CN1317818C - 用于无刷dc马达的马达驱动器 - Google Patents

用于无刷dc马达的马达驱动器 Download PDF

Info

Publication number
CN1317818C
CN1317818C CNB018215009A CN01821500A CN1317818C CN 1317818 C CN1317818 C CN 1317818C CN B018215009 A CNB018215009 A CN B018215009A CN 01821500 A CN01821500 A CN 01821500A CN 1317818 C CN1317818 C CN 1317818C
Authority
CN
China
Prior art keywords
phase
coil
signal
voltage
motor driver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB018215009A
Other languages
English (en)
Other versions
CN1489823A (zh
Inventor
八十原正浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Publication of CN1489823A publication Critical patent/CN1489823A/zh
Application granted granted Critical
Publication of CN1317818C publication Critical patent/CN1317818C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/10Arrangements for controlling torque ripple, e.g. providing reduced torque ripple
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/08Arrangements for controlling the speed or torque of a single motor
    • H02P6/085Arrangements for controlling the speed or torque of a single motor in a bridge configuration

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Control Of Stepping Motors (AREA)

Abstract

马达驱动器包括简单结构的驱动波形发生器。因为发生器产生具有相对较少的分割级和分割电压电平的波形。与由发生器产生的阶梯状电压波形相对应的各相驱动信号供给供电器,因此,形成正弦波且顺序变化的交流电经过各相线圈。而且,相位提前控制使得各相电流和在各相中产生的反电动势之间的相位一致。因此,马达能够以更低扭矩波动、振动和噪音来高效驱动。

