CN1316045C - 钢水的精炼方法及精炼装置 - Google Patents
钢水的精炼方法及精炼装置 Download PDFInfo
- Publication number
- CN1316045C CN1316045C CNB008014752A CN00801475A CN1316045C CN 1316045 C CN1316045 C CN 1316045C CN B008014752 A CNB008014752 A CN B008014752A CN 00801475 A CN00801475 A CN 00801475A CN 1316045 C CN1316045 C CN 1316045C
- Authority
- CN
- China
- Prior art keywords
- molten steel
- steel
- refining
- soaking tub
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C7/00—Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
- C21C7/04—Removing impurities by adding a treating agent
- C21C7/064—Dephosphorising; Desulfurising
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C7/00—Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
- C21C7/0075—Treating in a ladle furnace, e.g. up-/reheating of molten steel within the ladle
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C7/00—Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
- C21C7/04—Removing impurities by adding a treating agent
- C21C7/068—Decarburising
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C7/00—Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
- C21C7/10—Handling in a vacuum
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Treatment Of Steel In Its Molten State (AREA)
Abstract
一种钢水精炼方法,其中将具有喷枪的筒状浸渍管下端的开口部分,浸渍在容纳于盛钢桶内的钢水中,将所说的筒状浸渍管内压力调整到规定范围内使钢水上吸,同时自盛钢桶底部朝上吸的钢水表面喷吹搅拌用气体,于减压下进行脱碳精炼,其特征在于调整筒状浸渍管内的压力Pt(乇),使之满足下式(1)和(2),同时通过所说的喷枪向钢水表面喷吹氧气,于减压下进行脱碳精炼。Pt>760-1.297×107/Dc2…(1)K=1.71×Dl0.211×Dc0.438×Wm-1.124×Qg0.519×Pt-0.410>0.046…(2)式中,K:与脱碳反应有关的容量系数K(升/分钟);Dl:盛钢桶内径(厘米);Dc:与筒状浸渍管圆相当的直径(厘米);Wm:平均一次处理的钢水质量(吨);Qg:搅拌用气体的吹入量(Nm3/小时)。
Description
技术领域
本发明涉及低成本高效精炼钢水的方法,具体讲本发明涉及低成本下钢水高效脱碳、脱硫或脱磷的方法以及实施该方法用精炼装置。
背景技术
最近,随着钢材使用环境的严格化,对钢材特性的要求逐年提高。此外从钢材被社会广泛利用来看,还要求钢材价格低廉。因此,为制造有所需特性的钢材,要求钢精炼过程中能将磷、硫、碳或氢之类的多数杂质元素降低到最低限度,同时低价炼钢也很重要。这种情况下,阐明精炼反应的物理化学原理和原则,进而开发出符合该原理的高效精炼方法和精炼装置就显得很重要了。
过去炼钢时,杂质是在尽可能容易除去的状况下被除去的,人们为此专注于和广泛采用数个工序精炼的分步精炼法。例如曾经广泛采用的工艺方法,是将仅在转炉中进行的脱磷处理和脱碳处理,分割成铁水阶段脱磷处理和转炉中脱碳处理的铁水处理法。
在转炉中进行脱碳处理时,向钢水吹氧将碳氧化而除去(氧化精炼),所以钢水中吸收氧是不可避免的。
