CN108431271A - 扩孔性优异的超高强度钢板及其制造方法 - Google Patents

扩孔性优异的超高强度钢板及其制造方法 Download PDF

Info

Publication number
CN108431271A
CN108431271A CN201680076528.4A CN201680076528A CN108431271A CN 108431271 A CN108431271 A CN 108431271A CN 201680076528 A CN201680076528 A CN 201680076528A CN 108431271 A CN108431271 A CN 108431271A
Authority
CN
China
Prior art keywords
less
ultrahigh
temperature
steel plate
steel plates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201680076528.4A
Other languages
English (en)
Inventor
李世雄
李圭荣
柳朱炫
李源辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Posco Holdings Inc
Original Assignee
Posco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Posco Co Ltd filed Critical Posco Co Ltd
Publication of CN108431271A publication Critical patent/CN108431271A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/043Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12785Group IIB metal-base component
    • Y10T428/12792Zn-base component
    • Y10T428/12799Next to Fe-base component [e.g., galvanized]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12958Next to Fe-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12972Containing 0.01-1.7% carbon [i.e., steel]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12972Containing 0.01-1.7% carbon [i.e., steel]
    • Y10T428/12979Containing more than 10% nonferrous elements [e.g., high alloy, stainless]

Abstract

本发明的一个方面以重量计包含:C:0.15‑0.30%、Si:1.0‑3.0%、Mn:3.0‑5.0%、P:0.020%以下、S:0.010%以下、Al:0.01‑3.0%、N:0.020%以下(0%除外)、余量的Fe和不可避免的杂质,其中微细组织具有5‑20%面积分数的残留奥氏体,以及剩余面积分数的铁素体、贝氏体和新鲜马氏体。

