CN1388835A - 汽车加固用钢管及其制造方法 - Google Patents

汽车加固用钢管及其制造方法 Download PDF

Info

Publication number
CN1388835A
CN1388835A CN01802412A CN01802412A CN1388835A CN 1388835 A CN1388835 A CN 1388835A CN 01802412 A CN01802412 A CN 01802412A CN 01802412 A CN01802412 A CN 01802412A CN 1388835 A CN1388835 A CN 1388835A
Authority
CN
China
Prior art keywords
following
steel pipe
group
reinforcement
kinds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN01802412A
Other languages
English (en)
Other versions
CN1145710C (zh
Inventor
丰冈高明
西森正德
河端良和
依藤章
板谷元晶
冈部能知
荒谷昌利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Publication of CN1388835A publication Critical patent/CN1388835A/zh
Application granted granted Critical
Publication of CN1145710C publication Critical patent/CN1145710C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • C21D8/105Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

提供一种汽车加固用钢管及其制造方法,其特征在于:含有:C:0.05~0.30%、Mn:1.8~4.0%、Si、Al成分的钢管,对其进行减径率20%以上、轧制结束温度800℃以下的减径轧制,使其组织成为:含有从被加工γ的相变生成物的马氏体以及/或贝氏体、或进而含有铁素体的组织。由此而能得到拉伸强度1000MPa以上、而且优异的3点弯曲特性。而且,含有的元素还可以在Cu、Ni、Cr、Mo中选择1种以上,或在Nb、V、Ti、B中选择1种以上,或在REM、Ca中选择1种以上。