Description

用于无刷DC马达的马达驱动器
技术领域
本发明涉及一种适于驱动无刷DC马达的马达驱动器,该无刷DC马达安装在例如空调、热水器、空气净化器以及如复印机、印刷机等的信息装置中。更特别的是,本发明涉及一种高效马达驱动器,通过该马达驱动器,交流电的变化可顺序进行,从而减小马达起动时的扭矩波动、振动和噪音。该交流电优选是正弦波电流。
背景技术
DC无刷马达已经广泛用作安装在例如空调以及如复印机、印刷机等的信息装置中的驱动马达,因为它具有例如使用寿命长、可靠性高以及容易进行速度控制等优点。
图21表示了普通马达驱动器的电路图。图22表示了当矩形波形的电压施加到该驱动器的马达驱动线圈上时驱动器的各部分的波形与马达的旋转角度(电角度)的关系。
如图21所示,在无刷DC马达(下文简称为马达)的驱动器中,转子位置由包括霍耳效应装置的多个位置检测器901、903和905来检测。三相分配器890接收位置信号Hu、Hv和Hw,并向脉冲宽度调制(PWM)比较器840输出三相分配信号U0、V0和W0。这时,信号U0、V0和W0形成彼此相差120度电角度的单级(one-step)信号,如图22所示。比较器840输出信号,该信号通过门驱动器830控制构成供电器820的六个开关顺序转到ON或OFF。因此,三相线圈811、813和815的供电根据转子位置顺序转换,从而使马达旋转。
在相U的一个线圈端和零点N之间供给的电压形成矩形波形信号,如图2中U-N所示。与它类似的矩形波信号施加给相V和相W。三相线圈中的电流变化导致根据矩形波形信号产生急剧的ON-OFF开关转换。从而导致线圈振动,并产生机械噪音和电噪音。
在日本专利No.2658085中公开了一种降低上述噪音和电噪音的马达驱动器。该马达驱动器利用由检测主驱动磁场的检测元件发出的检测输出以及由频率比检测元件的输出更高的脉冲形成的地址信号,从而读出储存在存储器中的驱动波形,以便驱动马达。该结构省略了频率发生器(FG)和待简化的检测元件(PG)。FG有恒定的转子每转一圈的脉冲数以及根据转子的rpm变化的频率,而PG检测布置在转子的外壁上的给定位置处的永磁体产生的磁通。
不过,上述普通马达驱动器需要有:储存预定的驱动波形的存储器;以及数-模(D/A)转换器,该数-模转换器在将数字信号转变成模拟信号之前读出驱动波形(数字信号),用于驱动马达。因此,普通马达驱动器需要复杂的电路。
而且,在上述普通马达驱动器中,相对于转子旋转位置的驱动波形,即施加在各相的线圈上的电压波形通过储存在上述存储器中的数字信号数据而唯一确定。因此,当驱动器驱动具有相当大电感的马达时,例如定子铁芯由线圈缠绕,当驱动波形施加给各相时,各相的电流相对于施加给相应相的电压将有较大的相位延迟。因此,马达的效率降低。
发明内容
本发明解决了上述问题,本发明的目的是提供一种结构简单且高效的马达驱动器,该马达驱动器能够减小马达的扭矩波动、振动和噪音。
本发明的马达驱动器包括以下元件:
(a)三相的驱动线圈;
(b)供电器(power feeder),该供电器与DC电源相连,用于向各相线圈供电;
(c)位置检测器,用于检测可动子(mover)相对于各相的位置;
(d)位置信号插值器,用于将位置信号的一周电角度分成3n×4段(“n”是等于或大于“1”的整数),其中,位置信号由位置检测器的输出产生;以及
(e)驱动波形发生器,用于接收由插值器产生的分割地址信号,产生用于三相的阶梯波形,其中,该阶梯波形有与地址信号的各个地址相对应的预设电压电平(不超过3n+1级),且该驱动波形发生器还用于输出电压的阶梯波形。
供电器获得与三相的阶梯波形相对应的、用于各相的驱动信号,从而通过各个相线圈顺序变化的交流电来驱动马达。
本发明的马达驱动器可以装备有三个位置信号插值器、分别用于三相的三个驱动波形发生器,换句话说,该马达驱动器包括以下元件:
一种马达驱动器,包括以下元件:
(a)用于三相的驱动线圈;
(b)供电器,该供电器与DC电源相连,用于向各相线圈供电;
(c)位置检测器,用于检测原动机相对于各相的位置;位置信号插值器,该位置信号插值器被布置用于各相,用于将位置检测器的输出产生的各个相的位置信号的一周电角度分成3n×4段(“n”是等于或大于“1”的整数);以及
驱动波形发生器,该驱动波形发生器被布置用于各相,用于接收来自各插值器的分割地址信号,产生用于三相中的每一个的阶梯波形,其中,该阶梯波形有与地址信号的各个地址相对应的预设电压电平(不超过3n+1级),且该驱动波形发生器还用于输出电压的阶梯波形。
供电器获得与阶梯波形的各级相对应的、用于各相的驱动信号,从而通过各个相线圈顺序变化的交流电来驱动马达。
该结构使马达驱动器不仅能够降低马达起动时的扭矩波动、振动和噪音,而且能以高效方式驱动马达。
附图说明
图1是根据本发明第一实施例的马达驱动器的电路图。
图2A表示了从起动到低速驱动时当矩形波形的电压施加到各相时,马达驱动器中的各部分的波形与旋转角度(电角度)的关系。
图2B表示了正常旋转时在马达驱动器中的各部分的信号波形与马达的旋转角度的关系。
图3表示了施加在各相上的电压怎样进行脉冲宽度变化(PWM)。
图4是根据本发明第二实施例的马达驱动器的电路图。
图5是根据本发明的第一和第二实施例的马达驱动器的主要部分的电路图。
图6详细表示了图5中所示的驱动波形发生器的模拟开关。
图7表示了在根据本发明的第一和第二实施例的马达驱动器中产生驱动波形的操作。
图8表示了在根据本发明的第一和第二实施例的马达驱动器中产生驱动波形的操作。
图9表示了在施加于马达驱动器的各相线圈端头和线圈零点之间的电压波形中,基波的角度和相对于基波的电压电平之间的关系。在阶梯波形中形成九级(3n,当n=3时)。
图10表示了当施加给各相的电压形成矩形波形时基波的角度和相对于基波的电压电平之间的关系。
图11表示了在施加于马达驱动器的各相线圈端头和线圈零点之间的电压波形中,基波的角度和相对于基波的电压电平之间的关系。在阶梯波形中形成十级(3n+1,当n=3时)。
图12表示了在施加于马达驱动器的各相线圈端头和线圈零点之间的电压波形中,基波的角度和相对于基波的电压电平之间的关系。在阶梯波形中形成七级(3n+1,当n=2时)。
图13表示了在施加于马达驱动器的各相线圈端头和线圈零点之间的电压波形中,基波的角度和相对于基波的电压电平之间的关系。在阶梯波形中形成六级(3n,当n=2时)。
图14表示了在马达驱动器中怎样调节相电流的相。
图15表示了在马达驱动器中怎样调节相电流的相。
图16表示了马达驱动器中相位提前控制器的电路图。
图17表示了在马达驱动器中怎样控制相位提前。
图18表示了在马达驱动器的各相中的交流电零交叉时间的检测。
图19表示了在马达驱动器的各相中的交流电零交叉时间的检测。
图20表示了采用本发明的马达驱动器作为风扇马达的空调的室内装置。
图21表示了普通马达驱动器的电路图。
图22表示了当矩形波形施加到图21所示的普通马达驱动器中的各相线圈时马达各部分的信号波形与旋转角度(电角度)的关系。
具体实施方式
下面将参考附图介绍本发明的实施例。
第一实施例
图1是根据本发明第一实施例的马达驱动器的电路图。图2A表示了从起动到低速驱动时当矩形波形的电压施加到各相时,马达驱动器中的各部分的波形与旋转角度(电角度)的关系。图2B表示了正常旋转时马达驱动器中的各部分的信号波形与马达的旋转角度的关系。图3表示了施加在各相上的电压怎样进行脉冲宽度变化(PWM)。
