high speed optical annealing with a low temperature-deposited optical absorber layer
US7429532B2 (en) * 2005-08-08 2008-09-30 Applied Materials, Inc. Semiconductor substrate process using an optically writable carbon-containing mask
US7704887B2 (en) * 2005-11-22 2010-04-27 Applied Materials, Inc. Remote plasma pre-clean with low hydrogen pressure
KR20090106617A (ko) * 2007-01-19 2009-10-09 어플라이드 머티어리얼스, 인코포레이티드 플라스마 함침 챔버
JP5097074B2 (ja) * 2008-09-30 2012-12-12 東京エレクトロン株式会社 プラズマ処理装置及びプラズマ処理方法
JP5410950B2 (ja) * 2009-01-15 2014-02-05 株式会社日立ハイテクノロジーズ プラズマ処理装置
CN102396052B (zh) * 2009-02-06 2014-06-18 佳能安内华股份有限公司 等离子体处理装置、等离子体处理方法以及包括待处理基板的元件的制造方法
US20120021136A1 (en) * 2010-07-20 2012-01-26 Varian Semiconductor Equipment Associates, Inc. System and method for controlling plasma deposition uniformity
KR101479143B1 (ko) * 2010-11-30 2015-01-05 캐논 아네르바 가부시키가이샤 플라즈마 처리 장치
US8808496B2 (en) * 2011-09-30 2014-08-19 Tokyo Electron Limited Plasma tuning rods in microwave processing systems
US9396955B2 (en) 2011-09-30 2016-07-19 Tokyo Electron Limited Plasma tuning rods in microwave resonator processing systems
US9111727B2 (en) * 2011-09-30 2015-08-18 Tokyo Electron Limited Plasma tuning rods in microwave resonator plasma sources
US9728416B2 (en) 2011-09-30 2017-08-08 Tokyo Electron Limited Plasma tuning rods in microwave resonator plasma sources
KR101742556B1 (ko) * 2012-11-02 2017-06-01 캐논 아네르바 가부시키가이샤 반도체 장치의 제조 방법, 이온빔 에칭 장치 및 제어 장치
KR101881534B1 (ko) * 2016-02-04 2018-07-24 주식회사 테스 플라즈마를 이용한 금속산화물이 포함된 탄소막의 형성 방법
JP7091196B2 (ja) 2018-09-04 2022-06-27 キオクシア株式会社 プラズマ処理装置および半導体装置の製造方法
WO2024070562A1 (ja) * 2022-09-30 2024-04-04 東京エレクトロン株式会社 プラズマ処理装置

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR920002864B1 (ko) 1987-07-20 1992-04-06 가부시기가이샤 히다찌세이사꾸쇼 플라즈마 처리방법 및 그 장치
GB8905075D0 (en) 1989-03-06 1989-04-19 Nordiko Ltd Electrode assembly and apparatus
US5032205A (en) 1989-05-05 1991-07-16 Wisconsin Alumni Research Foundation Plasma etching apparatus with surface magnetic fields
US5122251A (en) 1989-06-13 1992-06-16 Plasma & Materials Technologies, Inc. High density plasma deposition and etching apparatus
US5429070A (en) 1989-06-13 1995-07-04 Plasma & Materials Technologies, Inc. High density plasma deposition and etching apparatus
US5091049A (en) 1989-06-13 1992-02-25 Plasma & Materials Technologies, Inc. High density plasma deposition and etching apparatus
US4990229A (en) 1989-06-13 1991-02-05 Plasma & Materials Technologies, Inc. High density plasma deposition and etching apparatus
US5421891A (en) 1989-06-13 1995-06-06 Plasma & Materials Technologies, Inc. High density plasma deposition and etching apparatus
US4948458A (en) 1989-08-14 1990-08-14 Lam Research Corporation Method and apparatus for producing magnetically-coupled planar plasma
JP3126405B2 (ja) 1991-04-30 2001-01-22 株式会社日立製作所 スパッタデポジション装置
JPH05267237A (ja) 1992-03-23 1993-10-15 Nippon Telegr & Teleph Corp <Ntt> プラズマ・ダメージ低減法およびプラズマ処理装置
US5226967A (en) 1992-05-14 1993-07-13 Lam Research Corporation Plasma apparatus including dielectric window for inducing a uniform electric field in a plasma chamber
JPH06251896A (ja) * 1992-12-28 1994-09-09 Hitachi Ltd プラズマ処理方法及び装置
US5401350A (en) 1993-03-08 1995-03-28 Lsi Logic Corporation Coil configurations for improved uniformity in inductively coupled plasma systems
JP3365067B2 (ja) * 1994-02-10 2003-01-08 ソニー株式会社 プラズマ装置およびこれを用いたプラズマ処理方法
US5587038A (en) 1994-06-16 1996-12-24 Princeton University Apparatus and process for producing high density axially extending plasmas
US5540800A (en) 1994-06-23 1996-07-30 Applied Materials, Inc. Inductively coupled high density plasma reactor for plasma assisted materials processing
US5811022A (en) 1994-11-15 1998-09-22 Mattson Technology, Inc. Inductive plasma reactor
US6022446A (en) * 1995-08-21 2000-02-08 Shan; Hongching Shallow magnetic fields for generating circulating electrons to enhance plasma processing
US5810932A (en) * 1995-11-22 1998-09-22 Nec Corporation Plasma generating apparatus used for fabrication of semiconductor device
TW303480B (en) 1996-01-24 1997-04-21 Applied Materials Inc Magnetically confined plasma reactor for processing a semiconductor wafer
US6054013A (en) 1996-02-02 2000-04-25 Applied Materials, Inc. Parallel plate electrode plasma reactor having an inductive antenna and adjustable radial distribution of plasma ion density
US5669975A (en) 1996-03-27 1997-09-23 Sony Corporation Plasma producing method and apparatus including an inductively-coupled plasma source
US6189484B1 (en) * 1999-03-05 2001-02-20 Applied Materials Inc. Plasma reactor having a helicon wave high density plasma source