Description

汽车加固用钢管及其制造方法
技术领域
本发明涉及一种汽车门加固用钢管,具体是涉及具有高强度、而且3点弯曲特性优异、特别是压曲极限变形量大的钢管及其制造方法。
本发明提到的“三支点弯曲特性优异”是指:如图1所示,将钢管放置在距离一定跨度L的支撑工具上,用半径为R的弯曲工具压其中间部,在这种所谓的三支点弯曲试验中,产生压曲的最大下压量(压曲极限下压量)大,而且至压曲极限下压量为止的下压载荷-下压量曲线下的面积(图2中的斜线部分),即,至压曲发生时吸收的能量大。本发明中,具体的是:把31.8mmφ(壁厚1.6mm)的钢管、以L=980mm进行3点弯曲试验,至压曲极限下压量(压曲极限变形量)为止所吸收的能量在450J以上的钢管称为“三支点弯曲特性优异”的钢管。
技术背景
在汽车冲撞时,为了确保乘客的安全,近年来,要求提高汽车车体的冲撞安全性能。为此,在汽车的车体中,要求增加汽车侧面的强度、即增加门的强度,近来已要求必须要安装门加固用挡杆。而且,从汽车车体轻型化的目的,门加固用挡杆也大多使用钢管。
作为门加固挡杆用钢管,从其使用目的必须具有高强度,要使用高强度化的钢管。以前,钢管是使用电焊钢管,使用为高强度化而脱机实施高频淬火等QT处理而高强度化的脱机QT型钢管,或使用adurol型钢管,这种钢管是将电焊钢管素材的薄钢板在制造阶段实施QT处理而高强度化的钢板用电焊焊接制成的电焊钢管。
发明的公开
但是,脱机QT型钢管存在的问题是:因为必须要脱机实施QT处理,所以制造工程复杂,制造工期长,而且增加制造成本。另外,adurol型钢管的存在的问题是:残留有造管时的冷却变形,在3点弯曲试验时很早发生压曲,3点弯曲特性差。另外,adurol型钢管存在的问题还有:因为在薄钢板制造阶段实施QT处理、然后造管,所以由电焊焊接的结合部(高频焊接部)受到热影响而软化。另外,存在的问题还有:因为钢管素材的薄钢管强度非常高,所以造管时的回弹大,难以成型,造管设备必须大型化,设备成本增高。
本发明的目的是:解决上述以往的技术问题,提案具有拉伸强度1000Mpa以上的高强度、3点弯曲特性优异的汽车门加固用钢管以及其制造方法。
为了解决上述的课题,本发明者对于不需要进行脱机热处理、同时提高强度和3点弯曲特性的方案进行了锐意研究。研究结果为:在限定成分的钢管,在α+γ两相或者在其上方温度域施加累计减径率为20%以上的减径轧制、冷却,由此,组织成为以加工奥氏体相变的硬质马氏体、贝氏体为主体,混有铁素体的组织。从而,发现了不需要实施以往的脱机的特别热处理(QT处理)、而得到兼备高强度和优异3点弯曲特性钢管的方案。该3点弯曲特性的显著提高可以认为是:相对于以往的脱机QT型钢管的组织是从再加热的奥氏体(γ)相变的马氏体或贝氏体,而此钢管的组织是从被加工的γ(加工γ)相变的马氏体或贝氏体。图3所示的是:将以往的adurol型钢管的3点弯曲特性与具有由从加工γ相变的马氏体或贝氏体为主体的组织的钢管(本发明钢管)的3点弯曲特性进行比较。由图3可知,与以往的钢管比较,本发明钢管的压曲极限下压量(变形量)大,吸收的能量多。
根据上述的知识,经过进一步研究而完成了本发明。利用与以往的汽车门加固用钢管其技术思想具有本质区别的新型技术而构成了本发明。
即,第1的本发明涉及一种汽车门加固用钢管,其特征在于:成分以质量%计,具有:C:0.05~0.30%、Si:0.01~2.0%、Mn:1.8~4.0%、Al:0.005~0.10%,其余部分为Fe以及不可避免的杂质,拉伸强度TS在1000Mpa以上,而且3点弯曲特性优异,另外,在第1的本发明中,组织是马氏体以及/或贝氏体组织,或者是马氏体以及/或贝氏体与铁素体的混合组织,该马氏体以及/或贝氏体最好是从加工的奥氏体的相变生成物,而且,在第1的本发明中,组织中的前述铁素体其含有的面积率最好是在20%以下。而且,在第1的本发明中,屈服比最好是在80%以下。
另外,在第1本发明中,对前述成分进一步增加以下A~C组,以质量%计,
A组:Cu:1%以下、Ni:1%以下、Cr:2%以下、Mo:1%以下,从中选择1种或2种以上;
B组:Nb:0.1%以下、V:0.5%以下、Ti:0.2%以下、B:0.003%以下,从中选择1种或2种以上;
C组:REM:0.02%以下、Ca:0.01以下,从中选择1种或2种;最好是包括所选择中的1组或2组以上。
而且,第2的本发明涉及一种汽车门加固用钢管的制造方法,其特征在于:对于成分以质量%记、具有:C:0.05~0.30%、Si:0.01~2.0%、Mn:1.8~4.0%、Al:0.005~0.10%而其余部分为Fe以及不可避免的杂质的素材钢管,在进行加热或均热处理后,实施累积减径率在20%以上、轧制结束温度在800℃以下的减径轧制,而且,在第2的本发明中,对前述成分再增加以下A~C组,以质量%计,
A组:Cu:1%以下、Ni:1%以下、Cr:2%以下、Mo:1%以下,从中选择1种或2种以上;
B组:Nb:0.1%以下、V:0.5%以下、Ti:0.2%以下、B:0.003%以下,从中选择1种或2种以上;
C组:REM:0.02%以下、Ca:0.01以下,从中选择1种或2种;最好是包括所选择中的1组或2组以上。
图的简单说明
图1是表示3点弯曲试验方法概况的说明图。
图2是表示3点弯曲吸收能量值定义的说明图。
图3是表示本发明钢管与以前钢管的3点弯曲试验结果的曲线图。
实施发明的最佳形式
本发明的汽车门加固用钢管是拉伸强度TS:1000Mpa以上、而且3点弯曲特性优异的钢管,而且最好是屈服比在80%以下的钢管。另外,本发明的钢管可以是电焊钢管、锻接钢管等熔接钢管、或是无缝钢管中的任一种,其管坯的制造方法没有限定。
其次,说明本发明的汽车门加固用钢管的成分限定理由。以下质量%简记为%。