在图1中,包括相U、V和W的三相的驱动线圈11、13和15以如下方式与供电器20相连。供电器20包括上部臂和底部臂。该上部臂包括场效应晶体管(FET)21、23和25,而底部臂包括晶体管22、24和26。相U线圈11的第一端子与晶体管21和22的连接点相连,相V线圈13的第一端子与晶体管23和24的连接点相连。相W线圈15的第一端子与晶体管25和26的连接点相连。相U线圈11、相V线圈13以及相W线圈15的各个第二端子彼此连接,从而形成零点N。
供电器20连接在直流电源10的正供电端子和负供电端子之间,从而通过供电器20向三相线圈供电。在电源10的负供电端子和供电器20之间的供给线路上布置有共用电流(common-current)检测电阻器27,用于检测流过供给线路的共用电流“Icom”。
位置检测器101、103和105由霍耳元件或霍耳IC构成,并检测可动子相对于各相11、13和15的位置。(图中没有表示可动子。“可动子”是上位术语,旋转马达有转子,而线性马达有动子。下文中,可动子称为转子。)
检测器101、103和105分别输出位置检测信号Hu、Hv和Hw,信号Hu供给位置信号插值器80。插值器80将相U的位置检测信号的一周电角度分成3n×4段(“n”是等于或大于1的整数),并输出分割的地址信号CSF。驱动波形发生器70接收信号CSF,并产生用于相U的阶梯波形,该阶梯波形有与信号CSF的各地址相对应的预定电压电平。
根据用于相U的阶梯波形,发生器70还产生用于相V的阶梯波形以及用于相W的阶梯波形。各阶梯波形的电角度有120度的相位差。发生器70输出电压阶梯波形U2、V2和W2-它们彼此的电角度有120度的相位差。当发生器70产生阶梯波形时,优选地,与信号CSF的各地址相对应的预定电压电平不应超过“3n+1”级。由发生器70提供的信号U2供给相U选择器51,信号V2供给相V选择器53,同样,信号W2供给相W选择器55。
另一方面,三相分配器90接收彼此有120度相位差的位置信号Hu、Hv和Hw,并输出三相分配信号U1、V1和W1,如图2A所示。3*FG电路100接收信号Hu、Hv和Hw,然后综合这些信号,并最终向低速检测电路57提供速度信号,该速度信号的频率为相应信号的频率的三倍。定时器59提供一个时间信号给低速检测电路57。电路57利用定时器59测量速度信号的周期,并指示选择器51、53和55选择从三相分配电路90中抽出的信号U1、V1和W1,直到该周期达到一个给定时间,因为马达速度仍然处于低速。当速度信号的周期小于给定时间时,低速检测电路57判断马达的速度为正常速度,并指示选择器51、53和55选择阶梯波形U2、V2和W2(发生器70的输出),如图2B所示。
脉冲宽度调制(PWM)比较器40包括比较器41、43和45。比较器41对选择器51的输出与由斩波发生器47供给的斩波信号CY进行电压比较;比较器43对选择器53的输出与信号CY进行电压比较;比较器45对选择器55的输出与信号CY进行电压比较。由斩波发生器47供给的斩波信号CY是关于PWM的载波信号,它的频率范围为从17kHz到20kHz,这比各选择器的输出信号的频率高得多。
门驱动器30包括缓冲器31、32、33、34、35和36。由比较器41供给的信号G1H供给缓冲器31,同时,该信号G1H在供给缓冲器32之前通过转换器37转换成信号G1L。由比较器43供给的信号G2H供给缓冲器33,同时,该信号G2H在供给缓冲器34之前通过转换器38转换成信号G2L。同样,由比较器45供给的信号G3H供给缓冲器35,同时,该信号G3H在供给缓冲器36之前通过转换器39转换成信号G3L。缓冲器31、32、33、34、35和36的相应输出供给晶体管21、22、23、24、25和26的相应门。
经过电阻器27的共用电流“Icom”通过横过电阻器27两端的端电压来检测,被检测的电压“Vicom”供给到相位提前控制器60。从控制器60中抽出的输出CPH反馈到插值器80。
下面将参考图2A、2B和3说明根据第一实施例的上述马达驱动器的操作。图2A表示了从起动马达到低速驱动马达时,马达驱动器中的各部分的波形与旋转角度(电角度)的关系。位置检测器101、103和105被布置成使位置信号HU、HV、HW产生彼此有120度相位差的信号。信号HU、HV、HW由三相分配器90综合,并形成单步信号U1、V1、W1,如图2A所示。与信号U1、V1、W1相对应的各相驱动信号供给供电器20。这时,三相线圈的零点处的电压为“N”,如图2A所示,而相U线圈的第一端子以及它的第二端子(即零点N)之间的电压画成为波形U-N,如图2A所示。同样,对于相V和相W,可以画成有120度(电角度)相位差的类似波形。
图2B表示了正常旋转时在马达驱动器中的各部分的信号波形与马达的旋转角度的关系。当图中所示的X轴的旋转角度表示为电角度时,信号HU、HV、HW将有与图2A所示类似的波形。信号HU供给插值器80,并经过驱动波形发生器70形成用于三相的阶梯状电压波形,例如信号U2、V2、W2,如图2B所示。如上所述,与信号U2、V2、W2相对应的各个相驱动信号供给供电器20。这时,在三相线圈的零点的电压画成曲线“N”,如图2B所示。施加在相U线圈11的第一端子和第二端子(即零点N)之间的电压画成曲线“U-N”,如图2B所示。在各相V和W,电压画成有120度相位差的类似曲线(未示出)。这样,形成正弦波的相应交流电通过三相线圈,从而驱动该线圈。
图3表示了施加在各相上的电压怎样进行脉冲宽度变化(PWM)。在图3中,PWM比较器对由斩波振荡器47产生的振荡波形CY与由驱动波形发生器70产生的各相的阶梯波形U2、V2、W2进行电压比较。PWM电压波形画成Vu、Vv、Vw,如图3所示,这些电压通过门驱动器30和供电器20而供给输出端子Vu、Vv、Vw,即三相线圈的相应第一端子。这样,三相线圈由彼此有120度相位差的正弦波电流Iu、Iv、Iw来驱动。因此,经过三相线圈的相应电流可以平稳切换,且不管旋转角度如何,合成的三相力矩相同。因此,可以获得能够产生较小扭矩波动、较小振动和较低噪音的马达驱动器。
前面已经说明了根据第一实施例的基本电路、操作和优点。下面将特别说明马达驱动器的各元件。
图5是根据本发明第一实施例的马达驱动器的主要部分的电路图。在图5中,位置信号插值器80包括以下元件,并以如下方式工作:
相位差检测器81接收由位置检测器101发出的位置信号“Hu”以及由时间脉冲发生器82发出的时间脉冲“Ptu”,并输出信号“PD”,该信号“PD”表示这两个信号的相位差。检测器81的输出信号“PD”通过电阻器91供给差分放大器86的反相输入端。包括电容器87、88和电阻89的差分和积分元件在放大器86的反相输入端和输出端之间连接。一个给定电压供给到放大器86的非反相输入端。放大器86将相位差信号PD转变成与相位差相对应的电压。电压控制振荡器85对应于根据相位差产生的电压而振动,并输出一个频率信号。振动频率通过分频器84进行分割。分割的信号被提供给采用36数计数系统的计数器83的时钟端子CLK。计数器83计数0、1、2,......,35,然后返回至0,并重复该操作。分成36级的分割地址信号CSF供给到驱动波形发生器70和时间脉冲发生器82。因此,波形发生器70将信号Hu的一周电角度分成3n×4段(“n”是等于或大于1的整数,在本实施例中,n=3,因此,一周分成36份)。脉冲发生器82产生具有给定脉冲宽度的时间脉冲“Ptu”,然后将该脉冲输出给相位差检测器81。