特别在制造碳浓度小于0.1%低碳钢的场合下,钢水中氧浓度增高,例如碳浓度达到0.04%停炉时,钢水中会含有0.05%左右氧。钢水中碳浓度和氧浓度之间大致具有反比关系,所以停炉时如果碳浓度低,则碳浓度降低的过程中氧浓度升高。
尤其是汽车外用钢板,大量使用加工性能极好、碳含量极低的炭素钢,制造这种碳含量极低的炭素钢时,必须使碳浓度降低到30ppm以下的水平,因此转炉脱碳后进行二次精炼时,利用减压精炼进行脱碳处理。
在连铸法普及的现在,为防止铸造时生成的CO产生气孔和跑钢现象,必须向钢水中添加以Al为代表的脱氧剂,使钢水中吸收的氧最终以氧化物形式上浮分离,但是钢材中一旦混入脱氧剂,就会成为裂纹和电镀缺陷产生的原因,因而不是理想的。
此外,低碳钢往往用作加工严格的冲压材料,此情况下钢材中残存的脱氧剂容易作为夹杂物性缺陷出现。因此,开发出一种能够制造低氧浓度低碳钢的工艺方法就很重要。
在此观点下,一种使钢水中氧与钢水中碳以CO气体形式除去的碳脱氧法广为人知。于是这种场合下,为使脱碳反应有效进行,通常可以采用带有大型真空排气装置的真空脱气设备(例如,RH真空脱气设备)。
例如,作为连铸用Al镇静钢钢水的制造方法,在特开昭53-16314号公报上记载了一种脱氧前进行脱气的方法,即使用真空脱气设备进行真空脱气,使转炉停炉时碳浓度达到0.05%以上。此法根据脱碳状况将真空槽内压力控制在10~300乇范围内。此外,特开平6-116626号公报上记载了一种溅疤少的脱碳方法,即将单一直筒状浸渍管,浸渍在转炉精炼后碳浓度达到0.1~1.0%的处于盛钢桶内的钢水中,在100乇以上压力下,使惰性气体与氧混合,用这种方法进行脱碳。
然而,特开昭53-16314和特开平6-116626号公报上记载的方法,均使用所谓大型减压精炼装置进行操作。特开昭53-16314号公报记载的方法中,需要减压到10乇左右,所以必须用蒸气喷射器等大型真空脱气设备,而特开平6-116626号公报上记载的方法中,需要在氧气中混合惰性气体脱碳,若使用廉价氮气,由于氮气的吸收对时效特性产生不利影响,所以不得不使用昂贵的氩气。
另一方面,目前广泛采用真空脱气装置,对碳含量极低的低炭素钢进行脱碳处理和脱氢处理。而制造低炭素钢用装置,是原来用于1乇以下高真空下脱气使用的。因此,像RH真空脱气装置(以下有时称为“RH精炼装置”)之类高真空精炼装置,真空槽的高度和直径都非常大,而且应排气的体积也很大,所以耐火材料单耗及排气所需喷射器用蒸气等利用成本增高,结果使精炼成本上升。
此外,为了使低炭素钢进行碳脱氧,设置这种大型减压精炼装置设备费高,不经济。而且高减压精炼装置,虽然可以用于例如碳浓度小于30ppm极低炭素钢的制造,但是这种场合下与制造碳浓度0.04%左右的极低炭素钢时相比,处理碳浓度高得多的钢水时,附着在真空槽内部含有高浓度碳的粗金属锭将再溶解,变成极低炭素钢精炼时的一种碳污染源。其结果导致脱碳处理时间延长,或者产生不能脱碳的问题。在RH精炼装置中,虽然可以采用设置LPG燃烧器等作为熔解除去这种金属的对策,但是如果采用这种对策,需要增大相应的多余设备费用和处理成本等。
就钢水脱硫处理而言,一般可以将钢水脱硫分为在铁水阶段铁水脱硫和在钢水阶段钢水脱硫。因此,随着近年来对钢材使用环境的逐渐严格化,对钢提出的高纯化要求也逐年增加,其结果仅靠铁水脱硫不能满足需要,钢水脱硫也成为必须的一个工艺步骤。尤其是需要开发出一种能够制造硫浓度小于10ppm的极低硫钢材的有效脱硫方法以及实施该方法所需脱硫装置。
为适应这种要求,例如特开昭58-37112号公报上公开的方法,是将设置有粉末吹入喷枪的浸渍管(RH精炼装置中的上升管)浸渍在盛钢桶内钢水中,并向此浸渍管同时喷射载气和脱硫剂。
此方法虽然可以使钢水中硫浓度降低到10ppm以下,但是像RH精炼装置那样的真空脱气装置中,设有保持1乇左右高真空度所需的巨大排气装置,使用这种真空脱气装置处理时,蒸气及电力等运行成本加大。而且真空脱气槽本身,还不得不设置一种与处理中溅疤具有相应高度的巨大真空脱气槽,因而使耐火材料成本也增高。
另一方面,在LF等盛钢桶精炼容器中进行脱硫时,与RH方式脱硫处理一样,虽然可以使钢水中硫浓度降低到10ppm以下,但是却存在因运行成本上升和处理时间延长而导致生产率降低的问题。
此外,有人提出将设有粉末喷枪的浸渍管浸渍在盛钢桶内钢水中,通入载气和同时喷吹脱硫剂而脱硫的方法。与RH方式的脱硫处理相比,此方法的运行成本虽低,但是浮在钢水表面上没有脱硫能力的炉渣,在搅拌下能促进二次增硫,因此很难稳定地熔制出硫浓度小于10ppm的含硫极低的钢材。
其次就钢水脱磷处理而言,钢水脱磷的传统方法,例如特开昭62-205221号公报中记载的脱气和脱磷方法。该方法的特征在于,通过设置在真空脱气槽下部的粉末喷吹风口,向含有100~800ppm游离氧的钢水喷吹粉末脱磷剂。但是此方法的缺点是,就真空脱气设备的特性而言,脱磷反应与脱碳反应同时产生,但脱碳反应优先进行,结果使脱磷反应速度降低。