Description

扩孔性优异的超高强度钢板及其制造方法
技术领域
本发明涉及扩孔性优异的超高强度钢板及其制造方法。
背景技术
为了控制汽车的二氧化碳排放并提高燃料效率,汽车制造商一直要求汽车车身的轻量化。此时,矛盾的方面在于,为了减轻汽车用钢板,需要降低钢板的厚度,而为了确保碰撞安全性,需要增加钢板的厚度。
为了解决该矛盾,需要提高材料的可塑性,同时提高材料的强度,并且这通过使用各种类型的汽车钢板是可行的,例如双相(DP)钢板、相变诱发塑性(TRIP)钢板和复合相(CP)钢板,也称为先进高强度钢(AHSS)。可以通过增加碳或合金元素的量来增加先进高强度钢的强度,但考虑到实际方面例如点焊性,可实施的拉伸强度被限制在约1200MPa的水平。
作为另一种方法,淬火分配(Q&P)法能够通过在热处理过程在马氏体相变开始温度Ms与马氏体相变终止温度Mf之间的温度下淬火热的奥氏体来确保低温马氏体,同时通过在适当的温度下将奥氏体稳定化元素例如C、Mn等扩散到奥氏体的剩余部分中来确保强度和延伸率。
如图1所示,将钢加热至A3以上的温度并将钢淬火至温度Ms以下的温度以由此将钢保持在Ms与Mf之间的温度的热处理工艺称为1步Q&P,在淬火之后将钢再加热到Ms以上的温度以由此进行热处理的另一处理工艺称为2步Q&P。
例如,专利文献1描述了使用Q&P热处理来保留奥氏体的方法,但仅简单地解释了Q&P热处理的概念,使得该方法的实际应用受到限制。
同时,作为用于确保碰撞安全性的结构构件的部件,热压成型钢受到了相当多的关注,热压成型钢通过在高温成型后与经过水冷的模具直接接触而进行的淬火从而能够确保其最终强度。然而,由于存在设备投资成本过高、热处理和加工成本增加等限制,需要开发允许进行低成本冷压成型的材料。
因此,需要开发能够冷压成型且具有优异的扩孔性的超高强度钢板及其制造方法。
(现有技术文件)
(专利文献1)美国专利公开第2006-0011274号。
发明内容
技术问题
本发明的一个方面是提供一种能够冷压成型且具有优异的扩孔性的超高强度钢板及其制造方法。
同时,本发明的多个方面不限于此,并且可以根据说明书中的总体描述理解本发明的多个方面。本领域普通技术人员可以毫不困难地理解本发明的其他方面。
技术方案
根据本发明的一个方面,提供一种扩孔性优异的超高强度钢板,该超高强度钢板以重量计包含:C:0.15-0.30%、Si:1.0-3.0%、Mn:3.0-5.0%、P:0.020%以下、S:0.010%以下、Al:0.01-3.0%、N:0.020%以下(0%除外)、余量的Fe及其他不可避免的杂质,其中微细组织含有5%-20%面积分数的残留奥氏体,以及包括铁素体、贝氏体和新鲜马氏体的剩余部分。
根据本发明的另一方面,提供了一种扩孔性优异的超高强度钢板的制造方法,该方法包括:将以重量计含有C:0.15-0.30%、Si:1.0-3.0%、Mn:3.0-5.0%、P:0.020%以下、S:0.010%以下、Al:0.01-3.0%、N:0.020%以下(0%除外)、余量的Fe及其他不可避免的杂质的钢坯加热至1000-1250℃,对加热后的钢坯进行热轧使得其精轧出口处的温度为500-950℃,以得到热轧钢板;在750℃以下的温度下收卷热轧钢板;以30%-80%的压下率对收卷的热轧钢板进行冷轧以获得冷轧钢板;在750℃-950℃的温度范围对所述冷轧钢板进行退火;将退火后的冷轧钢板冷却到Mf至Ms-90℃的冷却终止温度;以及在Ms+100℃以上的温度对冷却后的冷轧钢板进行350秒以上的热处理。
此外,该技术方案并未列举出本发明的全部特征。参照以下具体实施方案可以更详细地理解本发明的各种特征、优点和效果。
有益效果
根据本发明,可以提供扩孔性优异的超高强度钢板及其制造方法。更具体而言,其显示出优异的屈服强度和扩孔性,可适用于冷压成型,并且可以确保成型后的高屈服强度和拉伸强度,从而允许替换热压成型部件。因此,用低成本的冷压成型部件代替昂贵的热压成型部件并抑制由高温成型引起的CO2产生是可行的。因此,作为一种环保材料,它有助于保护全球环境。
附图说明
图1为1步Q&P和2步Q&P的时间-温度图。
图2为示出随着样品9的温度而变化的-ln(1-f)值的曲线图。
具体实施方式
在下文中,将描述本发明的优选实施方案。然而,本发明的实施方案可以被修改为具有各种其他形式,并且本发明的范围不限于下面描述的实施方案。此外,提供本发明的实施方案是为了更全面地向本领域技术人员解释本发明。
本发明人深入研究了冷压成型用钢板的开发,该冷压成型用钢板能够替代传统热压成型钢,从而具有与常规热压成型钢相当或更高的机械性能,并允许降低构件的制造成本。作为研究的结果,发明人已经发现可以提供具有适合于冷压成型的物理性能和微观结构的钢板,并且完成了本发明。