下面参考图6介绍驱动波形发生器70。解码器77接收来自插值器80的分割地址信号CSF,并向模拟开关71、73和75输出解码信号。各模拟开关与分压器相连,该分压器包括8个串联连接的电阻器。速度指示电压Vsp和0(零)电压施加在分压器的两个端子上。通过分压器设置从L0到L8的电压电平,这样,电压Vs p可以分成不超过3n+1级。在本实施例中,n=3,并且许多级数都应当不超过10,因此,电压电平分成例如9级。该结构使得波形发生器70能够判断与分割地址信号CSF的各个地址相对应的模拟开关71是ON还是OFF。然后,模拟开关71输出用于相U的阶梯状电压波形U2。同样,模拟开关73输出用于发生器70的相V的阶梯状波形V2,而模拟开关75输出用于发生器70的相W的阶梯状波形W2。
图7表示了怎样在图5和6所示的插值器80和波形发生器70中处理信号。X轴表示旋转角度(电角度),Y轴表示电压。在图7中,分割地址信号CSF表示从0到35的36个地址。覆盖7个地址的脉冲宽度与时间脉冲“Ptu”的电压“H”的宽度同步,这7个地址即在地址“0”的正向侧以及负向侧的三个地址,换句话说为图7中信号CSF的地址33、34、35、0、1、2和3。在插值器80的相位检测器81中,图7中所示的位置信号HU从电压“L”到电压“H”的升高边缘的相位与脉冲Ptu的相位进行比较。在插值器80中,形成相位锁定环(PLL),相位差由该PLL控制以便更小。
另一方面,相U的阶梯状电压波形U2由波形发生器70以如下方式产生:
U2相对于信号CSF的地址“0”形成,从而使得电压电平为“L0”。U2相对于信号CSF的地址“1”形成,从而使得电压电平为“L1”。
U2相对于信号CSF的地址“2”形成,从而使得电压电平为“L2”。
U2相对于信号CSF的地址“3”形成,从而使得电压电平为“L3”。
U2相对于信号CSF的地址“4”形成,从而使得电压电平为“L4”。
U2相对于信号CSF的地址“5”形成,从而使得电压电平为“L5”。
U2相对于信号CSF的地址“6”形成,从而使得电压电平为“L6”。
U2相对于信号CSF的地址“7”形成,从而使得电压电平为“L7”。
U2相对于信号CSF的地址“8”形成,从而使得电压电平为“L8”。
U2相对于信号CSF的地址“9”形成,从而使得电压电平为“L8”。
U2相对于信号CSF的地址“10”形成,从而使得电压电平为“L8”。
U2相对于信号CSF的地址“11”形成,从而使得电压电平为“L7”。
U2相对于信号CSF的地址“12”形成,从而使得电压电平为“L6”。
U2相对于信号CSF的地址“13”形成,从而使得电压电平为“L7”。
U2相对于信号CSF的地址“14”形成,从而使得电压电平为“L8”。
U2相对于信号CSF的地址“15”形成,从而使得电压电平为“L8”。
U2相对于信号CSF的地址“16”形成,从而使得电压电平为“L8”。
U2相对于信号CSF的地址“17”形成,从而使得电压电平为“L7”。
U2相对于信号CSF的地址“18”形成,从而使得电压电平为“L6”。
U2相对于信号CSF的地址“19”形成,从而使得电压电平为“L5”。
U2相对于信号CSF的地址“20”形成,从而使得电压电平为“L4”。
U2相对于信号CSF的地址“21”形成,从而使得电压电平为“L3”。
U2相对于信号CSF的地址“22”形成,从而使得电压电平为“L2”。
U2相对于信号CSF的地址“23”形成,从而使得电压电平为“L1”。
U2相对于信号CSF的地址“24”形成,从而使得电压电平为“L0”。
U2相对于信号CSF的地址“26”形成,从而使得电压电平为“L0”。
U2相对于信号CSF的地址“27”形成,从而使得电压电平为“L0”。
U2相对于信号CSF的地址“28”形成,从而使得电压电平为“L0”。
U2相对于信号CSF的地址“29”形成,从而使得电压电平为“L0”。
U2相对于信号CSF的地址“30”形成,从而使得电压电平为“L0”。
U2相对于信号CSF的地址“31”形成,从而使得电压电平为“L0”。
U2相对于信号CSF的地址“32”形成,从而使得电压电平为“L0”。
U2相对于信号CSF的地址“33”形成,从而使得电压电平为“L0”。
U2相对于信号CSF的地址“34”形成,从而使得电压电平为“L0”。
U2相对于信号CSF的地址“35”形成,从而使得电压电平为“L0”。
产生的上述电压波形U2的全部电压幅值可以通过从外部供给到发生器70的速度指示信号Vsp而变化。因此,马达驱动器可以根据需要添加速度控制功能。
因此,插值器80将信号HU和脉冲Ptu之间的相位差控制为较小。换句话说,位置信号HU和分割地址信号SCF被控制成彼此同步。该同步需要使波形U2的周期被控制成使电压波形U2的地址“0”的相位与信号HU从电压“L”转变成电压“H”时的升高边缘的相位一致。在相V和相W中也进行同样的一致性控制。更具体地说,阶梯波形V2的地址“0”的相位与信号HV的升高边缘的相位一致,而阶梯波形W2的地址“0”的相位与信号HW的升高边缘的相位一致。
分别产生与信号HU、HV、Hw同步的波形U2、V2、W2,如图2B所示,并且各相的驱动信号被供给到供电器20。这些驱动信号进行与相应波形相对应的PWM。因此,图2B中所示的正弦波电压“U-N”供给到相U线圈的第一端子和零点“N”之间(V-N、W-N也相同)。因此,正弦波电流可以经过各相的线圈。
图8表示了在位置信号HU和分割地址信号CSF被控制成彼此同步的情况下,在相U线圈中产生的反电动势(BEMF)和供给相U线圈的电压波形U-N之间的关系。
特别地,相U线圈的BEMF比信号HU延迟30度的电角度。位置检测器101相对于相U线圈位置的定位由定子的设计方式确定,且检测器101和线圈被布置成使它们之间的相位差为大致30度的电角度。用于相V线圈的位置检测器103以及用于相W的检测器105也同样地布置。各线圈的BEMF和位置信号之间的相位差可以同样方式确定。这样,施加在各相的相应第一端子和零点N之间的阶梯波形的相位与各相的BEMF波形的相位相同。
在被施加到各相的线圈的第一端子和零点之间的电压波形中,基波的角度和相对于基波的电压电平之间的关系根据几个示例来说明。图9表示了9级波形(3n,当n=3时)。图10表示了用于比较的单级波形,即矩形波形施加在线圈上。图11表示了10级波形(3n+1,当n=3时)。图12表示了7级波形(3n+1,当n=2时)。图13表示了6级波形(3n,当n=2时)。
在图9和图11至13所示的实例中,与图10所示的矩形波形相比,在较高角度的频率分量的电压电平基本上受抑制。因此,由在较高角度的频率分量的电压电平引起的刺耳噪音可以有利地降低。
当低通滤波器例如电容器与驱动波形发生器的模拟开关的相应输出连接时,驱动波形的畸变系数可以进一步降低。因此,可以进一步减小扭矩波动、振动和噪音。
上文介绍了位置信号插值器80和驱动波形发生器70的结构、操作和优点。
下面将说明施加在各相线圈上的电压波形的任意相移功能。该功能通过利用外部供给的相位差控制信号来调节图1和5中所示的插值器80而实现。在图5中,相位提前控制器60的输出CPH通过电阻器92供给到插值器80的差分放大器86的反相输入端,即相位检测器81的输出PD添加到相位提前控制器60的输出CPH上。
在该结构中,信号HU和相U的分割地址信号CSF之间的相位差根据供给插值器80的相位差控制信号CPH来进行控制,因此,可以调节信号HU和阶梯波形U2之间的相位差。