针对这样的课题,特开平2-122013号公报记载了一种脱气和脱磷方法。该方法的特征在于,脱气和脱磷处理时,按照钢水中碳浓度水平控制脱气槽内真空度。这种方法就RH真空脱气设备特性而言,可以对钢水进行处理的真空度控制范围一般小于150乇,在此水平真空度下,该方法中的脱碳反应依然优先进行。因此与上述特开昭62-205221号公报中记载的方法相比,此方法的脱磷反应虽好,但是却不能获得足够的脱磷反应速度,而且在上述程度的真空度下处理低炭素钢时,碳浓度与制品规格中规定的相比过低,所以脱磷处理后必须追加投入碳质合金,从而使合金成本提高以及处理时间延长等。此外,该方法根据钢水中碳浓度水平控制真空度,盛钢桶内钢水表面的摇动大,妨碍操作。
特开昭62-205221和特开平2-122013号公报中记载的方法,是使用RH真空脱气设备那样的巨大真空脱气槽的处理方法,有蒸气和电力等运行成本增高的问题;而且必须使用一种具有与处理中激烈的溅疤相应的充分高度的真空脱气槽,因而使设备所需耐火材料的成本也增高。
发明的公开
本发明为了解决上述已有脱碳处理中存在的问题,目的在于提供一种能够有效和廉价熔制低炭素钢的精炼方法和精炼装置,其要点如下(1)~(3)中所述。
(1)一种钢水精炼方法,其中将具有喷枪的筒状浸渍管下端的开口部分,浸渍在容纳在盛钢桶内的钢水中,将所说的筒状浸渍管内压力调整到规定范围内使钢水上吸,同时自盛钢桶底部朝上吸的钢水表面喷吹搅拌用气体,于减压下进行脱碳精炼,其特征在于:
将筒状浸渍管内的压力Pt(乇)调整得满足下式(1)和(2),同时通过上述喷枪向钢水表面喷吹氧气,于减压下进行脱碳精炼。
Pt>760-1.297×107/Dc2 …(1)
K=1.71×Dl0.211×Dc0.438×Wm-1.124×Qg0.519×Pt-0.410>0.046 …(2)
式中,K:与脱碳反应有关的容量系数K(升/分钟)
Dl:盛钢桶内径(厘米)
Dc:与筒状浸渍管圆相当的直径(厘米)
Wm:平均一次处理的钢水质量(吨)
Qg:搅拌用气体的喷吹量(Nm3/小时)。
(2)按照权利要求1所述的钢水精炼方法,其特征在于其中将碳浓度比最终目标碳浓度0.02~0.06质量%高0.03~0.06质量%的钢水,注入盛钢桶内,于减压下进行脱碳精炼。
(3)一种钢水精炼装置,其中所说的装置在容纳钢水的盛钢桶上方,自由升降地设置下端开口部分浸渍在所说的钢水中的筒状浸渍管,使钢水上吸到所说的筒状浸渍管内部,于减压下进行钢水脱碳精炼的精炼装置,其特征在于
在筒状浸渍管的上部,设置向钢水表面喷吹氧气的喷枪,同时
在筒状浸渍管的上部或侧部,设置能够将筒状浸渍管内压力Pt(乇)调整得满足下式(1)和(2)的压力调整手段,以及
在盛钢桶的底部一定位置处,设置搅拌用的气体的喷吹手段,使所说的气体能够通过筒状浸渍管内的钢水表面。
Pt>760-1.297×107/Dc2 …(1)
K=1.71×Dl0.211×Dc0.438×Wm-1.124×Qg0.519×Pt0.410>0.046 …(2)
式中,K:与脱碳反应有关的容量系数K(升/分钟)
Dl:盛钢桶内径(厘米)
Dc:与筒状浸渍管圆相当的直径(厘米)
Wm:平均一次处理的钢水质量(吨)
Qg:搅拌用气体的喷吹量(Nm3/小时)。
此外,本发明为了解决上述已有脱硫处理中的问题,目的在于提供一种能够高效廉价地进行钢水脱硫的钢水精炼方法,其要点,如下(4)中所述。
(4)一种钢水精炼方法,其中将具有喷枪的筒状浸渍管的下端开口部分,浸渍在盛钢桶内容纳的钢水中,将所说的筒状浸渍管内压力调整到规定范围内使钢水上吸,同时自盛钢桶底部朝上吸的钢水表面喷吹搅拌用气体,减压下进行脱硫精炼,其特征在于,
将筒状浸渍管内的压力调整到100~500乇,而且
将搅拌用气体的喷吹量调整到0.6~3.0Nl/分钟·吨,同时
通过所说的喷枪向钢水表面同时喷吹载气和脱硫用粉末,在减压下进行脱硫精炼。
此外,本发明为了解决上述的已有脱磷处理中的问题,目的在于提供一种能够有效而廉价地进行钢水脱磷的低碳钢水精炼方法,其要点如下(5)中所述。
(5)一种钢水精炼方法,其中将具有喷枪的筒状浸渍管的下端开口部分,浸渍在盛钢桶内容纳的钢水中,将所说的筒状浸渍管内压力调整到规定范围内使钢水上吸,同时自盛钢桶底部朝上吸的钢水表面喷吹搅拌用气体,于减压下进行脱磷精炼,其特征在于,
将筒状浸渍管内的压力调整到300~500乇,而且
将搅拌用气体喷吹量调整到0.6~3.0Nl/分钟·吨,
再将钢水中游离氧调整到300ppm以上,同时
通过所说的喷枪向钢水表面同时喷吹载气和脱磷用粉末,在减压下进行脱磷精炼。
而且本发明目的还在于提供一种实施本发明脱硫处理或脱磷处理用精炼装置,其要点如下(6)中所述。
(6)一种钢水精炼装置,其中所说的装置是在容纳钢水的盛钢桶上方,自由升降地设置下端开口部分浸渍在所说的钢水中的筒状浸渍管,使钢水上吸到所说的筒状浸渍管内部,于减压下进行脱硫精炼或脱磷精炼的钢水精炼装置,其特征在于:
