CN1355736A - 用于干法涂覆的焊剂 - Google Patents

用于干法涂覆的焊剂 Download PDF

Info

Publication number
CN1355736A
CN1355736A CN00808848A CN00808848A CN1355736A CN 1355736 A CN1355736 A CN 1355736A CN 00808848 A CN00808848 A CN 00808848A CN 00808848 A CN00808848 A CN 00808848A CN 1355736 A CN1355736 A CN 1355736A
Authority
CN
China
Prior art keywords
powder
solder flux
particle
particle size
curve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN00808848A
Other languages
English (en)
Other versions
CN1177671C (zh
Inventor
H-W·斯维德斯基
A·奥特曼
H-J·贝尔特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Solvay Fluor GmbH
Original Assignee
Solvay Fluor und Derivate GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10049315A external-priority patent/DE10049315A1/de
Application filed by Solvay Fluor und Derivate GmbH filed Critical Solvay Fluor und Derivate GmbH
Publication of CN1355736A publication Critical patent/CN1355736A/zh
Application granted granted Critical
Publication of CN1177671C publication Critical patent/CN1177671C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0244Powders, particles or spheres; Preforms made therefrom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3601Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents
    • B23K35/3603Halide salts
    • B23K35/3605Fluorides

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Powder Metallurgy (AREA)
  • Nonmetallic Welding Materials (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Fats And Perfumes (AREA)
  • Ceramic Products (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Paints Or Removers (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Saccharide Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Pyrane Compounds (AREA)