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101385112B (zh) * 2006-02-15 2011-04-20 瓦里安半导体设备公司 具有主动式场束缚的电磁铁
CN102354798A (zh) * 2011-08-17 2012-02-15 华南理工大学 一种磁控波束可变的等离子体天线阵列
CN103839742A (zh) * 2012-11-28 2014-06-04 中微半导体设备(上海)有限公司 用于等离子体处理器的磁场分布调节装置及其调节方法
CN103943489B (zh) * 2013-01-21 2016-09-14 东京毅力科创株式会社 多层膜的蚀刻方法
CN106134294A (zh) * 2013-11-29 2016-11-16 首尔大学校产学协力团 能通过磁场控制使等离子体成形的等离子体处理设备
CN106024658A (zh) * 2015-03-31 2016-10-12 株式会社日立国际电气 半导体器件的制造方法及衬底处理装置
CN106024658B (zh) * 2015-03-31 2018-11-20 株式会社日立国际电气 半导体器件的制造方法及衬底处理装置

Also Published As

Publication number Publication date
JP2003514389A (ja) 2003-04-15
AU1918801A (en) 2001-05-30
TW478297B (en) 2002-03-01
KR20020060969A (ko) 2002-07-19
CN1253918C (zh) 2006-04-26
DE60033312D1 (de) 2007-03-22
US6341574B1 (en) 2002-01-29
EP1230666A1 (en) 2002-08-14
KR100768019B1 (ko) 2007-10-18
EP1230666B1 (en) 2007-02-07
DE60033312T2 (de) 2007-11-22
WO2001037315A1 (en) 2001-05-25
ATE353472T1 (de) 2007-02-15
JP4704645B2 (ja) 2011-06-15

Similar Documents

Publication Publication Date Title
CN1253918C (zh) 等离子体加工系统及其方法
CN1257527C (zh) 改变磁场以控制等离子体体积的设备
CN1251293C (zh) 用于加工系统的材料和气体化学组成
TWI821300B (zh) 具有護罩座的沉積系統
CN1255851C (zh) 用于等离子体形成内磁桶以控制等离子体体积的设备
CN1225005C (zh) 用于控制等离子体体积的方法和设备
CN1220221C (zh) 磁场中热处理炉及用其进行热处理的方法
CN103081073B (zh) 等离子体处理设备
KR920003019B1 (ko) 반응성 이온 비임 에칭 또는 플라즈마 부착장치를 위한 입자원
CN1871685A (zh) 具有局部有效电感等离子体耦合的等离子体处理系统
CN1675738A (zh) 具双频偏压源及单频等离子体产生源的蚀刻腔室
US20040028837A1 (en) Method and apparatus for plasma processing
CN1373899A (zh) 改善蚀刻率均匀性的技术
CN1761032A (zh) 等离子处理装置和等离子处理方法
CN1669108A (zh) 磁等离子体控制电容耦合等离子体反应器
CN1833296A (zh) 用于产生均匀处理速率的天线
CN1471727A (zh) 在衬底中的大高宽比部件的蚀刻
CN1822745A (zh) 等离子体产生装置
JP2008028140A (ja) 半導体製造装置
CN1930652A (zh) 溅射涂覆基片的制造方法、磁控管源和具有这种源的溅射室
CN1275937A (zh) 调整等离子体密度分布的装置和方法
KR101629214B1 (ko) 자장 제어를 통한 플라즈마 쉐이핑이 가능한 플라즈마 처리 장치
CN1783430A (zh) 电容耦合型等离子体处理装置
JPH0653177A (ja) プラズマ生成装置、表面処理装置および表面処理方法
TWI521559B (zh) Magnetic field distribution adjusting device for plasma processor and its adjusting method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20060426