设置高度3500~7500毫米、直径与盛钢桶直径比为0.25~0.5的筒状浸渍管,
在筒状浸渍管的上部,设置向钢水表面同时喷吹载气和脱硫用粉末或脱磷用粉末的喷枪,同时
在筒状浸渍管的上部或侧部,设置将筒状浸渍管内压力调整到100~500乇的压力调整手段,以及
在盛钢桶底部一定位置处设置搅拌用气体啧吹手段,使所说的气体能够通过筒状浸渍管内的钢水表面。
附图的简要说明
附图1是表示实施本发明方法用装置实例的示意图。
附图2是表示当与筒状浸渍管圆相当的内径为80厘米时,筒状浸渍管内的压力Pt与搅拌用气体喷吹量Qg之间关系的图解。
附图3是表示当与筒状浸渍管圆相当的内径为150厘米时,筒状浸渍管内的压力Pt与搅拌用气体喷吹量Qg之间关系的图解。
附图4是表示当与筒状浸渍管圆相当的内径为200厘米时,筒状浸渍管内的压力Pt与搅拌用气体喷吹量Qg之间关系的图解。
附图5表示筒状浸渍管内的压力Pt与钢水上吸量Wc之间关系的图解。
实施发明的最佳方式
(1)参照附图说明涉及脱碳处理的本发明精炼方法以及精炼装置的优选实施方式。
附图1是表示减压下精炼钢水的精炼装置示意图。图中,1是容纳在盛钢桶2内的钢水,3是在盛钢桶上方设置的自由升降的筒状浸渍管,使其下端开口部分浸渍在盛钢桶2内钢水1中,4是设置在盛钢桶2底部的喷吹钢水搅拌用气体的风口,5是真空度调整装置,用作将筒状浸渍管3内压力调整到规定值的压力调整手段,6是向筒状浸渍管3内钢水1的表面喷吹气体用,或者喷吹含有所需粉末的气体用,或者粉末喷吹用喷枪。在附图1所示的精炼装置中,进行脱碳处理的场合下,自下端浸渍在盛钢桶2内钢水1中的筒状浸渍管3的上方,通过气体喷吹用喷枪6,自脱碳用气体供给源7喷吹脱碳用气体,另一方面自盛钢桶2底部,由搅拌用气体供给源8喷吹钢水搅拌用气体,以此方式进行钢水1的脱碳精炼。
本发明人等在试验室试验和工厂试验中,在改变钢水量、筒状浸渍管内径、筒状浸渍管内压力、气体喷吹量和盛钢桶内径的条件下,同时通过设置在筒状浸渍管内的气体喷吹用喷枪6,自脱碳用气体供给源7喷吹适量氧,同时底吹自搅拌用气体供给源8供给的钢水搅拌用底吹气体,一边搅拌钢水,一边进行脱碳,进行了各种试验,获得了附图2、附图3、附图4所示的结果。也就是说,附图2~4表示,在钢水量约300吨的场合下,由碳浓度0.1质量%、氧浓度0.033质量%的初始条件进行脱碳处理,10分钟内(不降低生产率程度的时间)能够达到最终目标碳浓度为0.04%的指标。
由这些结果得到了表示下式(3)定义的脱碳反应速度的容量系数K(升/分钟),与处理钢水量Wm、盛钢桶内径D1(厘米)、与筒状浸渍管圆相当的内径Dc(厘米)、搅拌用气体喷吹量Qg(Nm3/小时)、筒状浸渍管内压力Pt(乇)之间关系的下述关系式(2)。
K=1.71×Dl0.211×Dc0.438×Wm-1.124×Qg0.519×Pt0.410>0.046 …(2)
式中,K:与脱碳反应有关的容量系数K(升/分钟)
Dl:盛钢桶内径(厘米)
Dc:与筒状浸渍管圆相当的直径(厘米)
Wm:平均一次处理的钢水质量(吨)
Qg:搅拌用气体的喷吹量(Nm3/小时)。
K=ln([%C]i/[%C]f)/t …(3)
式中,[%C]i:处理前碳浓度(%)
[%C]f:处理后碳浓度(%)
t:处理时间(分钟)。
为了使脱碳反应进行,氧与钢水的搅拌将成为必需的,简单的方法是利用设置在筒状浸渍管3内的喷吹气体用喷枪6,向筒状浸渍管3内的钢水表面喷吹氧,而且从反应上来看也是所希望的。其理由是,在筒状浸渍管3内钢水的表面上,吹入气体的气泡急剧膨胀之处,是被搅拌最为强烈的区域,向此处供给氧时可以获得高的脱碳效率。
但是,过量氧的供给由于会导致钢水中氧浓度上升,所以应当在不会上升的范围内适当确定最佳值。而且,虽然底吹气体量越多越好,但是过多喷吹气体时将导致喷嘴和多孔砖溶损,所以应当根据处理的钢水量、筒状浸渍管直径、盛钢桶直径和设定的压力等适当确定。
更具体讲,选择以下数值是理想的。
(i)一次处理的钢水量:350吨以下。
这是因为一旦超过350吨,与反应界面相比钢水量过多,短时间内很难完成脱碳反应的缘故。而且,当钢水量过多时,需要长时间脱碳,钢水温度的降低量增大,招致转炉出钢温度上升,因而使需要修补耐火材料等的费用提高。
(ii)盛钢桶内径:按与其圆相当的直径计算大于300厘米。
盛钢桶直径减小,脱碳反应速度将会产生一些降低。这是因为由于盛钢桶内钢水的深度增大,吹入气体的气泡所受到的静压加大,使吹入气体与钢水之间的脱碳反应速度减小的缘故。为弥补这一点而增大搅拌气体用量时,不仅使气体消耗成本增加,而且还会导致喷吹气体用风口和多孔耐火材料溶损。此外,若不补救,则与上述(i)同样,使脱碳时间延长,导致转炉出钢温度上升,同样使修补耐火材料的费用提高。
(iii)筒状浸渍管内压力大于100乇,小于500乇。