Abstract

本发明涉及一种基于碱金属氟铝酸盐,很适于干法涂覆的焊剂。在此涉及一种由粒子尺寸分布范围定义的无细粒子组分的焊剂。

Description

用于干法涂覆的焊剂
本发明涉及一种可干法涂覆的焊剂以及其作为焊剂的用途。
许多年以来就知道将铝或铝合金构件,特别是用于汽车工业的换热器,通过使用基于碱金属氟铝酸盐的焊剂来彼此焊接。其中,焊剂通常以水悬浮液形式喷射到换热器上。在焊料或生成焊料的前体,如硅粉或氟硅酸钾存在下,将构件加热至焊剂的熔点之上时生成一种稳定的、非腐蚀性的连接。虽然DE-OS 19749042中已经公布了一种可循环使用方法中产生的废水的方法。但其它的方法参数严格:必须控制焊剂悬浮液的浓度,换热器必须在加热前干燥,同样循环的焊剂悬浮液可能接纳杂质。当焊剂干燥涂覆到待结合的构件上时可避免这些缺点。这就是“干法涂焊剂方法”下的情况。其中,干燥的焊剂粉末静电涂覆到构件上。优点是,不必制备悬浮液,不必控制悬浮液的浓度,不必预先安排单独的干燥构件的步骤,不产生废水。
本发明的任务是,提供一种基于碱金属氟铝酸盐的焊剂,其通过气动可良好传输,可良好地干喷,在喷涂的构件上粘附性好,因此适于干法涂覆(干法涂焊剂)。这一任务通过权利要求中给出的焊剂得以解决。
本发明的理论基础为,碱金属氟铝酸盐焊剂的粒子尺寸或粒子尺寸分布影响气动传输,可喷射性和焊剂粒子在构件上的粘附能力。现已发现,当焊剂中含有较小和较大的粒子且其比例服从某种调节时是有利的。
按本发明的可用于干法涂覆的基于碱金属氟铝酸盐的焊剂,其特征为,粒子的体积分布基本上在图10的曲线1和2内部。粒子尺寸分布借助激光衍射来测定。
对于优选的焊剂,粒子的体积分布基本上在图11中曲线1和2内部。
图10描述了本发明意义上的可使用粉末的体积分布曲线的下限(曲线1)和上限(曲线2)。其中是以百分比计的累积的粉末的体积分布对粒子尺寸作图。其累积的体积分布在图10的曲线1和2上或内部的焊剂粉末是本发明意义上的粉末。
下表A中总结了图10中曲线1和2的对粒子尺寸的累积体积分布。
表A:图10中曲线1和2的对粒子尺寸的累积体积分布
    x[μm]     Q3[%]下限     Q3[%]上限
    0,450,550,650,750,901,101,301,551,852,152,503,003,754,505,256,257,509,0010,5012,5015,0018,0021,5025,5030,5036,5043,5051,5061,5073,5087,50     0,251,402,002,703,805,005,807,008,5010,0011,5014,0017,0016,0019,0023,0028,0033,0038,0040,0042,0044,0048,0054,0065,0077,5089,0093,0094,0095,8096,00     3,004,005,306,808,8012,2015,8020,0025,0029,0032,5041,0053,0063,0071,0079,0086,0090,0094,0096,0098,0098,7099,50100,00100,00100,00100,00100,00100,00100,00100,00
下限=曲线1                         上限=曲线2
阅读实例:直径在12.5μm或更小的粒子分摊了40%体积。
已经确定,累积体积分布在图11中曲线1和2上或内部的焊剂具有特别有利的干法涂覆性能。表B描述了图11中曲线1和2的对粒子尺寸的累积体积分布。
表B:图11中曲线1和2的对粒子尺寸的累积体积分布
    x[μm]     Q3[%]下限     Q3[%]上限
    0,450,550,650,750,901,101,301,551,852,152,503,003,754,505,256,257,509,0010,5012,5015,0018,0021,5025,5050,5036,5043,5051,5061,5073,5087,50     0,941,532,192,913,914,975,897,038,439,9111,7614,5818,9422,2425,3129,7434,3037,2638,7840,2541,8744,2048,1354,6765,0477,8289,3896,5598,64100,00100,00     2,283,494,736,008,0711,6915,3019,5824,2028,1932,1837,0143,0748,0952,3057,1364,8272,0777,0681,8986,2791,2895,1297,4598,9199,70100,00100,00100,00100,00100,00
下限=曲线1                       上限=曲线2
按本发明的材料可以通过筛除不希望的粒子组分,通过具有不同粒子尺寸分布的材料混合得到。
喷涂因子优选为25,更优选35,特别是45或更高,由此其确定比例H流化∶H0至少为1.05。喷涂因子的上限为85,优选为83.5。喷涂因子及比例H流化∶H0(膨胀的粉末对未膨胀粉末的高度)的计算将在下面进一步表述。
按本发明的材料很适合用作干法涂覆方法中的焊剂。其中,粉末通过压缩空气或氮气由储罐中引入“喷枪”中,在那里充上静电。然后,粉末离开喷枪的喷头,打在待焊接的构件上。接着,待焊接的构件任选地在拼合的情况下,在焊接炉中,大部分情况下在惰性气体氮气气氛下,或通过火焰焊接来焊接。
按本发明的粉末相对于已知焊剂具有应用技术方面的优势。例如它有优异的流动性。这归因于选择的粒子尺寸分布。这种良好的流动性导致堵塞趋势降低。这种材料可以非常好地充电。这种材料非常好地粘附到待焊接的构件上。材料流动很均匀。
对于本发明将借助下面的实施例进一步阐述,但并不限于其范围内。