C:0.05~0.30%
C是固溶在基材中或是作为碳化物析出,是增加钢的强度的元素,本发明中,为确保所希望的强度,C必须要含有0.05%以上,但若超过0.30%,则焊接性能恶化。因此,C限定在0.05~0.30%的范围。
Si:0.01~2.0%
Si起到脱氧剂的作用,而且是固溶于基材而增加钢强度的元素。确认有以上这些效果,应含有Si为0.01%以上、最好是在0.1%以上,但含有量超过2.0%,会降低延性。因此,Si限定在0.01~2.0%的范围。另外,从强度-延性平衡的观点,最好是在0.10~1.5%的范围。
Mn:1.8~4.0%
Mn元素使钢的强度增加,而且提高淬火性能,促进轧制后冷却时马氏体、贝氏体的形成。含有Mn在1.8%以上,确认会有以上效果,但含有量超过4.0%,会降低延性。因此,Mn限定在1.8~4.0%的范围。另外,不进行脱机热处理而为了确保1000Mpa以上的高强度,Mn最好是在2.5~4.0%的范围,而更佳的是在2.5~3.5%的范围。
Al:0.005~0.10
Al是具有起到脱氧作用、细化晶粒作用的元素。由于该晶粒细化效果而细化了管坯阶段的组织,使本发明的效果更好。为此,Al至少必须要含有0.005%以上,但若超过0.10%,则氧化物的夹杂物量增加而降低了纯度。因此,Al限定在0.001~0.10%的范围。而最好是在0.015~0.06%。
在上述的基本成分中再增加下述的A~C组的合金元素组,根据需要最好是含有1组或2组以上。
A组:Cu:1%以下、Ni:1%以下、Cr:2%以下、Mo:1%以下,从中选择1种或2种以上。
Cu、Ni、Cr、Mo均是增加强度的元素,根据需要可以含有1种或2种以上。这些元素具有降低相变点、细化组织的效果。但是,若Cu超过1%而含量多时,则热加工性能差。而且,虽然Ni增加强度、而且也改善韧性,但若超过1%,即使含有Ni,也不能期望与含有量相应的效果。而且,若Cr含有量超过2%、Mo超过1%,则焊接性能、延性差,而且成本增高。鉴于这种情况,最好是:Cu:1%以下、Ni:1%以下、Cr:2%以下、Mo:1%以下。另外,更佳的是:Cu:0.1~0.6%、Ni:0.1~0.7%、Cr:0.1~1.5%、Mo:0.05~0.5%。
B组:Nb:0.1%以下、V:0.5%以下、Ti:0.2%以下、B:0.003%以下,从中选择1种或2种以上。
Nb、V、Ti、B是作为碳化物、氮化物或碳氮化物析出,是有利于钢高强度化的元素。在具有特高温加热结合部的钢管,这些元素的析出物,起到了在结合时加热过程的晶粒的细化以及在冷却过程的铁素体的析出核的作用,也有防止结合部硬化的效果。本发明中,根据需要这些元素可以含有1种或2种以上。但是,因为若添加量过多,则焊接性能、韧性均会降低,所以,最好分别限定如下:Nb为0.1%以下、V为0.5%以下、Ti为0.2%以下、B为0.003%以下。另外,更佳的是:Nb为0.005~0.05%、V为0.05~0.1%、Ti为0.005~0.10%、B为0.0005~0.002%。
C组:REM:0.02%以下、Ca:0.01%以下,从中选取1种或2种。
REM、Ca均是作为硫化物、氧化物或者氧硫化物析出、使夹杂物的形状球状化,具有提高加工性能的作用,而且,具有的作用还有:防止具有结合部的钢管在结合部的硬化。本发明中,根据需要可以含有1种或2种。若REM超过0.02%、或Ca超过0.01%,则夹杂物过多,纯度降低,延性恶化。因此,最好是将REM在0.02%以下、Ca在0.01%以下。另外,因为当REM不足0.004%、Ca不足0.001%时,该作用效果很小,所以,最好是将REM在0.004%以上、Ca在0.001%以上。
上述成分以外的其余部分是由Fe以及不可避免的杂物组成。不可避免的杂物允许:P:0.025%以下、S:0.020%以下、N:0.010以下、O:0.006%以下。
P:0.025%以下
因为P偏晶界、恶化韧性,所以最好是尽可能减少,可允许至0.025%。
S:0.020%以下
因为S增加硫化物、恶化纯度,所以最好是尽可能减少,可允许至0.020%。
N:0.010以下
因为N恶化焊接性能,所以最好是尽可能减少,可允许至0.010%。
O:0.006%以下
因为O恶化纯度,所以最好是尽可能减少,可允许至0.006%。
本发明的钢管组织是马氏体以及/或贝氏体组织、或者是含有马氏体以及/或贝氏体与铁素体的混合组织。这些马氏体、贝氏体是从减径轧制后的加工奥氏体(γ)相变的相变生成物,有利于高强度化与低屈服比(YR)化,以及提高3点弯曲特性。另外,本发明中,在马氏体以及/或贝氏体的主相也可以含有铁素体。铁素体其面积率含有量最好是在20%以下。若铁素体的存在量多于20%,则不能确保所期望的高强度。因此,最好是将铁素体面积率在20%以下。
其次,说明本发明的制造方法。
在本发明的制造方法中,素材钢管(管坯)使用的是具有特定成分的钢管,但对制造该管坯的方法(造管法)并没有特殊的限定。以下任一种方法均可适于作为造管法使用:在冷或热加工中利用高频电流的电阻焊接法(管坯名称:电焊管、热加工的场合称为热电焊管)、在固相压焊温度域将开口管两边加热压焊结合的固相压焊法(管坯名称:固相压焊管)、锻接法(管坯名称:锻接管)以及曼内斯曼式穿孔轧制法(管坯名称:无缝钢管)。
对具有上述成分的钢管最好是在施以加热或均热处理后,进行累计减径率20%以上、轧制结束温度为800℃以下的减径轧制(缩径轧制)。只要是轧制结束温度在800℃以下,加热或均热处理无特殊限定。另外,如果素材钢管在常温冷却,则必须要进行加热处理,加热的温度可以适宜地调整为:减径轧制的轧制结束温度为800℃以下、最好是在α+γ的2相域。例如:也可以在Ac3相变点~Ac1相变点间加热、或加热Ac3相变点以上冷却,调整为减径轧制的轧制结束温度为800℃以下、最好是在α+γ的2相域。也可以是素材钢管的制造工序在热或温加工时,不冷却至常温而再加热或均热处理,调整为减径轧制的轧制结束温度为800℃以下、最好是在α+γ的2相域。