降低筒状浸渍管内压力虽然对确保脱碳反应速度有利,但是溅疤飞散的高度增加,其结果像传统RH精炼装置那样7米以上的大型精炼装置就成为必需。另一方面,上述浸渍管内压力一旦超过500乇,脱碳所需的气体吹入量增加,不仅加大气体消耗成本,而且还导致喷吹气体用风口和多孔耐火材料的溶损。此外,不增加搅拌气体用量的场合下,则与上述(i)同样,脱碳时间延长,导致转炉出钢温度上升,同样使修补耐火材料的费用提高。
(iv)筒状浸渍管内径大于80厘米,小于200厘米。
筒状浸渍管内径小于80厘米时,反应界面面积减小,使脱碳反应速度降低。为弥补这一点一旦增加搅拌气体的吹入量,就会使溅疤飞溅的高度增大,产生吹入气体风口溶损问题。而且,不增加搅拌气体量的场合下,与前述(i)同样,脱碳时间延长,导致转炉出钢温度上升,同样使修补耐火材料的费用提高。
另一方面,上述浸渍管内径若超过200厘米,由于上吸到筒状浸渍管内的钢水量增加,因而使支持其所需的设备变大,增加设备费用。而且使用于浸渍管的耐火材料的用量加大,因而使修补费用更高。
按照上述(iii)和(iv)的条件,能够使筒状浸渍管内钢水上吸量减少,真空槽升降容易,设备简单,所以不需要使用象传统的RH真空脱气装置那样的高价盛钢桶升降装置。而且,由于将筒状浸渍管内压力设定在100~500乇,所以还能使溅疤飞溅高度抑制得较低;另外,筒状浸渍管内径为80~200厘米之间,比已有的减压精炼设备小,所以耐火材料单耗小,也容易修补。
此外,由于使用过去在盛钢桶上设置的一块多孔砖就能确保足够的气体吹入量,所以本发明的脱碳处理不需要增加新的气体吹入孔,也不必使用特别的多孔耐火材料和喷枪。
不仅如此,精炼最终目标碳浓度为0.02~0.06质量%的低碳钢的场合下,当转炉中碳浓度达到比目标碳浓度高0.03~0.06质量%左右时停炉,然后用本发明的精炼方法和精炼装置,在减压下进行脱碳从而能够有效地精炼,所以与以往直接在转炉中进行脱碳处理到目标碳浓度的方法相比,能够在低廉价格下得到氧浓度低的钢水。
(2)以下参照附图,说明关于脱硫处理的本发明精炼方法的优选实施方式及精炼装置。
精炼装置使用与附图1所示精炼装置的同型品。在附图1所示的精炼装置中,筒状浸渍管3,是用真空度调整装置5将其管内真空度调整到100~500乇的一种装置。以此方式将筒状浸渍管3内部的真空度设定在100~500乇,同时从风口4以0.6~3.0Nl/分钟·吨的吹入量吹入钢水搅拌用气体,使钢水1脱硫。本发明的这种脱硫处理,目的在于制造极低硫钢,而且基于以下两点重要发现:(1)应当强化粉末喷吹部分的搅拌,和(2)应当强化对盛钢桶内全体钢水的搅拌。也就是说,向钢水中喷吹脱硫剂时,脱硫剂在钢水中漂浮的过程中脱硫反应虽然进行,但是此时若强化粉末吹入部分的搅拌,即特别是在减压下搅拌,相对于仅由钢水搅拌用气体产生的搅拌作用而言,还附加有因减压下气体膨胀产生的搅拌作用,结果强化了搅拌作用,能进一步促进脱硫反应。这样一来,从粉末吹入部分排出局部脱硫的钢水,向此粉末吹入部分快速供给进一步钢水,这种方法能够避免脱硫反应速度受到钢水中硫向脱硫反应面移动支配的局面。
如上所述,本发明的精炼方法中,筒状浸渍管3内真空度被设定在100~500乇,钢水搅拌用气体的吹入量处于0.6~3.0Nl/分钟·吨,在此条件下进行钢水脱硫处理。之所以将筒状浸渍管3内的真空度设定在100~500乇,是因为若真空度超过500乇,则粉末吹入部分的搅拌将不充分,不能使钢水中硫浓度降低到≤10ppm的程度。另一方面,若真空度低于100乇,则脱硫处理过程中出现剧烈溅疤,为与其相应,使具有足够高度的巨大真空脱气槽成为必须,增大运行成本,因而不是理想的。
之所以将钢水搅拌用气体吹入量设定在0.6~3.0Nl/分钟·吨,是因为超过3.0Nl/分钟·吨时,若经由一般使用的多孔耐火材料吹入气体,则耐火材料的溶损非常严重,耐火材料不耐用;此外,当气体流速超过上限时,盛钢桶内钢水的摇动也加大,打乱钢水表面上的炉渣,因而不能使钢水中硫浓度降低到10ppm以下。另一方面,若上述气体的吹入量低于0.6Nl/分钟·吨的场合下,难以使钢水混合均匀,不能使钢水中硫浓度降低到10ppm以下。
此外,为了进行更加有效的脱硫处理,使用高度3500~7500毫米,其直径与盛钢桶直径比为0.25~0.5的筒状浸渍管3。这是因为,若筒状浸渍管3高度小于3500毫米、其直径与盛钢桶直径比小于0.25,则因处理过程中的溅疤附着在筒状浸渍管内壁上的钢水金属增加,导致钢水的利用率降低和操作不稳定。另一方面,一旦筒状浸渍管3高度大于7500毫米、其直径与盛钢桶直径比大于0.5,则设备全体就会与RH精炼装置等真空脱气装置大致具有同等大小,使运行成本增高,因而不是理想的。
(3)以下参照附图,说明属于脱磷处理的本发明的优选精炼方法及精炼装置。