                        实施例体积分布的测定:系统:Sympatec HELOS生产厂家:Sympatec GmbH,系统-粒子技术构造:
利用激光衍射测定固体的粒子尺寸分布的测量仪。
此仪器包括下面的组件:
配有辐射形成装置的激光光源,测量区,在此待测粒子与激光相互作用,成像透镜系统,在此衍射激光的角分布转换为光检测器上的位置分布,带有自动聚焦单元和后置电子学装置的多元光检测器,其将测得的强度分布数字化。
粒子尺寸分布的计算借助WINDOX软件来完成。其原理基于利用测量的衍射模型的强度分布(n.Fraunhofer)。在目前情况下HRLD(高分辨激光衍射)。非球形粒子的粒子尺寸被描述为衍射相同的球的等价直径分布。测量前必须将聚集体分开为单个粒子。用于测量必要的粉末的气溶胶在分散仪,这里是RODOS系统中制备。借助震荡槽(VIBRI)将粉末均匀供应至分散仪中。测量范围:0.45…87.5μm求值:HRLD(3.3版,规则1)样品密度:设定:1g/cm3形状因子:1复杂的衍射指数m=n-ik;n=1;i=0求值:X     是粒径,以μm计。Q3   是直至提及的直径的粒子的累积体积份额,以%计。q3   是粒径X时的密度分布。X10   是累积体积份额达到10%时的粒径。c_opt 是进行测量时出现的光浓度(气溶胶密度)。M1,3和Sv没有考虑用来求值。原料:
试验两种不同粒子尺寸分布的氟铝酸钾粉末用于干法涂覆的性能。粉末是通过筛除不希望的粒子组分来得到。下面将粒子尺寸分布(体积分布)制表。粉末1(“较粗的”材料)的粒子尺寸分布在图1中直观说明,粉末2(“较细的”材料)的粒子尺寸分布在图2中直观说明。表1:粉末1的体积分布
                                                         体积分布
  x0/μm   Q3/%   x0/μm   Q3/%   x0/μm   Q3/%   X0/μm   Q3/%
  0,45   2,27   1,85   16,42   7,50   50,85   30,50   98,21
  0,55   3,40   2,15   18,61   9,00   58,91   36,50   99,44
  0,65   4,55   2,50   20,94   10,50   66,02   43,50   100,00
  0,75   5,70   3,00   24,07   12,50   73,96   51,50   100,00
  0,90   7,41   3,75   28,64   15,00   81,58   61,50   100,00
  1,10   9,59   4,50   33,19   18,00   88,02   73,50   100,00
  1,30   11,63   5,25   37,70   21,50   92,85   87,50   100,00
  1,55   13,95   6,25   43,64   25,50   96,08   -   -
x10=1,14μm       x50=7,35μm     x90=19,44μmSv=2,033m2/cm3 Sm=8132cm2/g   copt=6,27%表2:粉末2的体积分布
                                     体积分布
  x0/μm   Q3/%   x0/μm   Q3/%   x0/μm   Q3/%   x0/μm   Q3/%
  0,45   4,03   1,85   334,62   7,50   90,93   30,50   100,00
  0,55   6,13   2,15   40,35   9,00   94,38   36,50   100,00
  0,65   8,33   2,50   46,57   10,50   96,30   43,50   100,00
  0,75   10,59   3,00   54,55   12,50   97,69   51,50   100,00
  0,90   14,03   3,75   65,19   15,00   98,59   61,50   100,00
  1,10   18,60   4,50   73,63   18,00   99,22   73,50   100,00
  1,30   23,09   5,25   80,00   21,50   99,68   87,50   100,00
  1,55   28,49   5,25   86,05   25,50   99,93   -   -
x10=0,72μm        x50=2,71μm        x90=7,26μmSv=3,6046m2/cm3 Sm=14418cm2/g     copt=6,74%
首先测试粉末1或2及两者的某种混合物的可流化性以及流动性。使用的设备与方案:
用于计算粉末可流化性和粉末流动性的测量仪(Binks-Sames粉末可流化性测量仪AS 100-451195)搭在一个震动单元上(Fritsch L-24)。此测量仪具有底部带多孔膜的流化圆筒。将250g各待测粉末引入圆筒中,打开震动单元,将均匀(通过流量计控制)的干燥氮气流通过多孔膜导入粉末中。粉末膨化;为调节至平衡状态,让气体作用1分钟。通过测量膨化前和后的高度,可以计算出各种粉末的可流化性。
各种粉末的可流化性和流动性用来计算所谓的“喷涂因子”。喷涂因子是膨化因子(可流化性)和粉末的物料流动(流动性)的结合。喷涂因子是干法涂覆应用中的重要因子。它按下面方法确定:如上所述,各待测粉末在流化圆筒中膨化。然后打开在圆筒的一侧安装的孔洞30秒,通过柱的这个孔放出的粉末在烧杯中接收并称重。基于单位时间0.5分钟的接收粉末的量的比例在下面称为“喷涂因子”(Spruehfaktor)。为了说明应提及的是,具有优异可流化性、流动性的粉末,其喷涂因子为140。可膨化性很差,流动性差的粉末其喷涂因子例如为7。下表3中列出了对纯粉末1,纯粉末2和以90,80,70…10wt-%粉末1,其余加至100wt-%的粉末2组成的混合物的确定的喷涂因子。表3:
   粉末1(%)     粉末2(%)     喷涂因子1(g/0,5min)
    1009080706050403020100     0102030405060708090100     71,8863,5635,5425,3322,5121,5214,7613,8311,289,777,35
1多次测量的平均值
测试过程中确定,在喷涂因子大于约45g/0.5分钟时具有良好的流动性。
喷涂因子也可按下列方法计算:
a)计算膨化因子(Expansionsfaktor)(cm/cm):
H流化∶H0,其中H流化=膨化粉末的高度,
H0=未流化粉末的高度,断开震动仪,切断氮气供应。
由跨越直径分布的测量点的各5次测量计算平均值。
b)粉末的流动(g/0.5分钟):
0.5分钟内由孔流出的粉末的质量,以10次测量的中间值确定。计算中间值:
中间值m=m9+m2/2,当10次测量中
m5<m3<m1<m7<m9<m2<m4<m8<m10<m6
喷涂因子Rm
Rm(g/0.5分钟)=m(g/0.5分钟)·膨化因子。
奇特的是,喷涂因子不是随粉末混合物的组成线性变化,而是在样品1约为80-90%的含量范围内具有性能的强烈突变。这图示于图3中。其中喷涂因子(g/0.5分钟)对粉末1在混合物中的百分比例作图。这意味着,粉末中细组分含量对流动性有很大影响。测试与粒子尺寸分布有关的在铝构件上的粘附能力:
此粘附能力通过一种很简单的方法测试,其可得到很好的有关测试粉末在干法涂覆方面工艺上可使用性的结论。
平面,正方形铝板,尺寸为0.5m×0.5m,用待测、干燥的焊剂粉末通过喷射,静电涂覆到一面上。称量焊剂的加载量;然后将此板在垂直方向5cm高处让其下落到地板上,以相对初始焊剂加载量的百分比记录焊剂的损失。对于粉末各进行10次测量。相对于按本发明的粉末的低重量损失而言,粘附差的粉末显示出比较高的重量损失(参见粉末3和粉末4)。实际条件下的测试:
使用两个不同的装置。一个装置是Nordson公司的焊剂涂覆装置(“涂焊剂台”),适于半连续的操作。单元的尺寸:216cm高,143cm宽,270cm深。重要的组件是一个储罐,一个喷枪,两个过滤筒和控制单元。待涂焊剂构件放到可手工前后移动的格栅上。喷枪自动从左到右移动,并在间隔时间约21秒内返回(21秒对应65cm,即速度为3.1cm/秒)。
作为第二个涂焊剂单元,在此系统中构建入ITW/Gema容器与喷枪和控制单元。
喷头与格栅间的距离为34cm。工作原理:
Nordson公司的容器应用粉末流化的原理,以便将焊剂经文丘里泵和输送管引入喷枪中。容器中的搅拌或振动装置促进焊剂的流化。
ITW/Gema系统具有带螺旋式输送机的容器,以便将粉末机械输送到漏斗中。然后,文丘里泵将焊剂通过管输送到喷枪中。
ITW/Gema系统在几个位置上配备振动仪,以便避免被焊剂堵塞。喷枪用100kV工作以给粉末充电。
实施例中提及的粉末在按Nordson或ITW/Gema的设备中使用,以测试焊剂传输和喷射过程的均匀性和测试物体(表面积为4.8m2的换热器)的加载量。首先就空气流量或螺旋速度调节控制单元,以致于焊剂加载量达到约5g/m2。接着,实验继续进行30分钟,不改变对设备的设定。以2-4分钟间隔,将测试物体为了用焊剂喷洒而放到格栅上,然后称量以确定焊剂加载量。每个测试系列包括10或11次测量。结果总结在表4中。
表4:30分钟测试,换热器上焊剂加载量
目标加载量:5g/m2               粉末1焊剂加载量(g/m2)               粉末2焊剂加载量(g/m2)
  最小   最大   差值   最小   最大   差值
  Nordson   4.8   5.5   0.7   4.6   6.0   1.4
  ITW/Gema   4.8   5.3   0.5   5.0   5.5   0.5
图4至7中图解总结了对于Nordson设备或ITW/Gema设备而言,粉末1或粉末2相对于时间的焊剂加载量。对于粉末2,在Nordson设备的情况下,喷头必须有规则地空吹,以避免堵塞。
30分钟测试研究如上所述用来测试其它粉末。粉末3具有下列性能:Rm的测量值为59.25;H流化∶H0(mm/mm)=1.11;粘附损失为11.5%;下面的粒子尺寸分布:所有粒子的90%的大小为<35.15μm;所有粒子的50%的大小为<9.76μm,所有粒子的10%的大小为<1.35μm。粒子尺寸分布的峰最大值位于5μm,第二个最大峰值在20μm。这种粉末的累积体积分布在图5和图6中作为良好使用性粉末的实施例被加以描述。这种材料不但在Nordson设备中,而且在ITW/Gema设备中都产生很好的结果。既没有观察到设备中有“喷出”(Spucken)现象,也没有必要时喷头空吹。形成的层“很漂亮”。相对于时间的焊剂涂层在图8中加以描述。另一种材料是粉末4,其具有喷涂因子Rm=82.85;H流化∶H0是1.10;粘附测试的损失为16.7%;粒子尺寸分布:所有粒子的90%具有直径为小于28.6μm;所有粒子的50%具有直径8.9μm,所有粒子的10%具有直径小于1.67μm;粒子尺寸分布在9.5及20μm处有峰,这种材料也具有优异的结果。图9描述了换热器上用粉末4的焊剂涂覆相对时间的均匀性。
可接受的结果还通过下面的氟铝酸钾粉末5得以实现:Rm=46.99;比例H流化∶H0=1.05,损失涂层:6.39%,粒子尺寸分布:所有粒子的90%<19.84μm;所有粒子的50%<7.7μm;所有粒子的10%<1.16μm,粒子尺寸分布的最大峰值在13处。