累计减径率不足20%时,奥氏体的加工不充分,其后生成的低温相变相(马氏体或贝氏体)的强化不足,拉伸强度TS不能达到1000Mpa以上的高强度。
减径轧制的温度定为轧制结束温度为800℃以下。另外,轧制温度最好是在α+γ的2相域的范围。
而且,若轧制结束温度超过800℃,则施以奥氏体的轧制变形会即刻恢复,其结果,从奥氏体相变生成的低温相变相(马氏体或贝氏体)的强化不足,拉伸强度TS不能达到1000Mpa以上的高强度。另外,从高强度的观点,轧制结束温度最好是马氏体或贝氏体相变结束温度以上。
减径轧制之后,可以按照常规方法冷却。冷却可以是气冷,也可以是水冷。
另外,本发明中,减径轧制适宜使用润滑下的轧制(润滑轧制)。由于使减径轧制为润滑轧制,厚度方向的变形分布均匀,能够使得在厚度方向组织的细化以及集合组织的形成均匀。若进行无润滑轧制,则由于剪切效应而使轧制变形仅集中在材料表层部分,形成厚度方向不均匀的组织。
而且,虽对减径轧制方法没有特殊限定,但最好是使用被称为减径机的多个孔型轧制机进行轧制。
实施例
表1所示成分的热轧钢板(1.8或2.3mm厚)由电焊焊接制成焊接钢管(电焊管:外径58mmφ),将这些焊接钢管作为素材钢管(管坯),对该管坯进行加热处理,进而以表2所示的条件进行减径轧制(缩径轧制),制成成品管。减径轧制是使用连续配置的减径机进行。(1)组织
从各成品管采取试验片,用光学显微镜、扫描电子显微镜对与管纵向垂直的断面进行组织照相。对得到的组织照片,使用图像分析装置得到组织的种类、组织比率。(2)拉伸特性
从各成品管沿管纵向采取JIS 11号试验片(管状试验片、标点间距离50mm),按照JIS Z 2241的规定进行拉伸试验,得到屈服强度YS、拉伸强度TS、延伸率E。(3)3点弯曲特性
从各成品管采取试验片(管状),以跨度L=800mm或980mm、弯曲工具半径R=152.4mm进行如图1所示的3点弯曲试验,得到载荷-下压量的关系、以及至压曲发生时的最大下压量δmax。而且,利用得到的载荷-下压量曲线,求得至压曲发生时的至最大下压量的载荷-下压量曲线下的面积,将其作为吸收能量E。
得到的结果在图2所示。
本发明例,拉伸强度均为1000Mpa以上,而且具有高的3点弯曲压曲极限下压量和高的3点弯曲吸收能量值。相对于此,而在非本发明范围的比较例中,以相同尺寸比较,压曲极限下压量小,而且吸收能量值低,3点弯曲特性差。
表1
钢No                                                                 化学成分(mass%)
 C   Si   Mn     P     S    Al          Cu,Ni,Cr,Mo        Nb,V,Ti,B     REM.Ca
 A  0.14   0.18   2.99   0.018   0.005   0.03  Cr:0.10  Nb:0.020,Ti:0.015  -
 B  0.09   0.21   3.10   0.021   0.005   0.04  Cr:0.15  Nb:0.039  -
 C  0.16   0.25   2.50   0.016   0.003   0.03  Cu:0.12.Ni:0.15,Mo:0.15  Nb:0.015.V:0.08  Ca:0.0010
 D  0.22   0.19   2.00   0.018   0.003   0.03  Cr:0.2  Ti:0.012,B:0.0009  -
 E  0.22   0.35   2.80   0.018   0.003   0.03  -  -  -
 F  0.25   0.35   1.50   0.018   0.003   0.03  Cr:0.5,Mo:0.10  Nb:0.022  -
表2
钢管No. 钢No       素材钢管                       减径压延条件         制品管                 拉伸特性          组织           3支点弯曲特性   备注
  外径mm   壁厚mm     加热均热温度℃    轧制开始温度℃    减径率%     轧制结束温度℃ 轧制后冷却 外径mm     壁厚mm     YSMPa     TSMPa     YR%     EL%   种类   铁素体面积率%     弯曲跨度Lmm     压曲极限下压量δmm   至屈曲为止的吸收能量EJ
    1   A   28.6   1.6     -     -     -     电阻焊放置 - 28.6     1.6     1093     1190     92     7   B*     -     800     80     350 比较例
    2 58.0 1.8     800     730     51     680 水冷 28.6     1.6     739     1337     55     22   M+F     8     800     125     450 本发明例
    3     800     740     51     700 水冷 28.6     1.6     882     1370     64     18   M,B     -     800     100     460 本发明例