在下文中,将详细描述根据本发明的一个方面的扩孔性优异的超高强度钢板。
根据本发明的一个方面,扩孔性优异的超高强度钢板以重量计包含:C:0.15-0.30%、Si:1.0-3.0%、Mn:3.0-5.0%、P:0.020%以下、S:0.010%以下、Al:0.01-3.0%、N:0.020%以下(0%除外)、余量的Fe及其他不可避免的杂质,其中微细组织含有5%-20%面积分数的残留奥氏体,以及包括铁素体、贝氏体和新鲜马氏体的剩余部分。
首先,将详细描述根据本发明一个方面的扩孔性优异的超高强度钢板的合金组成。以下,各元素含量的单位为重量%。
C:0.15-0.30%
碳(C)为有助于稳定残留奥氏体的元素。
当C含量小于0.15%时,难以充分确保最终热处理过程中奥氏体的稳定性。另一方面,当C含量超过0.30%时,存在多种限制,不仅发生铸件缺陷的风险增加,而且焊接性大幅劣化。因此,C的含量优选为0.15-0.30%。
Si:0.1-3.0%
Si为抑制碳化物析出并有助于稳定残留奥氏体的元素。为了获得上述效果,优选添加0.1%以上的Si。另一方面,如果Si的含量超过3.0%,则即使在900℃以上的高温下也存在铁素体相,从而存在高温下无法确保奥氏体单相的限制。因此,Si的含量优选为0.1-3.0%。
Mn:3.0-5.0%
Mn为有助于残留奥氏体的形成和稳定的元素。已知Mn为广泛用于相变诱导塑性钢的元素。通常,对于TRIP钢,Mn的添加量通常为3.0%,对于奥氏体单相钢TWIP钢,Mn通常以18.0%以上的量添加。这是因为当Mn的含量处于中间范围时,会产生大量的马氏体,从而降低延伸率。
当Mn含量小于3.0%时,热处理后难以在室温下确保残留奥氏体,并且在退火后的淬火过程中可能含有大量的诸如铁素体和贝氏体的相。另一方面,如果Mn含量超过5.0%,则存在制造成本增加、热轧时的轧制负荷增加的限制,从而导致加工性下降。因此,Mn的含量优选为3.0-5.0%。
P:0.020%以下
P为杂质元素,当其含量超过0.020%时,焊接性下降,并且钢的低温脆性风险大幅增加。因此,P的含量优选为0.020%以下。
S:0.010%以下
S为杂质元素,当其含量超过0.010%时,钢板的延展性和焊接性可能劣化。因此,S的含量优选为0.010%以下。
Al:0.01-3.0%
Al为与氧结合以进行脱氧的元素,并且为了获得稳定的脱氧效果,优选将Al的含量保持在0.010%以上。然而,Al与Si均为高温下典型的铁素体区膨胀元素。如果Al的含量超过3.0%,则即使在900℃以上的高温下,铁素体相也与奥氏体相共存,使得可能不存在热处理工序中重要的奥氏体单相区域。因此,Al的含量优选为0.01-3.0%。
N:0.020%以下(0%除外)
N为用于稳定奥氏体的有效成分,但当其超过0.020%时,脆性风险大幅增加,因此其含量限制在0.020%以下。
在本发明中,由于其他合金元素提供了足够的奥氏体稳定化作用,其下限没有特别限制,但是它们不可避免地包括在制造过程中。
本发明的其余元素为铁(Fe)。但是,在普通的制造过程中,不可避免地从原料或周围环境中混入不想要的杂质,因此不可能排除这些杂质。这些杂质在本说明书中没有特别地提及,因为它们是制造领域的任何技术人员已知的。
通过满足上述合金组成,可以获得本发明的预期效果,但是钢板可进一步以重量%计包含以下中的至少一种:Cr:1.5%以下(0%除外)、Ti:0.005-0.3%、Nb:0.005-0.3%、V:0.005-0.3%、Mo:0.05-0.3%。
已知Cr为能够抑制铁素体生长并提高材料的淬透性的元素。但是,如果Cr的含量超过1.5%,则有可能引起碳化物的形成,使得残留奥氏体的稳定性可能劣化。因此,Cr的含量优选为1.5%以下(0%除外)。
Ti、Nb和V为用于增强钢板强度和使晶粒尺寸小型化的有效元素。当Ti、Nb和V各自的含量小于0.005%时,可能难以充分确保这种效果。当Ti、Nb和V各自的含量超过0.30%时,可能增加生产成本,并且由于过量的析出物可能大幅降低延展性。因此,Ti、Nb和V中的每一种的含量优选为0.005-0.30%。
Mo为增强淬透性并抑制铁素体形成、抑制退火后冷却时铁素体的形成的元素。它也是通过形成细小碳化物来提高强度的元素。当Mo的含量小于0.05%时,难以充分确保这种效果。当Mo含量超过0.3%时,由于合金过量,导致铁合金成本增加。因此,Mo的含量优选为0.05-0.3%。
在下文中,将详细描述根据本发明一个方面的钢板的微细组织。