图14和15表示了在根据第一实施例的马达驱动器中怎样调节相电流的相位。图14表示了在没有相调节的情况下,相U线圈产生的BEMF、位置信号HU、施加在相U端子端和零点N之间的电压波形U-N以及经过相U的电流Iu之间的相位关系。通常,因为各线圈的电感分量,电流Iu的相位比波形U-N延迟。
图15表示了经过相调节后各部分的波形之间的相位关系。图5中所示的相位提前控制器60提供的相位差控制信号CPH被供给到插值器80中,因此,信号HU和信号CSF之间的相位差可以通过信号CPH来控制,尽管这两个信号(HU和CSF)的相位彼此同步。因此,相U的BEMF和阶梯波形U2之间的相位差可以任意调节。在图15中,信号CPH被调节,从而使信号CSF的相位相对于信号HU的升高边缘的相位提前,即阶梯波形U2的相位以及施加在相U的线圈端和零点N之间的电压U-N的相位提前。因此,相U电流提前,这样,相U的BEMF能够与相U的相电流“Iu”在相位上一致。从而,马达效率增加。在相U线圈中,如果BEMF的相位与相电流的相位一致时,当然在相V和W中也可以有相同的情况。
图16表示了相U的相位提前控制器的电路图。相位提前控制器60包括相电流零交叉检测器61和相电流相位延迟检测器63。
零交叉检测器61的结构如下:共用电流检测电压“VIcom”(经过电阻器27的电压转换,该电阻器插入在电源10和供电器20之间的供电线中,如图1所示)通过缓冲器162和模拟开关165供给到比较器167的第一输入端子。同时,“VIcom”通过缓冲器162和模拟开关163供给到比较器167的第二输入端子。采样和保持电容器166连接于地线和模拟开关165在比较器167侧的输出之间。采样和保持电容器164连接于地线和模拟开关163、在比较器167侧的输出之间。供给到图1中所示的门驱动器30的信号G1H至G3L通过时间检测器161供给到模拟开关165的控制端。
同样,信号G1H至G3L通过时间检测器160供给到模拟开关163的控制端。比较器167输出相电流零交叉信号Cz。该输出供给到相电流相位延迟检测器63的模拟开关169。
下面将介绍相电流相位延迟检测器63的结构。上述信号Cz作为相位差控制信号CPH通过模拟开关169从相位提前控制器60抽出,然后,信号CPH再供给插值器80。开关169的ON-OFF由定时器168的输出Pz来指示,该定时器由信号Hu以及布置在插值器80中的电压控制振荡器85供给的输出CK来控制。
下面将介绍上述结构的、用于相U的相位提前控制器60的操作。首先介绍相电流零交叉检测器61的操作。在信号G1H至G3L使供电器20的三相输出端子的电压(Vu、Vv、Vw)转变成两相为“H”和一相为“L”的情况下,模拟开关165转到ON,并在电容器166中保持瞬时电压VIcom。另一方面,在信号G1H至G3L使供电器20的三相输出端子的电压(Vu、Vv、Vw)转变成两相为“L”和一相为“H”的情况下,模拟开关163转到ON,并在电容器164中保持瞬时电压VIcom。在电容器166中保持的电压表示为“spl1”,在电容器164中保持的电压表示为“spl2”。当两个保持电压彼此一致时,即当比较器167的输出改变,例如从“H”转变成“L”时,相电流自身零交叉。这将参考图18详细介绍。
电平为“H”或“L”的信号G1H至G3L(开关163和165的控制信号)通过门驱动器30供给形成供电器20的晶体管21至26的相应门。因此,这些晶体管通过相应的门信号而转到ON或OFF。换句话说,供电器20的三相输出端子的电压(Vu、Vv、Vw)根据信号G1H至G3L的“H”或“L”电平而控制成ON或OFF。
假设在图1所示的供电器和三相线圈中Vu为“H”,Vv为“L”且Vw为“H”,那么晶体管(Tr)21为ON,Tr22为OFF,Tr23为OFF,Tr24为ON,Tr25为ON,而Tr26为OFF。这时,一个电流从电源10的正端子开始,并在返回电源10的负端子之前经过Tr21、相U线圈、零点、相V线圈、Tr24和电阻器27。另一电流从电源10的正端子开始,并在返回电源10的负端子之前经过Tr25、相W线圈、零点、相V线圈、Tr24和电阻器27。假设从供电器20的三相端子通向零点N的电流方向为正,相反方向为负。在此条件下,由于共用电流Icom(即电阻器27的端子电压),经过相V线圈的电流“-Iv”在电阻器27处表现为电压降。在图18中,当电压Vu为电平“H”、Vv为“L”且Vw为“H”时,Icom将等于“-Iv”。
下面假设Vu为“L”,Vv为“L”且Vw为“H”,那么Tr21为OFF,Tr22为ON,Tr23为OFF,Tr24为ON,Tr25为ON,而Tr26为OFF。这时,一个电流从电源10的正端子开始,并在返回电源10的负端子之前经过Tr25、相W线圈、零点、相U线圈、Tr22和电阻器27。另一电流从电源10的正端子开始,并在返回电源10的负端子之前经过Tr 25、相W线圈、零点、相V线圈、Tr24和电阻器27。在此条件下,由于共用电流Icom(即电阻器27的端子电压),经过相W的电流“Iw”在电阻器27处表现为电压降。在图18中,当电压Vu为电平“L”、Vv为“L”且Vw为“H”时,Icom将等于“Iw”。
这说明,当供电器20的三相输出端子的电压(Vu、Vv、Vw)中的两相为“H”且一相为“L”时,与为“L”的仅有相的线圈电流极性相反的电流成为共用电流Icom。例如,当只有Vv为“L”时,Icom=-Iv。
当两相为“L”且一相为“H”时,为“H”的仅有相的线圈电流成为Icom。
例如当只有Vw为“H”时,Icom=Iw。
在上述说明中,电流Iu、IV、Iw和Icom的方向以图1中箭头所示方向为正方向。
因此,在图16所示的相电流零交叉检测器61中,在控制信号G1H至G3L使电压Vu、Vv、Vw中的两个转变成为“H”并使剩下的一个为“L”的情况下,模拟开关165转到ON,并在电容器166上保持瞬时电压VIcom。检测到与为“L”的仅有相的电流极性相反的电流值,该值作为保持电压“spl1”被保持在电容器166上。例如,当只有相V为“L”时,V的反向电流-Iv将被检测到,并作为保持电压“spl1”而被保持。另一方面,在信号G1H至G3L使三个电压Vu、Vv、Vw中的两相转变成“L”并使剩下的一个为“H”的情况下,模拟开关163转到ON,并在电容器164上保持瞬时电压VIcom。检测到为“H”的仅有相的电流值,且该值作为保持电压“spl2”被保持在电容器164上。例如,当只有相W为“H”时,将检测到相W的电流Iw并作为保持电压“spl2”而被保持。
上述信号G1H至G3L是脉冲宽度调制(PWM)比较器40的输出信号,如图1所示,并在从17kHz到20kHz的高频下重复“L”和“H”电平。供电器20的三相输出端子的电压(Vu、Vv、Vw)与该运动相连,并重复“L”和“H”电平。
在这些操作中,如图18所示,开关165的ON状态和开关163的ON状态不会同时发生,而是在靠近的时间内发生。在开关165的ON状态下,三相(Vu、Vv、Vw)中的两相为“H”,剩下的一相为“L”。在开关163的ON状态下,三相(Vu、Vv、Vw)中的两相为“L”,剩下的一相为“H”。
在保持电压“spl1”和“spl2”中,检测并保持时间相不同但接近的电流值(例如-Iv和Iw)。这样,当可以检测两相的线圈电流(例如-Iv和Iw)时,剩下一相的线圈电流(例如Iu)能够很容易地得出,因为三相线圈电流的和为零(0)。