    4     850     780     51     730 水冷 28.6     1.6     660     1201     55     24   M+F     12     800     130     420 本发明例
    5   31.8   1.6     -     -     -     电阻焊放置 - 31.8     1.6     1129     1213     93     9   B*     -     800     60     385 比较例
    6 58.0 1.8     750     700     45     650 放冷 31.8     1.6     844     1291     65     18   M,B+F     6     800     76     465 本发明例
    7     750     700     45     650 放冷 31.8     1.7     853     1305     65     18   M,B+F     8     800     91     724 本发明例
    8   58.0   2.3     750     700     45     650 放冷 31.8     2.0     980     1390     71     16   M,B+F     9     800     100     960 本发明例
    9   31.8   2.0     -     -     -     电阻焊放置 - 31.8     2.0     1145     1220     94     10   B*     -     800     67     649 比较例
    10   31.8   1.6     -     -     -     电阻焊放置 - 31.8     1.6     1129     1213     93     9   B*     -     980     76     398 比较例
    11 58.0 1.8     750     710     45     650 放冷 31.8     1.6     1066     1396     76     19   M,B+F     6     980     100     561 本发明例
    12     860     820     45     750 放冷 31.8     1.6     830     1089     76     18   M,B+F     6     980     110     470 本发明例
    13     980     930     45     850 放冷 31.8     1.6     602     990     61     15   B*     -     980     95     395 比较例
    14   B   31.8   1.6     -     -     0     电阻焊放置 - 31.8     1.6     921     1090     84     14   B*     -     980     85     376 比较例
    15 58.0 1.8     870     830     45     750 放冷 31.8     1.6     666     1009     66     22   M,B+F     7     980     100     480 本发明例
    16     1050     980     45     900 放冷 31.8     1.6     600     890     67     24   B*     -     980     95     365 比较例
    17   C   58.0   2.3     800     750     45     700 放冷 31.8     2.0     1076     1380     78     18   M+F     3     800     105     1160 本发明例
    18   D   58.0   2.3     800     750     45     700 放冷 31.8     2.0     1013     1350     75     19   M+F     3     800     115     1200 本发明例
    19   E   58.0   2.3     800     750     45     700 放冷 31.8     2.0     1078     1400     77     16   M,BB+F     10     800     110     1250 本发明例
    20   F   58.0   2.3     800     750     45     700 放冷 31.8     2.0     679     970     70     16   M,BB+F     25     800     70     700 比较例
B*:贝氏体(由再加热γ),B:贝氏体,M:马氏体,F:铁素体
产业上的利用可能性
根据本发明,不需要脱机热处理,可以提高钢管的生产效率,降低制造成本,而且由于提高了3点弯曲吸收能量,能够减小钢管的壁厚,可以有利于汽车重量的轻型化,产业上起到了显著的效果。