根据本发明的一个方面,钢板的微细组织包含5%-20%面积分数的残留奥氏体以及包括铁素体、贝氏体和新鲜马氏体的其余部分。
为了提高钢板的强度,具有高位错密度的马氏体相是重要的。然而,由于高位错密度,马氏体相呈现有限的延伸率。因此,通过保留5面积%以上的奥氏体,可以通过增强加工硬化来确保延伸率,所述增强加工硬化通过在相变过程中形成相变马氏体来实现。但是,当残留奥氏体超过20面积%时,奥氏体的稳定性降低,并且屈服比(YR)变为0.7以下。因此,面积分数优选为20%以下。
此时,在拉伸试验中,钢板可以具有15面积%以下的相变马氏体。
这是因为,分数超过15面积%的相变马氏体增加了新鲜马氏体相与相变马氏体相的硬度差,从而导致扩孔性降低。
同时,根据本发明一个方面的钢板具有850MPa以上的屈服强度,1200MPa以上的抗拉强度、15%以上的扩孔性和0.7以上的屈服比。
此外,钢板可以具有形成在钢板表面上的热浸镀锌层。
以下,将详细描述根据本发明的另一方面的扩孔性优异的超高强度钢板的制造方法。
根据本发明的另一方面,扩孔性优异的超高强度钢板的制造方法可包括:将满足上述合金组成的钢坯加热至1000-1250℃;对加热后的钢坯进行热轧使得其精轧出口处的温度为500-950℃,以得到热轧钢板;在750℃以下的温度收卷热轧钢板;以30%-80%的压下率对收卷的热轧钢板进行冷轧以获得冷轧钢板;在750℃-950℃的温度下对所述冷轧钢板进行退火;将退火后的冷轧钢板冷却到Mf至Ms-90℃的冷却终止温度;以及在Ms+100℃以上的温度对冷却后的冷轧钢板进行350秒以上的热处理。
钢坯加热
将满足上述合金组成的钢坯加热到1000-1250℃。当钢坯的加热温度低于1000℃时,存在轧制负载急剧增加的缺陷。当加热温度超过1250℃时,能源成本增加,且表面氧化皮的量大幅增加。
热轧和收卷
对加热后的钢坯进行热轧,使其精轧出口处的温度为500-950℃,以得到热轧钢板,在750℃以下的温度收卷该热轧钢板。
当精轧出口处的温度为500℃以下时,轧制负载大幅增加,因此轧制本身变得困难。当精轧出口处的温度超过950℃时,轧辊的热疲劳大幅增加,导致寿命缩短。
当收卷温度超过750℃时,温度太高,这种情况可能引起氧化皮缺陷。
冷轧和退火
以30%-80%的压下率对收卷的热轧钢板进行冷轧以获得冷轧钢板,然后在750℃-900℃的温度范围对该冷轧钢板进行退火。
当冷轧压下率小于30%时,随后退火期间用于再结晶的累积能量可能不足,从而使得可能不会发生再结晶。当冷轧压下率超过80%时,轧制加工性明显不稳定,电力成本大幅上升。因此,优选以30%-80%的压下率进行冷轧。
此外,在冷轧钢板(全硬质材料)的退火中,当温度低于750℃时,不可进行再结晶。当温度高于900℃时,由于高温导致工艺成本增加。因此,退火温度优选为750-900℃。
冷却和热处理
将退火后的冷轧钢板冷却到Mf至Ms-90℃的冷却终止温度后,在Ms+100℃以上的温度对冷却后的冷轧钢板进行350秒以上的热处理。
当冷却终止温度高于Ms-90℃时,由于淬火后钢板中奥氏体的高面积比,残留奥氏体的稳定性降低,这导致在变形时高面积比的相变马氏体,降低扩孔性。另一方面,当冷却终止温度低于Mf时,整个结构由新鲜马氏体组成,从而可以确保高强度但可能不能确保延伸率。
热处理温度需要为Ms+100℃以上的原因是为了确保平稳地进行奥氏体稳定化元素如C、Mn等的扩散并确保残留奥氏体的稳定性,从而允许获得延伸率和扩孔性。此时,对热处理温度的上限没有特别限定,但如果超过500℃,则碳化物可容易被析出,不能确保奥氏体稳定性,因此热处理的上限温度可以是500℃。
在此,可以通过使用以下关系式(1)来获得Ms温度。
[关系式1]Ms=547.6-596.9C-28.4Mn-13.1Si-17.7Cr+8.8Al
(注意,在上述关系式1中,每个元素符号表示各元素以重量%计的含量,并且Ms的单位是℃。在不包含相应元素的情况下,其含量计为0)。
[表1]
样品编号 C Mn Si Cr Al
1 0.05 5.00 1.00 - -
2 0.10 4.00 1.00 - -
3 0.10 5.00 1.00 - -
4 0.10 6.00 1.00 - -
5 0.10 6.00 - - -
6 0.10 6.00 1.50 -
7 0.12 6.00 1.00 - 1.50
8 0.14 1.50 1.50 - -
9 0.15 6.00 1.50 - 1.00
10 0.15 6.00 0.50 - 1.50
11 0.15 6.00 1.50 - 1.80
12 0.16 5.00 1.00 - -
13 0.16 6.00 - - 2.00