Claims (4)

1.可用于干法涂覆的基于碱金属氟铝酸盐的焊剂,其特征为,粒子的体积分布基本上位于图10中曲线1和2之内。
2.权利要求1的焊剂,其特征为,粒子的体积分布基本上在图11中曲线1和2之内。
3.权利要求1的焊剂,其特征为,其涉及基于氟铝酸钾的焊剂。
4.用于焊接铝或铝合金的方法,其中使用权利要求1至3的焊剂,其被干燥地,负荷静电地涂覆到待连接构件上,并在加热下焊接构件。
CNB008088489A 1999-10-25 2000-10-19 用于干法涂覆的焊剂及用于焊接铝或铝合金的方法 Expired - Fee Related CN1177671C (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE19951454.2 1999-10-25
DE19951454 1999-10-25
DE10049315.7 2000-10-05
DE10049315A DE10049315A1 (de) 1999-10-25 2000-10-05 Flußmittel für die Trockenapplikation

Publications (2)

Publication Number Publication Date
CN1355736A true CN1355736A (zh) 2002-06-26
CN1177671C CN1177671C (zh) 2004-12-01

Family

ID=26007274

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB008088489A Expired - Fee Related CN1177671C (zh) 1999-10-25 2000-10-19 用于干法涂覆的焊剂及用于焊接铝或铝合金的方法

Country Status (19)

Country Link
US (2) US6733598B2 (zh)
EP (1) EP1230065B1 (zh)
JP (1) JP4493894B2 (zh)
CN (1) CN1177671C (zh)
AT (1) ATE249309T1 (zh)
AU (1) AU774909B2 (zh)
BR (1) BR0014988A (zh)
CA (1) CA2389088C (zh)
CZ (1) CZ301554B6 (zh)
DK (1) DK1230065T3 (zh)
ES (1) ES2200958T3 (zh)
HK (1) HK1046253B (zh)
MX (1) MXPA01012238A (zh)
PL (1) PL195724B1 (zh)
PT (1) PT1230065E (zh)
RO (1) RO121807B1 (zh)
RU (1) RU2250813C2 (zh)
SI (1) SI20860A (zh)
WO (1) WO2001030531A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102821908A (zh) * 2010-03-11 2012-12-12 苏威氟有限公司 精细微粒焊剂
CN109332069A (zh) * 2018-11-10 2019-02-15 江苏韦斯泰科技有限公司 一种钎剂静电喷涂系统