由电容器166保持的电压“spl1”与由电容器164保持的电压“spl2”一致时的时间对应于两相的线圈电流(例如-Iv和Iw)彼此一致且剩下的相电流(例如Iu)为零(0)时的时间。
换句话说,比较器167使保持电压“spl1”与“spl2”比较,所得到的输出可以作为一个计时(器)检测相U电流的零交叉时间,例如当“H”变成“L”时。相V电流和相W电流的零交叉时间也可以以相同方式检测。
图18的时间轴在图19中以减小比例表示。图19表示了怎样检测相电流的零交叉时间。保持电压“spl1”与“spl2”一致时的时间为相U的电流Iu零交叉的时间,作为零交叉检测器61的输出获得该时间,该时间即当信号Cz从“H”转变为“L”时的时间。
下面将介绍图16所示的相U电流的相位延迟检测器63的操作。定时器168接收信号Hu以及布置在插值器80的电压控制振荡器85的输出信号CK,并向模拟开关169输出具有给定脉冲宽度的控制信号Pz。如图17所示,定时器168产生控制信号Pz,该控制信号Pz为给定脉冲宽度中为“H”的信号,该脉冲宽度的中心位于相U的反电动势的零交叉时间点。定时器168利用信号Hu的升高边缘作为计时时间的起始点,并利用信号CK作为时钟信号而计时。只有当信号Pz为“H”时,模拟开关169才转到ON,这使得信号Cz作为信号CPH经过开关169。信号CPH的宽度等于当信号Pz为“H”时的宽度。换句话说,当“H”和“L”的占空率(duty ratio)为50%时,即当“H”的时间等于“L”的时间时,相电流的相位相对于反电动势的相位的延迟为零(0)。
在该第一实施例中,如图1所示,相位提前控制器60的输出(即相位差控制信号CPH)供给到插值器80。这使得由驱动波形发生器70供给的三相阶梯波形的输出电压相位提前,并允许相位提前控制器自动工作,以使在各个线圈产生的BEMF相位与可顺序地改变线圈的交流电(正弦波电流)的相位一致。该机构总是能够以高效率的方式驱动马达,即使马达的负载变化。
图1中所示的第一实施例表示了马达驱动器有一个插值器80,用于接收与相U相对应的位置信号Hu的插值器80的情况。马达驱动器可以有用于信号Hv和Hw的单独插值器。这样,驱动波形发生器在相应插值器的后面。各发生器接收与各相相对应的分割地址信号,并输出阶梯波形电压,该阶梯波形电压有与该分割地址信号的各地址相对应的预定电压电平。
在本实施例中,只在相U中检测零交叉,不过,也可以在两相或三相中检测零交叉,相的检测结果被综合,以便进行相位提前控制。
这时,输入位置信号插值器的位置信号不仅为相U,还可以综合其它相来使用。
而且,在实施例中,通过设置相位提前控制器60以使其对位置信号插值器80发生作用、从而自动地进行相位提前控制以总是高效率地驱动马达,而与负载或转速状态无关。但是,也可以不设置相位提前控制器,使来自外部的规定的信号对位置信号插值器80发生作用从而驱动马达。
在该情况下,虽然有时会因马达的状态(负载或转速状态)而在一定程度上使马达的驱动效率降低,但是通过位置信号插值器和驱动波形发生器的作用,使得各相线圈中流动的电流形成正弦波状,就不会损及减少马达的扭矩波动、振动和噪音的效果。
此外,在位置信号插值、生成驱动波形、控制角度提前等方面,可以通过微机或软件对信号进行处理。
第二实施例
图4是根据本发明第二实施例的马达驱动器的电路图。该第二实施例与第一实施例的区别点如下:在第一实施例中,由各个选择器供给的信号通过PWM比较器40、门驱动器30,并供给到形成供电器20的六个晶体管的门,从而使电流流过线圈。该信号经过脉冲宽度调制,并作为三相驱动信号供给门。
另一方面,在图4所示的第二实施例中,选择器151的输出信号作为驱动信号通过放大器131供给到双极晶体管121和122的相应基极。选择器153的输出信号作为驱动信号通过放大器133供给到双极晶体管123和124的相应基极。同样,选择器155的输出信号作为驱动信号通过放大器135供给到双极晶体管125和126的相应基极。其它的结构与图1所示的第一实施例系统相同。
在具有上述结构的马达驱动器中,由驱动波形发生器70产生的阶梯波形经过相应选择器,并通过相应放大器放大,然后通过六个晶体管进行功率放大。最后,顺序变化的交流电进入三相驱动线圈11、13、15。插值器80和发生器70的结构和操作与第一实施例相同,利用由相位提前控制器(未示出)提供的相位差控制信号CPH进行的相位提前控制也与第一实施例相同。因此也可以获得与第一实施例相同的优点。
第三实施例
图20表示了采用风扇马达的空调的室外装置,该风扇马达使用了本发明的马达驱动器。在图20中,室外装置201通过垂直布置在底板202上的隔板204而分隔成压缩机室206和换热室209。压缩机205布置在室206内,换热器207以及吹风机风扇马达208布置在室209内。装有电设备的盒210布置在隔板204上。
风扇马达208由安装在无刷DC马达的旋转轴上的吹风机风扇构成。风扇马达208由装于盒210中的马达驱动器驱动。风扇马达208旋转,从而使吹风机风扇旋转,而该风使换热室209冷却。
根据第一或第二实施例的马达驱动器可用于第三实施例中。因此,顺序变化的交流电(优选是正弦波电流)经过马达驱动线圈,这样,能够减小驱动马达时的扭矩波动、振动和噪音,而且能够实现高效马达驱动。因此,空调的室外装置有利于实现更低噪音、更低振动和更高效率。
如上所述,当本发明的马达驱动器用于风扇马达中时,使用该风扇马达的装置能够降低它的噪音和振动,并能高效率地工作。有多个适于采用具有本发明的马达驱动器的风扇马达的装置示例。
对于空调机,本发明不仅可以用于室外装置,还可以用于室内装置,该室内装置将冷风或暖风吹入室内。采用具有本发明的马达驱动器的风扇马达的室内装置能够以非常安静和极低振动的方式工作。
本发明也可以用于空气净化器。使用具有本发明的马达驱动器的风扇马达的空气净化器能够以非常安静和极低振动的方式工作。该空气净化器特别能够在夜晚的卧室中有利地体现这些特征。
本发明还可以用于热水器,例如燃气热水器和烧油的热水器。采用具有本发明的马达驱动器的燃烧风扇马达的热水器能够以非常安静、极低振动和很高效率的方式工作。
本发明的马达驱动器并不需要有用于在产生阶梯状驱动波形时预先储存波形数据的ROM板。因此,采用了通过很少数目的串联连接的电阻器而简单构成的驱动波形发生器。因为发生器产生具有相对较少数目的分割级和分割电压电平的波形。对应于驱动波形发生器的各个相驱动信号被供给供电器,因此,形成正弦波且顺序变化的交流电经过各相线圈。而且,通过相位提前控制,在各个相线圈中产生的BEMF与相应相电流一致。当开始相位提前控制时,根据共用电流检测相电流零交叉。因此,并不需要分别对于各相单独检测各个相电流,从而能获得简单的结构。该结构不仅能够有利地使本发明的马达驱动器降低扭矩波动、振动和噪音,而且能保持马达的高效驱动。
当本发明的马达驱动器用于风扇马达时,使用该风扇马达的各种装置不仅能减小噪音和振动,而且能实现高效工作。
工业实用性
本发明的马达驱动器有简单结构的驱动波形发生器。因为该发生器产生具有相对较少数目的分割级和分割电压电平的波形。发生器产生阶梯状电压波形,与该阶梯状波形相对应的各个相驱动信号供给到供电器,因此,形成正弦波且顺序变化的交流电经过各相线圈。而且,通过相位提前控制,在各个相线圈中产生的BEMF与相应相电流一致。该结构的优点是不仅能够使本发明的马达驱动器降低扭矩波动、振动和噪音,而且能保持马达的高效驱动。该马达驱动器适用于驱动用于信息装置例如复印机和印刷机中的无刷DC马达,还适于驱动用于例如空调和热水器中的风扇马达。