14 0.15 4.00 1.6 - -
15 0.24 4.00 1.2 - 1.00
16 0.24 4.00 1.2 0.5 1.00
17 0.24 4.00 1.2 1.0 1.00
在表1中,每种元素含量的单位为重量%。
如上所述,温度Ms在本发明的制造条件中是非常重要的条件。但是,如果照原样施加常规的Ms温度,则存在较大的误差,所以获得了根据本发明的组成的关系式1。
使用具有表1中所示组成的冷轧样品进行膨胀计测试,并且通过该测试方法确定冷却过程中形成的马氏体的分数。对于在试验过程中冷轧样品的均质化,将每个样品在1000℃下加热并冷却,然后再加热至1000℃,总共五次。温度Ms可以通过绘制马氏体分数来获得,该马氏体分数通过膨胀计测试使用以下关系式2获得,图2为示出适用于冷轧样品9的线性趋势线的曲线图。
[关系式2]-ln(1-f)=-αT+αMs
在上述关系式2中,f为冷却过程中产生的马氏体的分数(面积%),α为与马氏体的相变驱动力有关的常数,T为温度(℃)。
基于如此获得的温度Ms,可以通过优化对应于各个元素的常数值来构建关系式1。
同时,该方法还包括在热处理之后将样品浸入镀锌浴中以形成热浸镀锌层。
实施例
在下文中,将参考具体实施例来详细描述本发明。然而,应该指出,以下实施例旨在更详细地说明本发明,而不是限制本发明的范围。此外,本发明的范围由权利要求书中记载的事项和据此合理推断的事项决定。
实施例1
将具有下表2中所示组成的钢用30kg铸锭真空熔化,然后在1200℃的温度下保持1小时,然后热轧以在900℃下完成精轧并将精轧后的钢装入600℃的预热炉中保持1小时。此后,将钢进行炉冷,并模拟其热轧收卷。接着,以50%的压下率对钢进行冷轧,随后在900℃下退火,冷却至表3中所记载的冷却终止温度,然后通过将它们在表3中所记载的热处理温度下保持400秒以进行再加热处理。
测量样品的屈服强度(YS)、拉伸强度(TS)、延伸率(TE)、残留奥氏体分数和屈服比(YR),并示于下表3中。
[表2]
在表2中,每种元素含量的单位为重量%。
[表3]
如表3所示,当通过本发明的方法制造钢板时,可以制造屈服强度为850MPa以上、拉伸强度为1.2GPa以上、屈服比为0.7以上的钢板。
在使用发明钢但冷却终止温度为Ms-90℃以上的比较例1-5的情况下,残留奥氏体的分数超过20%,不能确保充分的稳定性,并且屈服比低于0.7。
此外,在使用其中Mn含量小于3%的比较钢1和2的比较例6-11的情况下,即使奥氏体分数小于20%,无论是否满足冷却终止温度,也不能确保稳定性,且屈服比低于0.7。
同时,在使用其中Mn含量超过5%的比较钢3或4的比较例12-17的情况下,无论是否满足冷却终止温度,虽然拉伸强度为1500MPa以上,但即使奥氏体分数小于20%也不能确保稳定性,且屈服比低。
实施例2
通过应用与实施例1中相同的条件和与下表4相同的热处理温度来进行进一步的实验。发明实施例1-3和比较例2与上述实施例1中的相同。
测量拉伸试验之前和之后的机械性能、扩孔性和奥氏体量,并示于下表4中。通过计算拉伸试验之前和之后的体系中奥氏体分数的差值,可以预测相变时形成的相变马氏体的量。
扩孔性由圆孔的扩大量与初始孔尺寸的比例表示,圆孔的扩大量为在试样中形成圆孔然后使用锥形钻孔机扩孔时,直至孔边缘处产生的裂纹有至少一处在厚度方向上贯通为止的扩大量。已知扩孔性作为评价延伸凸缘性的指标,并由以下的关系式3表示。
[关系式3]λ=(Dh-Do)/Do×100(%)
其中,λ为扩孔性(%),Do为初始孔径(在本发明的实施方案中为10mm),Dh是断裂后的孔径(mm)。
为了评估扩孔性,定义在对初始孔进行冲孔时的余隙度也是必要的,该余隙度定义为模具和冲头之间的距离与试样的厚度的比例(根据关系式4定义)。在本发明的实施方案中,使用了10%的余隙度。
[关系式4]C=0.5×(dd-dp)/t×100(%),
其中C为余隙度(%),dd为冲孔模的内径(mm),dp为冲头的直径(dp=10mm),并且t为试样的厚度。
[表4]
如表4所示,在实施例1-3中,热处理后残留奥氏体为5面积%以上,拉伸试验中相变马氏体为15面积%以下。
然而,在比较例18和19中,由于残留奥氏体的分数小于5%,导致不仅延伸率降低,而且不能确保15%以上的扩孔性。
此外,在比较例2的情况下,由于在Ms-90℃以上的冷却终止温度下大量不稳定的残留奥氏体,可以确保优异的延伸率,相变时相变马氏体的分数超过15%,导致低的扩孔性。
尽管以上已经示出并描述了示例性实施方案,但是对于本领域技术人员来说显而易见的是,可以在不脱离由所附权利要求限定的本发明的范围的情况下进行修改和变化。