精炼装置使用与附图1所示精炼装置的同型品。在附图1所示的精炼装置中,筒状浸渍管3,是用真空度调整装置5将其管内真空度调整到300~500乇的一种装置。以此方式将筒状浸渍管3内部的真空度设定在300~500乇,同时从风口4以0.6~3.0Nl/分钟·吨的速度吹入钢水搅拌用气体,钢水中游离氧为300ppm以上,使此钢水1脱磷。本发明的这种脱磷处理基于以下两点重要发现:(1)应当强化粉末的喷吹入部分的搅拌,和(2)应当强化盛钢桶内全体钢水的搅拌。也就是说,向钢水中喷吹脱磷剂时,脱磷剂在钢水中漂浮的过程中脱磷反应虽然进行,但是此时若强化粉末吹入部分的搅拌,即特别是减压下搅拌,相对于仅由钢水搅拌用气体产生的搅拌作用而言,还附加有因减压下气体膨胀产生的搅拌作用,结果强化了搅拌作用,能进一步促进脱磷反应。
如上所述,本发明的精炼方法中,筒状浸渍管3内真空度被设定在300~500乇,钢水搅拌用气体的吹入量处于0.6~3.0Nl/分钟·吨,以及钢水中的游离氧处于300ppm以上的条件下进行钢水脱磷处理。之所以将筒状浸渍管3内的真空度设定在300~500乇,是因为若真空度超过500乇,则粉末吹入部分的搅拌将变得不充分,脱磷反应将变得极慢。另一方面,若真空度低于300乇,则脱碳反应优先进行,脱磷反应速度降低,而且钢水中的碳浓度将比制品规格中规定的碳浓度低得多,脱磷处理后必须补加碳合金,此外由于脱磷处理过程中出现剧烈溅疤而必须使用与其相对应的具有足够高度的巨大真空脱气槽,因而增大运行成本的缘故。
之所以将钢水搅拌用气体吹入量设定在0.6~3.0Nl/分钟·吨,是因为超过3.0Nl/分钟·吨时,若经由一般使用的多孔耐火材料吹入气体,则耐火材料的溶损非常严重,耐火材料不耐用;此外,当气体流速超过上限时,盛钢桶内钢水的摇动也加大,影响操作的缘故。
另一方面,上述气体的吹入量低于0.6Nl/分钟·吨的场合下,难以使钢水全体混合,脱磷反应极慢。之所以将钢水中游离氧浓度定在300ppm以上,这是因为若所说的游离氧浓度低于300ppm,则游离氧不足,脱磷反应极慢的缘故。
此外,为了进行更有效的脱磷处理,使用高度3500~7500毫米,其直径与盛钢桶直径比为0.25~0.5的筒状浸渍管3。这是因为,若筒状浸渍管3高度小于3500毫米而且其直径与盛钢桶直径比小于0.25,则因处理过程中的溅疤附着在筒状浸渍管内壁上的钢水金属增加,导致钢水的利用率降低和操作不稳定。另一方面,一旦筒状浸渍管3高度大于7500毫米而且其直径与盛钢桶直径比大于0.5,设备全体就会变得与RH精炼装置等真空脱气装置具有大致同等大小,使运行成本增高,因而不是理想的。
实施例
实施例1
本实施例是涉及脱碳处理的实施例。
表1中实施例1的目的是制造最终碳浓度为0.04%的低碳钢,首先在转炉中碳浓度降低到0.07%时停炉,将得到的292吨钢水注入盛钢桶中后,用附图1所示的精炼装置进行9分钟脱碳处理。此时筒状浸渍管内径为165厘米,盛钢桶内径400厘米。而且筒状浸渍管管内的压力为300乇,底吹气体量为37Nm3/小时。此条件下进行脱碳处理后,添加铝进行脱氧,得到了最终碳浓度为0.04%的钢水。此时铝的利用率为93%,而转炉中锰矿石的利用率为65%。
表1中的实施例2,首先当转炉中碳浓度降低到0.08%时停炉,将得到的260吨钢水注入盛钢桶中后,在筒状浸渍管内径为86厘米,盛钢桶内径400厘米,筒状浸渍管的管内压力为200乇,气体吹入量为40Nm3/小时条件下,一边用顶吹喷枪喷吹氧气,一边进行12分钟脱碳处理,为得到最终碳浓度为0.04%的钢水,最后还要添加铝进行脱氧。此时铝的利用率为94%,而转炉中锰矿石的还原利用率为68%。
表1中的对照例1,是在盛钢桶内径250厘米,筒状浸渍管内径为70厘米,吹入气体量为50Nm3/小时条件下,对转炉中熔炼的碳浓度0.07%的290吨钢水进行脱碳精炼的实例。此时,未使用压力调整装置,在大气压下精炼20分钟后,当碳浓度降低到0.05%时停炉,相反,氧浓度上升。此后添加铝进行脱氧,铝的利用率为68%。
表1中的对照例2,是使用传统RH真空脱气装置场合下的实例。将转炉中碳浓度熔炼至0.08%钢水进行6分钟脱碳处理后碳浓度为0.04%。此时,与本发明的实施例相比,需要消耗更多的蒸气和电力。
表1中的对照例3,是使用传统转炉直接进行脱碳精炼至碳浓度达到0.04%时的实例。这种情况下,锰矿石和铝的利用率均低。
表1
转炉精炼后 | 二次精炼 | ||||||||||||||||
钢水组成(%) | 炉渣中FeO(%) | Mn利用率(%) | 脱炭后钢水组成(%) | Al利用率(%) | 电力量Kwh/l | 蒸汽kg/l | |||||||||||
C | Si | Mn | P | S | O | C | Si | Mn | P | S | O | ||||||
实施例1 | 0.07 | tr | 0.24 | 0.015 | 0.011 | 0.034 | 13.7 | 65 | 0.04 | tr | 0.24 | 0.015 | 0.011 | 0.034 | 93 | 0.11 | 0 |