Claims (19)

1.一种马达驱动器,包括三相的驱动线圈(11,13,15)和一个用以输出电压的驱动波形发生器(70),所述的马达驱动器其特征在于:
一供电器(20),所述供电器与一DC电源(10)相连,用于向所述各相线圈(11,13,15)供电;
位置检测器(101,103,105),用于检测所述马达的可动子相对于所述各相线圈(11,13,15)的位置;
位置信号插值器(80),所述位置信号插值器用于将位置信号(Hu,Hv,Hw)的一周电角度分成3n×4段,其中n是等于或大于1的整数,以及,位置信号(Hu,Hv,Hw)由所述位置检测器(101,103,105)提供,
其中所述的驱动波形发生器(70)用于接收来自所述位置信号插值器(80)的分割地址信号(CSF),产生阶梯波形,所述阶梯波形有与用于三相的分割地址信号(CSF)的各个地址相对应的预设电压电平,其中电平数不超过“3n+1”级,以及输出电压(U2,V2,W2)的阶梯波形,和
其中,与所述三相的阶梯波形相对应的、用于三相的各驱动信号施加到所述供电器(20),这样,顺序变化的交流电驱动各个相线圈(11,13,15)。
2.根据权利要求1所述的马达驱动器,其中:在所述驱动波形发生器中,电压电平通过分压器分成不超过“3n+1”级,所述分压器包括不超过“3n”个串联连接的电阻器。
3.根据权利要求1所述的马达驱动器,其中:位置信号和分割地址信号之间的相位差根据被供给到所述位置信号插值器的相位差控制信号来控制,这样,可以调节位置信号和阶梯波形之间的相位差。
4.根据权利要求3所述的马达驱动器,其中:在位置信号和阶梯波形之间的可调节相位差使得能够调节所述线圈的感应电压与根据所述阶梯波形供给到所述线圈的交流电电压之间的相位差,所述线圈的感应电压与位置信号有给定的相位关系。
5.根据权利要求3所述的马达驱动器,还包括一个相位提前控制器,用于向所述位置信号插值器输出相位差控制信号,其中,阶梯波形的电角度以相位差控制信号提前,这样,经过所述线圈的交流电被控制成使交流电的相位与至少一个所述线圈的感应电压的相位一致。
6.根据权利要求3所述的马达驱动器,还包括:相位提前控制器,用于向所述位置信号插值器输出相位差控制信号,其中,阶梯波形的电角度以相位差控制信号提前,这样,经过所述线圈的交流电被控制成使交流电的零交叉时间与至少一个所述线圈的感应电压的零交叉时间一致。
7.根据权利要求6所述的马达驱动器,其中:交流电的至少一相的零交叉时间由经过DC电源和所述供电器之间的线路的共用电流来检测。
8.根据权利要求1所述的马达驱动器,其特征在于:
分别给各相设置位置信号插值器(80)和驱动波形发生器(70)。
9.根据权利要求8所述的马达驱动器,其中:在所述驱动波形发生器中,电压电平通过分压器分成不超过“3n+1”级,所述分压器包括不超过“3n”个串联连接的电阻器。
10.根据权利要求8所述的马达驱动器,其中:对于各相,位置信号和分割地址信号之间的相位差根据被供给到所述位置信号插值器的相位差控制信号来控制,这样,可以调节位置信号和阶梯波形之间的相位差。
11.根据权利要求10所述的马达驱动器,其中:在各相的位置信号和各相的阶梯波形之间的可调节相位差使得能够调节所述各个相线圈的感应电压与根据各相的阶梯波形供给所述各相线圈的交流电电压之间的相位差,所述各个相线圈的感应电压与各相的位置信号有给定的相位关系。
12.根据权利要求10所述的马达驱动器,还包括:相位提前控制器,所述相位提前控制器被布置用于各相,用于向所述位置信号插值器输出相位差控制信号,其中,阶梯波形的电角度以相位差控制信号提前,这样,经过所述线圈的交流电被控制成使各相线圈的交流电的相位与所述各相线圈的感应电压的相位一致。
13.根据权利要求10所述的马达驱动器,还包括:相位提前控制器,所述相位提前控制器被布置用于各相,用于向所述位置信号插值器输出相位差控制信号,其中,阶梯波形的电角度以相位差控制信号提前,这样,经过所述线圈的交流电被控制成使经过所述各相线圈的交流电的零交叉时间与所述各相线圈的感应电压的零交叉时间一致。
14.根据权利要求13所述的马达驱动器,其中:交流电的各相的零交叉时间由经过DC电源和所述供电器之间的线路的共用电流来检测。
15.一种风扇马达,包括如权利要求1至14中任意一项所述的马达驱动器。
16.一种装置,有如权利要求15所述的风扇马达。
17.如权利要求16所述的装置是空调。
18.如权利要求16所述的装置是空气净化器。
19.如权利要求16所述的装置是热水器。
CNB018215009A 2000-12-27 2001-12-27 用于无刷dc马达的马达驱动器 Expired - Fee Related CN1317818C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP397678/2000 2000-12-27
JP2000397678A JP4288851B2 (ja) 2000-12-27 2000-12-27 モータ駆動装置
JP397678/00 2000-12-27