Claims (11)

1.一种扩孔性优异的超高强度钢板,所述超高强度钢板以重量计包含:C:0.15-0.30%、Si:1.0-3.0%、Mn:3.0-5.0%、P:0.020%以下、S:0.010%以下、Al:0.01-3.0%、N:0.020%以下(0%除外)、余量的Fe及其他不可避免的杂质,
其中微细组织含有5%-20%面积分数的残留奥氏体以及包括铁素体、贝氏体和新鲜马氏体的剩余部分。
2.根据权利要求1所述的超高强度钢板,其中所述钢板以重量计还包含以下中的至少一种:Cr:1.5%以下(0%除外)、Nb:0.005-0.3%、V:0.005-0.3%和Mo:0.05-0.3%。
3.根据权利要求1所述的超高强度钢板,其中以面积计,铁素体和贝氏体合计为20%以下。
4.根据权利要求1所述的超高强度钢板,其中所述钢板的屈服强度为850MPa以上、抗拉强度为1200MPa以上、扩孔性为15%以上。
5.根据权利要求1所述的超高强度钢板,其中所述钢板的屈服比为0.7以上。
6.根据权利要求1所述的超高强度钢板,其中所述钢板具有形成在所述钢板的表面上的热浸镀锌层。
7.根据权利要求1所述的超高强度钢板,其中以面积计,在拉伸试验中所述钢板具有15%以下的相变马氏体。
8.一种制造扩孔性优异的超高强度钢板的方法,所述方法包括:
将以重量计含有C:0.15-0.30%、Si:1.0-3.0%、Mn:3.0-5.0%、P:0.020%以下、S:0.010%以下、Al:0.01-3.0%、N:0.020%以下(0%除外)、余量的Fe及其他不可避免的杂质的钢坯加热至1000-1250℃,
对加热后的钢坯进行热轧使得其精轧出口处的温度为500-950℃,以得到热轧钢板;
在750℃以下的温度下收卷热轧钢板;
以30%-80%的压下率对收卷的热轧钢板进行冷轧以获得冷轧钢板;
在750℃-950℃的温度下对所述冷轧钢板进行退火;
将退火后的冷轧钢板冷却到Mf至Ms-90℃的冷却终止温度;和
在Ms+100℃以上的温度对冷却后的冷轧钢板进行350秒以上的热处理。
9.根据权利要求8所述的方法,其中所述Ms通过以下关系式(1)获得:
[关系式1]Ms=547.6-596.9C-28.4Mn-13.1Si-17.7Cr+8.8Al
(在关系式1中,每个元素符号表示各元素以重量%计的含量,Ms的单位为℃,不包含的元素计为0)。
10.根据权利要求8所述的方法,其中所述钢坯以重量计还包含以下中的至少一种:Cr:1.5%以下(0%除外)、Ti:0.005-0.3%、Nb:0.005-0.3%、V:0.005-0.3%和Mo:0.05-0.3%。
11.根据权利要求8所述的方法,其还包括:在所述热处理之后,将所述钢板浸入镀锌槽中以形成热浸镀锌层。
CN201680076528.4A 2015-12-23 2016-12-23 扩孔性优异的超高强度钢板及其制造方法 Pending CN108431271A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020150184502A KR101714930B1 (ko) 2015-12-23 2015-12-23 구멍확장성이 우수한 초고강도 강판 및 그 제조방법
KR10-2015-0184502 2015-12-23
PCT/KR2016/015154 WO2017111524A1 (ko) 2015-12-23 2016-12-23 구멍확장성이 우수한 초고강도 강판 및 그 제조방법