Claims (8)

1.一种汽车门加固用钢管,其特征在于:成分以质量%计,具有:C:0.05~0.30%、Si:0.01~2.0%、Mn:1.8~4.0%、Al:0.005~0.10%,其余部分为Fe以及不可避免的杂质,拉伸强度TS在1000Mpa以上,而且3点弯曲特性优异。
2.如权利要求1所述的汽车门加固用钢管,其特征在于:组织是马氏体以及/或贝氏体,该马氏体以及/或贝氏体是从加工的奥氏体的相变生成物。
3.如权利要求1所述的汽车门加固用钢管,其特征在于:组织是马氏体以及/或贝氏体与铁素体的混合组织,该马氏体以及/或贝氏体是从加工的奥氏体的相变生成物。
4.如权利要求3所述的汽车门加固用钢管,其特征在于:前述铁素体含有面积率为20%以下。
5.如权利要求1至4任一项所述的汽车门加固用钢管,其特征在于:屈服比在80%以下。
6.如权利要求1至4任一项所述的汽车门加固用钢管,其特征在于:以质量%计,对前述成分再增加从以下A~C组中选择的1组或2组以上,
                          记
A组:Cu:1%以下、Ni:1%以下、Cr:2%以下、Mo:1%以下,从中选择1种或2种以上;
B组:Nb:0.1%以下、V:0.5%以下、Ti:0.2%以下、B:0.003%以下,从中选择1种或2种以上;
C组:REM:0.02%以下、Ca:0.01%以下,从中选择1种或2种。
7.一种汽车门加固用钢管的制造方法,其特征在于:对于成分以质量%记、具有:C:0.05~0.30%、Si:0.01~2.0%、Mn:1.8~4.0%、Al:0.005~0.10%,而其余部分为Fe以及不可避免的杂质的素材钢管,在进行加热或均热处理后,实施累积减径率在20%以上、轧制结束温度在800℃以下的减径轧制。
8.如权利要求7所述的汽车门加固用钢管的制造方法,其特征在于:以质量%计,对前述成分再增加从以下A~C组中选择的一组或2组以上,
                          记
A组:Cu:1%以下、Ni:1%以下、Cr:2%以下、Mo:1%以下,从中选择1种或2种以上;
B组:Nb:0.1%以下、V:0.5%以下、Ti:0.2%以下、B:0.003%以下,从中选择1种或2种以上;
C组:REM:0.02%以下、Ca:0.01%以下,从中选择1种或2种。
CNB018024122A 2000-06-14 2001-06-14 汽车加固用钢管及其制造方法 Expired - Fee Related CN1145710C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000178246A JP4608739B2 (ja) 2000-06-14 2000-06-14 自動車ドア補強用鋼管の製造方法
JP178246/00 2000-06-14
JP178246/2000 2000-06-14