Publications (2)

Publication Number Publication Date
CN1489823A CN1489823A (zh) 2004-04-14
CN1317818C true CN1317818C (zh) 2007-05-23

Family

ID=18862777

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB018215009A Expired - Fee Related CN1317818C (zh) 2000-12-27 2001-12-27 用于无刷dc马达的马达驱动器

Country Status (6)

Country Link
US (1) US6512343B1 (zh)
EP (1) EP1350308B1 (zh)
JP (1) JP4288851B2 (zh)
CN (1) CN1317818C (zh)
DE (1) DE60137079D1 (zh)
WO (1) WO2002052713A2 (zh)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030210009A1 (en) * 2002-05-10 2003-11-13 Analog Devices, Inc. Pulse width modulated drive system for electronically commutated motors
JP3912190B2 (ja) * 2002-05-31 2007-05-09 松下電器産業株式会社 ブラシレスモータの駆動装置およびそれを用いたモータ
JP3888247B2 (ja) * 2002-07-15 2007-02-28 松下電器産業株式会社 モータ駆動装置
JP2004242432A (ja) * 2003-02-06 2004-08-26 Canon Inc Dcモータ駆動装置
JP3951975B2 (ja) * 2003-07-22 2007-08-01 株式会社日立製作所 交流電動機の制御装置,交流電動機の制御方法及びモジュール
DE10339028A1 (de) * 2003-08-25 2005-03-31 Siemens Ag Verfahren und Vorrichtung zum Steuern eines bürstenlosen Gleichstrommotors
US7279857B2 (en) * 2003-08-27 2007-10-09 Hewlett-Packard Development Company, L.P. System, method, and computer-readable medium for reduction of commutation-related acoustic noise in a fan system
DE10342562A1 (de) * 2003-09-15 2005-04-21 Siemens Ag Regelungseinrichtung bzw. Regelung einer elektrischen Maschine
DE10346711A1 (de) * 2003-10-08 2005-05-25 Minebea Co., Ltd. Verfahren zur Kommutierung eines bürstenlosen Gleichstrommotors
US7032400B2 (en) * 2004-03-29 2006-04-25 Hussmann Corporation Refrigeration unit having a linear compressor
JP4578142B2 (ja) * 2004-04-22 2010-11-10 日本電産シバウラ株式会社 ブラシレスdcモータの駆動装置
US7423396B2 (en) * 2004-06-11 2008-09-09 International Rectifier Corporation Hall sensor alignment for BLDC motor
JP4261523B2 (ja) * 2004-09-03 2009-04-30 パナソニック株式会社 モータ駆動装置および駆動方法
JP4789660B2 (ja) * 2006-03-15 2011-10-12 パナソニック株式会社 モータ駆動装置およびモータ駆動方法
WO2007125608A1 (en) * 2006-04-25 2007-11-08 Panasonic Corporation Motor driver and electric apparatus having the same
US7675257B2 (en) * 2007-03-09 2010-03-09 Regal Beloit Corporation Methods and systems for recording operating information of an electronically commutated motor
JP5091535B2 (ja) * 2007-04-26 2012-12-05 三洋電機株式会社 モータ制御装置
JP2010200599A (ja) 2009-01-30 2010-09-09 Rohm Co Ltd 回転数検出回路及びこれを備えるモータドライバ装置
DE102009028582A1 (de) * 2009-08-17 2011-02-24 Robert Bosch Gmbh Elektronisch kommutierter Elektromotor mit einer Rotorpositions-Prädiktion und einer Interpolation und Verfahren
CN102013862B (zh) * 2010-04-23 2013-06-05 峰岹科技(深圳)有限公司 永磁交流电动机的无传感器驱动方法
TWI424679B (zh) * 2011-04-08 2014-01-21 Ind Tech Res Inst 具能量回收之無感測元件馬達控制方法
US8901867B2 (en) 2011-04-28 2014-12-02 Regal Beloit America, Inc. Electrical machine, method of controlling an electrical machine, and system including an electrical machine
US8680799B2 (en) * 2011-05-16 2014-03-25 Texas Instruments Incorporated Method and apparatus for applying a commutation advance automatically in a brushless DC motor
US9559623B2 (en) 2013-08-30 2017-01-31 Regal Beloit America, Inc. Method of controlling an electrical machine
JP6652918B2 (ja) * 2014-06-30 2020-02-26 マイクロスペース株式会社 モータ駆動制御装置
WO2016002744A1 (ja) * 2014-06-30 2016-01-07 マイクロスペース株式会社 モータ制御装置、モータ駆動制御装置および信号生成方法
JP6426420B2 (ja) * 2014-09-29 2018-11-21 ルネサスエレクトロニクス株式会社 半導体装置及び電動機器
TWI524653B (zh) * 2014-12-26 2016-03-01 茂達電子股份有限公司 正反轉控制電路與風扇系統
JP7255349B2 (ja) * 2019-05-17 2023-04-11 Tdk株式会社 モータ装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0068756A1 (en) * 1981-06-25 1983-01-05 Cranfield Institute Of Technology Brushless DC motors
WO1993026075A1 (en) * 1992-06-11 1993-12-23 University Of Technology, Sydney An electric motor and method of manufacture
US5838128A (en) * 1996-08-01 1998-11-17 Sgs-Thomson Microelectronics S.R.I. Reconstruction of BEMF signals for synchronizing the driving of brushless- sensorless motors by means of predefined driving signals
EP0954090A2 (en) * 1998-04-27 1999-11-03 Texas Instruments Incorporated Method and apparatus for driving a polyphase, brushless DC motor
US6023417A (en) * 1998-02-20 2000-02-08 Allen-Bradley Company, Llc Generalized discontinuous pulse width modulator
US6163118A (en) * 1998-11-20 2000-12-19 Texas Instruments Incorporated Method and apparatus for controlling a motor in a mass storage device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4881012A (zh) * 1972-02-03 1973-10-30
JP2658085B2 (ja) 1987-11-10 1997-09-30 ソニー株式会社 無刷子直流モータ
JPH0471386A (ja) * 1990-07-09 1992-03-05 Yamamoto Denki Kk 同期電動機の製御装置
JP3624458B2 (ja) * 1995-04-10 2005-03-02 多摩川精機株式会社 ディジタル角度検出方法
US6211633B1 (en) * 1996-07-10 2001-04-03 Hamilton Sundstrand Corporation Synchronous sampling circuit for a sensorless switching reluctance machine system
US6084376A (en) * 1998-06-09 2000-07-04 Aspen Motion Technologies, Inc. Low cost resolver system
JP3368837B2 (ja) * 1998-08-05 2003-01-20 トヨタ自動車株式会社 レゾルバ信号処理装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0068756A1 (en) * 1981-06-25 1983-01-05 Cranfield Institute Of Technology Brushless DC motors
WO1993026075A1 (en) * 1992-06-11 1993-12-23 University Of Technology, Sydney An electric motor and method of manufacture
US5838128A (en) * 1996-08-01 1998-11-17 Sgs-Thomson Microelectronics S.R.I. Reconstruction of BEMF signals for synchronizing the driving of brushless- sensorless motors by means of predefined driving signals
US6023417A (en) * 1998-02-20 2000-02-08 Allen-Bradley Company, Llc Generalized discontinuous pulse width modulator
EP0954090A2 (en) * 1998-04-27 1999-11-03 Texas Instruments Incorporated Method and apparatus for driving a polyphase, brushless DC motor
US6163118A (en) * 1998-11-20 2000-12-19 Texas Instruments Incorporated Method and apparatus for controlling a motor in a mass storage device

Also Published As

Publication number Publication date
US6512343B1 (en) 2003-01-28
CN1489823A (zh) 2004-04-14
WO2002052713A2 (en) 2002-07-04
EP1350308A2 (en) 2003-10-08
JP4288851B2 (ja) 2009-07-01
WO2002052713A3 (en) 2002-12-27
JP2002199778A (ja) 2002-07-12
DE60137079D1 (de) 2009-01-29
EP1350308B1 (en) 2008-12-17

Similar Documents

Publication Publication Date Title
CN1317818C (zh) 用于无刷dc马达的马达驱动器
CN1293701C (zh) 同步电动机的失步检测装置及失步检测方法,电机的驱动装置
CN1064122C (zh) 用于控制空调机的电动机的控制方法和装置
CN1317819C (zh) 电动机驱动器
CN1276575C (zh) Pwm/pam控制型的电动机控制装置
CN1120337C (zh) 空调机的室外机用驱动控制装置
CN1200506C (zh) 同步马达的启动控制方法和控制装置及其应用
CN1182651C (zh) 直流无刷电动机驱动设备和使用该设备的空气调节器
CN1767361A (zh) 电动机驱动设备和电动机驱动方法
CN1426163A (zh) 电动机驱动装置和使用该电动机驱动装置的冷冻装置
CN1819438A (zh) 逆变器装置
CN1754303A (zh) 无刷直流电动机的驱动方法及其装置
CN1930400A (zh) 磁轴承装置和塔载有该磁轴承装置的涡轮分子泵
CN1128090A (zh) 无电刷直流电动机驱动控制方法及其装置以及电气机器
CN1799192A (zh) 用于多方式电机的脉冲宽度调制控制电路和装备有这种控制电路的多方式电机
CN1848615A (zh) 三相dc无刷电动机和绕线方法
CN1505256A (zh) 马达驱动电路
CN1469541A (zh) 电机驱动方法及电机驱动装置
CN1306232C (zh) 燃气热泵式空调装置
CN1393989A (zh) 电机驱动装置及电机驱动方法
CN1792028A (zh) 控制一台用于热机式机动车辆的多相可逆旋转电机的方法
CN1736020A (zh) 马达驱动设备、由同一设备驱动的马达、以及使用同一马达的装置
CN1949636A (zh) 电动机
CN100456605C (zh) 电机驱动装置及包括该装置的设备
CN1065689C (zh) 无刷直流电机逆变器驱动电路

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070523

Termination date: 20191227

CF01 Termination of patent right due to non-payment of annual fee