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7110469B2 (en) * 2002-03-08 2006-09-19 Broadcom Corporation Self-calibrating direct conversion transmitter
US6830632B1 (en) 2002-07-24 2004-12-14 Lucas Milhaupt, Inc. Flux cored preforms for brazing
JP4845360B2 (ja) * 2003-09-29 2011-12-28 三菱マテリアル株式会社 アルミニウム系材料のろう付け用フラックス粉末及び該フラックス粉末の塗工方法
BRPI0618466A2 (pt) * 2005-11-10 2011-08-30 Wolverine Tube Inc composição de fluxo, material de solda forte com camada de comprimento contìnuo de elastÈmero contendo um fluxo, bem como métodos para a fabricação do material de solda forte e para soldagem à solda forte
US8274014B2 (en) * 2006-05-25 2012-09-25 Bellman-Melcor Development, Llc Filler metal with flux for brazing and soldering and method of making and using same
EP2038085B1 (en) * 2006-05-25 2019-09-11 Bellman-melcor Development, Llc Wire with flux for brazing and soldering and method of making the same
EP2091686B1 (en) * 2006-12-11 2016-06-15 Lucas-Milhaupt, Inc. Low and non-silver filler metals and alloys and corresponding joinder systems and methods
CA2688325A1 (en) * 2007-05-25 2008-12-04 Lucas Milhaupt, Inc. Brazing material
JP5485539B2 (ja) * 2007-12-18 2014-05-07 昭和電工株式会社 熱交換器用部材の製造方法および熱交換器用部材
EP2135705A1 (en) * 2008-06-20 2009-12-23 Solvay Fluor GmbH Fluidizable potassium fluorozincate
CN102223980B (zh) * 2008-11-25 2014-04-30 苏威氟有限公司 防腐蚀焊剂
US9157134B2 (en) 2009-10-26 2015-10-13 Lucas-Milhaupt, Inc. Low silver, low nickel brazing material
MX342770B (es) 2010-02-10 2016-10-11 Solvay Fluor Gmbh Fundente que forma un residuo de soldadura insoluble.
DE202010017865U1 (de) 2010-02-10 2013-01-16 Solvay Fluor Gmbh Flussmittel zur Bildung eines nichtlöslichen Lötrückstandes
US11504814B2 (en) 2011-04-25 2022-11-22 Holtec International Air cooled condenser and related methods
CN105026087A (zh) 2012-12-03 2015-11-04 霍尔泰克国际股份有限公司 钎焊组合物及其用途
EP2808114A3 (en) 2013-05-30 2015-09-02 Lucas-Milhaupt, Inc. Process for flux coating braze preforms and discrete parts
DE102014201014A1 (de) * 2014-01-21 2015-07-23 MAHLE Behr GmbH & Co. KG Verfahren zum Aufbringen eines Flussmittels
US9731383B2 (en) 2014-07-09 2017-08-15 Bellman-Melcor Development, Llc Filler metal with flux for brazing and soldering and method of using same
US10744601B2 (en) 2015-08-07 2020-08-18 Bellman-Melcor Development, Llc Bonded brazing ring system and method for adhering a brazing ring to a tube
JP6437419B2 (ja) * 2015-11-11 2018-12-12 日鐵住金溶接工業株式会社 炭酸ガスシールドアーク溶接用フラックス入りワイヤ
JP2017094360A (ja) 2015-11-25 2017-06-01 日鐵住金溶接工業株式会社 Ar−CO2混合ガスシールドアーク溶接用フラックス入りワイヤ
WO2020126090A1 (en) 2018-12-20 2020-06-25 Solvay Sa Brazing flux, brazing flux composition and process for manufacturing