Publications (2)

Publication Number Publication Date
CN1388835A true CN1388835A (zh) 2003-01-01
CN1145710C CN1145710C (zh) 2004-04-14

Family

ID=18679703

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB018024122A Expired - Fee Related CN1145710C (zh) 2000-06-14 2001-06-14 汽车加固用钢管及其制造方法

Country Status (9)

Country Link
US (1) US7018488B2 (zh)
EP (1) EP1293581B1 (zh)
JP (1) JP4608739B2 (zh)
KR (1) KR100752912B1 (zh)
CN (1) CN1145710C (zh)
BR (1) BR0106737B1 (zh)
CA (1) CA2382073C (zh)
DE (1) DE60133816T2 (zh)
WO (1) WO2001096625A1 (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100366759C (zh) * 2003-01-15 2008-02-06 于西纳公司 超高强度热轧钢及生产带材的方法
CN101805871A (zh) * 2010-04-09 2010-08-18 中国石油天然气集团公司 一种油气井实体可膨胀管用钢及可膨胀套管的制造方法
CN101812631A (zh) * 2010-04-09 2010-08-25 中国石油天然气集团公司 油井可膨胀套管用钢及其制造方法
CN101233253B (zh) * 2005-07-26 2011-04-06 住友金属工业株式会社 无缝钢管及其制造方法
CN101248194B (zh) * 2005-07-26 2011-08-10 三樱工业株式会社 高强度钢管及其热处理方法
CN102782173A (zh) * 2010-03-05 2012-11-14 新日本制铁株式会社 韧性优异的机械结构用高强度无缝钢管及其制造方法
CN104411846A (zh) * 2012-06-28 2015-03-11 杰富意钢铁株式会社 冷加工性、切削性和淬透性优良的高碳钢管及其制造方法
CN105039844A (zh) * 2015-08-17 2015-11-11 攀钢集团攀枝花钢铁研究院有限公司 含钒tam钢及其制造方法
CN108411199A (zh) * 2018-04-02 2018-08-17 武汉科技大学 1400MPa级B微合金化低碳热轧双相钢及其制备方法
CN108431271A (zh) * 2015-12-23 2018-08-21 Posco公司 扩孔性优异的超高强度钢板及其制造方法
CN109881093A (zh) * 2019-03-01 2019-06-14 北京科技大学 一种热气胀成型用空冷强化钢及其制备方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3968011B2 (ja) * 2002-05-27 2007-08-29 新日本製鐵株式会社 低温靱性および溶接熱影響部靱性に優れた高強度鋼とその製造方法および高強度鋼管の製造方法
KR100985322B1 (ko) 2002-12-28 2010-10-04 주식회사 포스코 가공성이 우수한 고강도 냉연강판과 그 제조방법
KR101008104B1 (ko) 2003-10-02 2011-01-13 주식회사 포스코 가공성이 우수한 120kgf/㎟급 초고강도 강 및 그제조방법
CN100564567C (zh) * 2003-10-20 2009-12-02 杰富意钢铁株式会社 扩管用无缝油井钢管及其制造方法
US8863565B2 (en) * 2005-03-03 2014-10-21 Nippon Steel & Sumitomo Metal Corporation Three-dimensionally bending machine, bending-equipment line, and bent product
CZ299495B6 (cs) 2005-12-06 2008-08-13 Comtes Fht, S. R. O. Zpusob výroby vysokopevných nízkolegovaných ocelových trubek
JP4466619B2 (ja) * 2006-07-05 2010-05-26 Jfeスチール株式会社 自動車構造部材用高張力溶接鋼管およびその製造方法
JP5088631B2 (ja) * 2008-09-17 2012-12-05 新日本製鐵株式会社 疲労特性と曲げ成形性に優れた機械構造鋼管とその製造方法
AT507596B1 (de) * 2008-11-20 2011-04-15 Voestalpine Tubulars Gmbh & Co Kg Verfahren und vorrichtung zur herstellung von stahlrohren mit besonderen eigenschaften
EP2383353B1 (de) * 2010-04-30 2019-11-06 ThyssenKrupp Steel Europe AG Höherfester, Mn-haltiger Stahl, Stahlflachprodukt aus einem solchen Stahl und Verfahren zu dessen Herstellung
KR101246466B1 (ko) 2010-09-29 2013-03-21 현대제철 주식회사 가공성이 우수한 1000MPa급 열연강판 제조방법 및 이를 이용하여 제조한 열연 강판
JP5679115B2 (ja) * 2011-02-25 2015-03-04 Jfeスチール株式会社 冷間加工性、被削性および焼入れ性に優れた高炭素鋼管およびその製造方法
RU2495149C1 (ru) * 2012-03-06 2013-10-10 Общество с ограниченной ответственностью "Северсталь-Проект" (ООО "Северсталь-Проект") Высокопрочная хладостойкая свариваемая сталь
CN102615213B (zh) * 2012-03-10 2014-05-14 王昌林 多功能折叠工具锹刀刃加工工艺
SE539519C2 (en) * 2015-12-21 2017-10-03 High strength galvannealed steel sheet and method of producing such steel sheet
WO2017164016A1 (ja) * 2016-03-24 2017-09-28 新日鐵住金株式会社 3次元熱間曲げ焼入れ装置及び鋼管の3次元熱間曲げ焼入れ方法
JP6195043B1 (ja) * 2016-03-24 2017-09-13 新日鐵住金株式会社 3次元熱間曲げ焼入れ装置及び鋼管の3次元熱間曲げ焼入れ方法
CN108950400B (zh) * 2018-08-10 2020-03-31 武汉钢铁集团鄂城钢铁有限责任公司 一种低温海洋用钢及其制备方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04191325A (ja) * 1990-11-27 1992-07-09 Sumitomo Metal Ind Ltd 真直度に優れる高強度鋼管の製造方法
JP2745823B2 (ja) * 1990-12-29 1998-04-28 日本鋼管株式会社 偏平化試験特性に優れた車輌ドアインパクトバー用アズロールタイプ超高張力電縫鋼管の製造方法
JPH04276018A (ja) * 1991-03-01 1992-10-01 Kobe Steel Ltd 圧壊特性に優れたドアガードバーの製造方法
DE4219336C2 (de) 1992-06-10 1995-10-12 Mannesmann Ag Verwendung eines Stahls zur Herstellung von Konstruktionsrohren
JPH0681078A (ja) 1992-07-09 1994-03-22 Sumitomo Metal Ind Ltd 低降伏比高強度鋼材およびその製造方法
JPH06179945A (ja) * 1992-12-15 1994-06-28 Nippon Steel Corp 延性の優れたCr−Mo系超高張力電縫鋼管
JPH0718374A (ja) * 1993-06-30 1995-01-20 Nippon Steel Corp 延靱性の優れた超高張力電縫鋼管およびその製造方法
JPH07278730A (ja) * 1994-04-05 1995-10-24 Nippon Steel Corp 延性および靭性の優れた引張強度が1080〜1450MPaの電縫鋼管およびその製造方法
CA2187028C (en) 1995-02-03 2001-07-31 Hiroshi Tamehiro High strength line pipe steel having low yield ratio and excellent low temperature toughness
JP3307164B2 (ja) * 1995-06-09 2002-07-24 日本鋼管株式会社 耐水素遅れ割れ特性に優れた超高張力電縫鋼管の製造方法
JP3374659B2 (ja) * 1995-06-09 2003-02-10 日本鋼管株式会社 超高張力電縫鋼管およびその製造方法
JPH101740A (ja) * 1996-06-12 1998-01-06 Kobe Steel Ltd 耐遅れ破壊特性にすぐれる超高強度鋼板及びその製造方法
DE29818244U1 (de) * 1998-10-13 1998-12-24 Benteler Werke Ag Stahllegierung