实施例2 | 0.08 | tr | 0.25 | 0.014 | 0.012 | 0.032 | 12.5 | 68 | 0.04 | tr | 0.25 | 0.014 | 0.012 | 0.032 | 94 | 0.13 | 0 |
比较例1 | 0.07 | tr | 0.24 | 0.016 | 0.012 | 0.032 | 12.2 | 64 | 0.05 | tr | 0.18 | 0.016 | 0.012 | 0.042 | 68 | 0.10 | 0 |
比较例2 | 0.08 | tr | 0.26 | 0.015 | 0.013 | 0.031 | 11.8 | 65 | 0.04 | tr | 0.26 | 0.015 | 0.013 | 0.031 | 88 | 8.0 | 3.2 |
比较例3 | 0.04 | tr | 0.19 | 0.015 | 0.013 | 0.056 | 12.1 | 38 | 0.04 | tr | 0.19 | 0.015 | 0.013 | 0.056 | 62 | 0 | 0 |
实施例2
用图1所示的精炼装置作为脱硫反应容器,对硫浓度为26ppm的钢水1进行脱硫处理。浸渍在盛钢桶2内的筒状浸渍管3的内径为1.5米,高度为4.5米。利用真空度调整装置5,使此筒状浸渍管3内维持在200乇真空度下。另外以1.8Nl/分钟·吨的速率,从盛钢桶2底部的风口4喷吹搅拌钢水用的氩气,与搅拌钢水1同时,以5千克/吨速率自粉末吹入用喷枪6喷吹载气带入的脱硫粉末,进行脱硫处理。结果示于表2之中。经确认,钢水中硫浓度〔S〕由脱硫前的26ppm降低到脱硫后的5ppm,能够在高效和低运行成本下脱硫。
表2中同时记载了对照例试验,对照例1是使用传统RH真空脱气装置,以4.5千克/吨的速率喷吹脱硫粉末的试验。此场合下,钢水中硫浓度〔S〕虽然由脱硫前的28ppm降低到脱硫后的6ppm,但是运行成本极高。
表2中对照例2,虽然使用了本发明的脱硫反应容器,但是未使用真空度调整装置,于大气压(760乇)下,以3千克/吨的速率,自喷枪喷吹载气带入粉末。硫浓度〔S〕脱硫前为31ppm,而脱硫后仍然有26ppm,未能达到目标值〔S〕≤10ppm的要求。
表2
脱硫反应容器 | 真空度乇 | 脱硫前[S]ppm | 脱硫后[S]ppm | 脱硫剂用量kg/t | |
实施例 | 图1中的 | 200 | 26 | 5 | 5 |
对照例1 | Rll | 1 | 28 | 6 | 4.5 |
对照例2 | 图1中的 | 760 | 31 | 26 | 3 |
实施例3
使用附图1所示的精炼装置作为脱磷反应容器,脱磷处理了游离氧340ppm、磷浓度96ppm的钢水1。浸渍在盛钢桶2内的筒状浸渍管3的内径1.5米、高度4.5米。使用真空度调整装置5将此筒状浸渍管3内的真空度维持在350乇。另外,以1.8Nl/分钟·吨的速度,由盛钢桶2底部的风口喷吹钢水搅拌用氩气,在搅拌钢水1的同时,以4千克/吨速率自粉末吹入用喷枪6喷吹载气带入的脱磷粉末。结果示于表3之中。经确认,钢水中磷浓度〔P〕由脱磷前的96ppm降低到脱磷后的22ppm,能够在高效和低运行成本下脱磷。
表3中同时记载了对照例,对照例1是使用传统RH真空脱气装置,以4千克/吨的速率喷吹脱磷粉末的试验。此场合下,钢水中磷浓度〔P〕虽然由脱磷前的100ppm降低到脱磷后的25ppm,但是运行成本极高。
表3中的对照例2,是使用本发明的脱磷反应容器,在钢水中游离氧浓度为194ppm下,以4千克/吨的速率,自喷枪喷吹载气带入的脱磷粉末。此场合下,磷浓度〔P〕从脱磷前110ppm降至脱磷后95ppm,脱磷速度极慢。
此外,表3中的对照例3虽然使用了本发明的脱磷反应容器,但是未使用真空度调整装置,于大气压(760乇)下,以4千克/吨的速率,用喷枪喷吹载气带入脱磷粉末。此场合下,磷浓度〔P〕从脱磷前92ppm降低到脱磷后83ppm,脱磷反应速度极慢。
表3
脱磷反应容器 | 真空度乇 | 游离氧素ppm | 脱磷前[P]ppm | 脱磷后[P]ppm | 脱磷剂用量kg/l | |
实施例 | 图1中的 | 350 | 340 | 96 | 22 | 4 |
对照例1 | Rll | 80 | 400 | 100 | 25 | 4 |
对照例2 | 图1中的 | 350 | 190 | 110 | 95 | 4 |
对照例3 | 图1中的 | 760 | 450 | 92 | 83 | 4 |
产业上利用的可能性
按照本发明的钢水精炼方法和精炼装置,能使钢水,特别能使低碳钢钢水在低运行成本下高效脱碳、脱硫或脱磷。因此本发明提供一种在钢制造上有用的精炼方法和精炼装置。
Claims (2)
1.一种钢水精炼方法,其中将具有喷枪的筒状浸渍管下端的开口部分浸渍在容纳在内径按与其圆相当的直径为300厘米以上的盛钢桶内的钢水中,将所说的筒状浸渍管内压力调整到100~500乇的范围内使钢水上吸,同时自盛钢桶底部朝上吸的钢水表面喷吹搅拌用气体,于减压下进行脱碳精炼,其特征在于