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH642910A5 (fr) * 1980-12-18 1984-05-15 Castolin Sa Procede d'assemblage d'un fond composite d'ustensile culinaire en acier inoxydable.
JPS61162295A (ja) * 1985-01-11 1986-07-22 Toyota Central Res & Dev Lab Inc ろう付け用フラツクス
JPS61232092A (ja) * 1985-04-09 1986-10-16 Toyota Central Res & Dev Lab Inc ろう付け用フラツクス
CS259255B1 (en) * 1986-05-26 1988-10-14 Pavel Guldan Non-corrosive flux for aluminium fusion welding
US4989775A (en) * 1987-12-15 1991-02-05 Showa Aluminum Kabushiki Kaisha Method for brazing aluminum components
HU217858B (hu) * 1995-01-24 2000-04-28 Solvay Fluor Und Derivate Gmbh. Eljárás forrasztópor és folyósítóanyag forrasztáshoz, valamint eljárás a forrasztópor előállítására
DE19537216A1 (de) * 1995-10-06 1997-04-10 Solvay Fluor & Derivate Flußmittelbeschichtete Metallbauteile
DE19636897A1 (de) * 1996-09-11 1998-03-12 Solvay Fluor & Derivate Lotfreies Aluminiumlöten
US6203628B1 (en) * 1998-08-20 2001-03-20 Toyo Aluminium Kabushiki Kaisha Flux compositions for brazing aluminum, their films and brazing method
DE19845758A1 (de) * 1998-10-05 2000-04-13 Riedel De Haen Gmbh Verfahren zur Herstellung komplexer Fluoroaluminate
DE19859735B4 (de) * 1998-12-23 2006-04-27 Erbslöh Ag Verfahren zur partiellen oder vollständigen Beschichtung der Oberflächen von Bauteilen aus Aluminium und seinen Legierungen mit Lot, Fluß- und Bindemittel zur Hartverlötung
JP4964367B2 (ja) * 1999-04-22 2012-06-27 アレリス、アルミナム、コブレンツ、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング ろう付け用の複合シート状材料料

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102821908A (zh) * 2010-03-11 2012-12-12 苏威氟有限公司 精细微粒焊剂
CN109332069A (zh) * 2018-11-10 2019-02-15 江苏韦斯泰科技有限公司 一种钎剂静电喷涂系统

Also Published As

Publication number Publication date
CZ301554B6 (cs) 2010-04-14
JP2003512179A (ja) 2003-04-02
PL195724B1 (pl) 2007-10-31
PL354781A1 (en) 2004-02-23
MXPA01012238A (es) 2002-07-02
US20040164130A1 (en) 2004-08-26
HK1046253A1 (en) 2003-01-03
US20030071110A1 (en) 2003-04-17
ES2200958T3 (es) 2004-03-16
EP1230065A1 (de) 2002-08-14
CZ2002681A3 (cs) 2002-08-14
DK1230065T3 (da) 2004-01-12
PT1230065E (pt) 2004-02-27
AU1141001A (en) 2001-05-08
CN1177671C (zh) 2004-12-01
ATE249309T1 (de) 2003-09-15
HK1046253B (zh) 2005-06-03
BR0014988A (pt) 2002-06-18
RU2250813C2 (ru) 2005-04-27
CA2389088A1 (en) 2001-05-03
SI20860A (sl) 2002-10-31
EP1230065B1 (de) 2003-09-10
JP4493894B2 (ja) 2010-06-30
WO2001030531A1 (de) 2001-05-03
US7401724B2 (en) 2008-07-22
US6733598B2 (en) 2004-05-11
AU774909B2 (en) 2004-07-15
CA2389088C (en) 2010-01-12
RO121807B1 (ro) 2008-05-30

Similar Documents

Publication Publication Date Title
CN1355736A (zh) 用于干法涂覆的焊剂
US4269868A (en) Application of metallic coatings to metallic substrates
GB2239875A (en) Laser plasma coating
US20150298258A1 (en) Powder nozzle for a laser powder welding device
US6129946A (en) Powder coating apparatus and method for supplying and mixing powder in a coating apparatus
US20110097161A1 (en) Fluidizable potassium fluorozincate
CN106512872A (zh) 一种具有自分散功能的长期流化型气溶胶发生装置
JP5241463B2 (ja) 乾式適用のためのフラックス
KR100726924B1 (ko) 납땜면에 플럭스를 직접 인가하기 위한 방법
EP0016252A1 (en) A method of manufacturing a neutron absorbing article and neutron absorbing articles
DE10216294B4 (de) Verfahren zum Beschichten von Festkörpern im Niedrigtemperaturbereich
Swidersky et al. Comparison of flux characteristics and flux transfer systems in electrostatic NOCOLOK® flux application for aluminum brazing
JPS63201595A (ja) カ粒材料を被覆する方法
Gong et al. Erosion of a cohesive granular material by an impinging turbulent jet
Keshav et al. Laser cladding for 3D deposition and Free-form repair
JPH10125750A (ja) 標準粒子分散液および校正用ウェーハ
JPH1015439A (ja) 粉体塗装装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20041201

Termination date: 20151019

EXPY Termination of patent right or utility model