Publications (1)

Publication Number Publication Date
CN108431271A true CN108431271A (zh) 2018-08-21

Family

ID=58410793

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680076528.4A Pending CN108431271A (zh) 2015-12-23 2016-12-23 扩孔性优异的超高强度钢板及其制造方法

Country Status (5)

Country Link
US (1) US20180363084A1 (zh)
EP (1) EP3395981A4 (zh)
KR (1) KR101714930B1 (zh)
CN (1) CN108431271A (zh)
WO (1) WO2017111524A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114846168A (zh) * 2019-12-18 2022-08-02 Posco公司 加工性优异的高强度钢板及其制造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019111028A1 (en) * 2017-12-05 2019-06-13 Arcelormittal Cold rolled and annealed steal sheet and method of manufacturing the same
WO2019111029A1 (en) * 2017-12-05 2019-06-13 Arcelormittal Cold rolled and annealed steel sheet and method of manufacturing the same
WO2019191765A1 (en) * 2018-03-30 2019-10-03 Ak Steel Properties, Inc. Low alloy third generation advanced high strength steel and process for making
EP3868909A4 (en) * 2018-10-17 2021-08-25 JFE Steel Corporation THIN STEEL SHEET, AND METHOD OF MANUFACTURING THE SAME
KR102231344B1 (ko) * 2019-05-17 2021-03-24 주식회사 포스코 구멍확장성 및 연성이 우수한 초고강도 강판 및 이의 제조방법

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08337817A (ja) * 1995-06-09 1996-12-24 Nkk Corp 耐水素遅れ割れ特性に優れた超高張力電縫鋼管の製造方法
JPH09104921A (ja) * 1995-06-09 1997-04-22 Nkk Corp 超高張力電縫鋼管およびその製造方法
JPH101740A (ja) * 1996-06-12 1998-01-06 Kobe Steel Ltd 耐遅れ破壊特性にすぐれる超高強度鋼板及びその製造方法
CN1388835A (zh) * 2000-06-14 2003-01-01 川崎制铁株式会社 汽车加固用钢管及其制造方法
CN102449180A (zh) * 2009-05-29 2012-05-09 株式会社神户制钢所 耐氢脆化特性优异的高强度钢板
WO2014020640A1 (ja) * 2012-07-31 2014-02-06 Jfeスチール株式会社 成形性及び形状凍結性に優れた高強度溶融亜鉛めっき鋼板、並びにその製造方法
CN103597100A (zh) * 2011-05-18 2014-02-19 蒂森克虏伯钢铁欧洲股份公司 高强度的扁钢产品及其制造方法
CN103717774A (zh) * 2011-07-29 2014-04-09 新日铁住金株式会社 成形性优异的高强度钢板、高强度镀锌钢板及它们的制造方法
WO2015115059A1 (ja) * 2014-01-29 2015-08-06 Jfeスチール株式会社 高強度冷延鋼板およびその製造方法
WO2015151419A1 (ja) * 2014-03-31 2015-10-08 Jfeスチール株式会社 高降伏比高強度冷延鋼板及びその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060011274A1 (en) 2002-09-04 2006-01-19 Colorado School Of Mines Method for producing steel with retained austenite
JP5825119B2 (ja) * 2011-04-25 2015-12-02 Jfeスチール株式会社 加工性と材質安定性に優れた高強度鋼板およびその製造方法
TWI524953B (zh) * 2012-01-13 2016-03-11 新日鐵住金股份有限公司 冷軋鋼板及冷軋鋼板之製造方法
BR112014017113B1 (pt) * 2012-01-13 2019-03-26 Nippon Steel & Sumitomo Metal Corporation Aço estampado a quente e método para produzir o mesmo
JP5867435B2 (ja) * 2013-03-28 2016-02-24 Jfeスチール株式会社 高強度溶融亜鉛めっき鋼板およびその製造方法
KR101830538B1 (ko) * 2016-11-07 2018-02-21 주식회사 포스코 항복비가 우수한 초고강도 강판 및 그 제조방법