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100366759C (zh) * 2003-01-15 2008-02-06 于西纳公司 超高强度热轧钢及生产带材的方法
CN101233253B (zh) * 2005-07-26 2011-04-06 住友金属工业株式会社 无缝钢管及其制造方法
CN101248194B (zh) * 2005-07-26 2011-08-10 三樱工业株式会社 高强度钢管及其热处理方法
CN102782173A (zh) * 2010-03-05 2012-11-14 新日本制铁株式会社 韧性优异的机械结构用高强度无缝钢管及其制造方法
CN103924155A (zh) * 2010-03-05 2014-07-16 新日铁住金株式会社 韧性优异的机械结构用高强度无缝钢管及其制造方法
CN103924155B (zh) * 2010-03-05 2018-10-26 新日铁住金株式会社 韧性优异的机械结构用高强度无缝钢管及其制造方法
CN101812631A (zh) * 2010-04-09 2010-08-25 中国石油天然气集团公司 油井可膨胀套管用钢及其制造方法
CN101805871B (zh) * 2010-04-09 2012-02-29 中国石油天然气集团公司 一种油气井实体可膨胀套管的制造方法
CN101805871A (zh) * 2010-04-09 2010-08-18 中国石油天然气集团公司 一种油气井实体可膨胀管用钢及可膨胀套管的制造方法
CN104411846A (zh) * 2012-06-28 2015-03-11 杰富意钢铁株式会社 冷加工性、切削性和淬透性优良的高碳钢管及其制造方法
CN104411846B (zh) * 2012-06-28 2018-09-14 杰富意钢铁株式会社 冷加工性、切削性和淬透性优良的高碳钢管及其制造方法
CN105039844A (zh) * 2015-08-17 2015-11-11 攀钢集团攀枝花钢铁研究院有限公司 含钒tam钢及其制造方法
CN108431271A (zh) * 2015-12-23 2018-08-21 Posco公司 扩孔性优异的超高强度钢板及其制造方法
CN108411199A (zh) * 2018-04-02 2018-08-17 武汉科技大学 1400MPa级B微合金化低碳热轧双相钢及其制备方法
CN109881093A (zh) * 2019-03-01 2019-06-14 北京科技大学 一种热气胀成型用空冷强化钢及其制备方法

Also Published As

Publication number Publication date
DE60133816D1 (de) 2008-06-12
CA2382073A1 (en) 2001-12-20
EP1293581B1 (en) 2008-04-30
KR100752912B1 (ko) 2007-08-28
JP2001355046A (ja) 2001-12-25
US20030051782A1 (en) 2003-03-20
US7018488B2 (en) 2006-03-28
EP1293581A4 (en) 2005-02-09
DE60133816T2 (de) 2009-05-20
JP4608739B2 (ja) 2011-01-12
CN1145710C (zh) 2004-04-14
KR20020022803A (ko) 2002-03-27
WO2001096625A1 (fr) 2001-12-20
EP1293581A1 (en) 2003-03-19
CA2382073C (en) 2009-09-22
BR0106737A (pt) 2002-04-16
BR0106737B1 (pt) 2009-01-13

Similar Documents

Publication Publication Date Title
CN1145710C (zh) 汽车加固用钢管及其制造方法
CN1252302C (zh) 具有超细晶粒组织的冷轧钢板及其制造方法
CN1152971C (zh) 冷加工性能和高频淬硬性能出色的高碳钢管及其制造方法
CN1072272C (zh) 冲击能吸收特性和成形良好的高强度钢板及其制造方法
CN1075118C (zh) 具有优良韧性和焊接性的双相高强度钢板
CN1104506C (zh) 具有超细晶粒的加工用热轧钢板及其制造方法
CN105803325A (zh) 一种低裂纹敏感性低屈强比特厚钢板及其制备方法
KR20190071755A (ko) 1500MPa 이상의 인장 강도 및 우수한 성형성을 가지는 고강도 냉간 압연 강 및 그 제조방법
KR101315568B1 (ko) 고강도 전봉 강관 및 그 제조 방법
JP5126844B2 (ja) 熱間プレス用鋼板およびその製造方法ならびに熱間プレス鋼板部材の製造方法
CN101045974A (zh) 耐震性优异的压弯冷成形圆形钢管的制造方法
CN109328240B (zh) 低屈强比特性和低温韧性优异的高强度钢板及其制造方法
CN1164785C (zh) 二次加工性能出色的汽车构件用不锈钢管
JP2010229514A (ja) 冷延鋼板およびその製造方法
JP2007197823A (ja) 低降伏比550MPa級高張力厚鋼板およびその製造方法
CN1237189C (zh) 耐粘模性和耐疲劳特性优良的高张力热轧钢板及其制造方法
JP2010126808A (ja) 冷延鋼板およびその製造方法
CN1566389A (zh) 超细晶粒低碳低合金双相钢板及其制造方法
CN1940110A (zh) 焊接性优异的490MPa级低屈服比冷成形钢管及其制造方法
JP4724406B2 (ja) 残留応力の低いホットプレス高強度鋼製部材の製造方法
CN1735700A (zh) 超高强度热轧钢及生产带材的方法
CN110402298B (zh) 高强度冷轧钢板和其制造方法
CN1427087A (zh) 液压成型优异的焊接钢管及其制造方法
JP4815729B2 (ja) 高強度電縫鋼管の製造方法
JP2004162130A (ja) 成形性と圧壊特性に優れた高強度成形体の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20040414

Termination date: 20170614

CF01 Termination of patent right due to non-payment of annual fee