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08337817A (ja) * 1995-06-09 1996-12-24 Nkk Corp 耐水素遅れ割れ特性に優れた超高張力電縫鋼管の製造方法
JPH09104921A (ja) * 1995-06-09 1997-04-22 Nkk Corp 超高張力電縫鋼管およびその製造方法
JPH101740A (ja) * 1996-06-12 1998-01-06 Kobe Steel Ltd 耐遅れ破壊特性にすぐれる超高強度鋼板及びその製造方法
CN1388835A (zh) * 2000-06-14 2003-01-01 川崎制铁株式会社 汽车加固用钢管及其制造方法
CN102449180A (zh) * 2009-05-29 2012-05-09 株式会社神户制钢所 耐氢脆化特性优异的高强度钢板
CN103597100A (zh) * 2011-05-18 2014-02-19 蒂森克虏伯钢铁欧洲股份公司 高强度的扁钢产品及其制造方法
CN103717774A (zh) * 2011-07-29 2014-04-09 新日铁住金株式会社 成形性优异的高强度钢板、高强度镀锌钢板及它们的制造方法
WO2014020640A1 (ja) * 2012-07-31 2014-02-06 Jfeスチール株式会社 成形性及び形状凍結性に優れた高強度溶融亜鉛めっき鋼板、並びにその製造方法
CN104508163A (zh) * 2012-07-31 2015-04-08 杰富意钢铁株式会社 成形性及定形性优异的高强度热浸镀锌钢板及其制造方法
WO2015115059A1 (ja) * 2014-01-29 2015-08-06 Jfeスチール株式会社 高強度冷延鋼板およびその製造方法
WO2015151419A1 (ja) * 2014-03-31 2015-10-08 Jfeスチール株式会社 高降伏比高強度冷延鋼板及びその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114846168A (zh) * 2019-12-18 2022-08-02 Posco公司 加工性优异的高强度钢板及其制造方法

Also Published As

Publication number Publication date
US20180363084A1 (en) 2018-12-20
EP3395981A1 (en) 2018-10-31
WO2017111524A1 (ko) 2017-06-29
EP3395981A4 (en) 2018-10-31
KR101714930B1 (ko) 2017-03-10

Similar Documents

Publication Publication Date Title
US20220282348A1 (en) Method for manufacturing a high strength steel product and steel product thereby obtained
CN104040010B (zh) 冷轧钢板及冷轧钢板的制造方法
EP2683839B1 (en) Process for producing high strength formable steel and high strength formable steel produced therewith
CN103154279B (zh) 热成形钢坯的方法和热成形的部件
JP6536294B2 (ja) 溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板、およびそれらの製造方法
CN102822375B (zh) 超高强度冷轧钢板及其制造方法
CN108431271A (zh) 扩孔性优异的超高强度钢板及其制造方法
EP3260569A1 (en) Steel plate used for hot stamping forming, forming process of hot stamping and hot-stamped component
CN104513927B (zh) 一种抗拉强度800MPa级高强度高韧性钢板及其制造方法
JP6248207B2 (ja) 穴広げ性に優れた溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板及びその製造方法
KR101657822B1 (ko) 연신특성이 우수한 용융아연도금강판, 합금화 용융아연도금강판 및 그 제조방법
US10253387B2 (en) Hot-pressed steel sheet member, method of manufacturing the same, and steel sheet for hot pressing
KR20160090865A (ko) 열간 성형 강판 부재 및 그 제조 방법 및 열간 성형용 강판
US9534279B2 (en) High-strength cold-rolled steel sheet having small variations in strength and ductility and manufacturing method for the same
JP5640931B2 (ja) 加工性及び焼入性に優れた中炭素冷延鋼板とその製造方法
CN110088336B (zh) 高温延伸特性优异的高强度钢板、温压成型部件以及它们的制造方法
WO2012105126A1 (ja) 加工性に優れた高降伏比を有する高強度冷延鋼板およびその製造方法
WO2012118081A1 (ja) 温間での深絞り性に優れた高強度鋼板およびその温間加工方法
US20220267874A1 (en) Steel sheet
US20170335423A1 (en) High strength high ductility steel plate
CN113151735A (zh) 表现出良好延展性的高强度钢以及通过镀锌槽进行淬火和分配处理的制备方法
JP4983082B2 (ja) 高強度鋼材及びその製造方法
JP2016028172A (ja) 冷延鋼板およびその製造方法
JP6037087B1 (ja) 高強度冷延鋼板およびその製造方法
CN108950150A (zh) 基于完全奥氏体化的超高强度冷轧中锰q&p钢热处理工艺

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180821