调整内径为80~200厘米的筒状浸渍管内的压力Pt(乇),使之满足下式(1)和(2),同时
通过所说的喷枪向钢水表面喷吹氧气,于减压下进行脱碳精炼;
Pt>760-1.297×107/Dc2 ...(1)
K=1.71×Dl0.211×Dc0.438×Wm-1.124
×Qg0.519×Pt-0.410>0.046 ...(2)
式中,K:与脱碳反应有关的容量系数K(升/分钟)
Dl:盛钢桶内径(厘米)
Dc:与筒状浸渍管圆相当的直径(厘米)
Wm:平均一次处理的钢水质量(吨)
Qg:搅拌用气体的吹入量(Nm3/小时)。
2.按照权利要求1所述的钢水精炼方法,其特征在于将碳浓度比最终目标碳浓度0.02~0.06质量%高0.03~0.06质量%的钢水,装在盛钢桶内,于减压下进行脱碳精炼。
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP169706/99 | 1999-06-16 | ||
JP169706/1999 | 1999-06-16 | ||
JP16970699A JP3777065B2 (ja) | 1999-06-16 | 1999-06-16 | 低炭素溶鋼の減圧下粉体脱りん方法および減圧下粉体脱りん用反応容器 |
JP215205/99 | 1999-07-29 | ||
JP21520599A JP3742534B2 (ja) | 1999-02-18 | 1999-07-29 | 減圧精錬装置およびそれを用いた低炭素鋼の溶製方法 |
JP215205/1999 | 1999-07-29 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2004100819283A Division CN1298868C (zh) | 1999-06-16 | 2000-05-12 | 钢水的精炼方法及精炼装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1318108A CN1318108A (zh) | 2001-10-17 |
CN1316045C true CN1316045C (zh) | 2007-05-16 |
Family
ID=26492963
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2004100819283A Expired - Lifetime CN1298868C (zh) | 1999-06-16 | 2000-05-12 | 钢水的精炼方法及精炼装置 |
CNB008014752A Expired - Lifetime CN1316045C (zh) | 1999-06-16 | 2000-05-12 | 钢水的精炼方法及精炼装置 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2004100819283A Expired - Lifetime CN1298868C (zh) | 1999-06-16 | 2000-05-12 | 钢水的精炼方法及精炼装置 |
Country Status (8)
Country | Link |
---|---|
US (1) | US6432164B1 (zh) |
EP (3) | EP1772525A1 (zh) |
KR (1) | KR100422886B1 (zh) |
CN (2) | CN1298868C (zh) |
BR (1) | BR0006876A (zh) |
CA (1) | CA2340690C (zh) |
TW (1) | TW459051B (zh) |
WO (1) | WO2000077264A1 (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101188324B1 (ko) | 2010-11-05 | 2012-10-09 | 주식회사 포스코 | 진공탈가스 설비의 보수 방법 |
KR101598449B1 (ko) * | 2012-03-13 | 2016-02-29 | 안강 스틸 컴퍼니 리미티드 | 저원가 청정강의 생산방법 |
US8853121B1 (en) * | 2013-10-16 | 2014-10-07 | Clean Diesel Technology Inc. | Thermally stable compositions of OSM free of rare earth metals |
CN115505682B (zh) * | 2022-09-14 | 2023-07-25 | 马鞍山钢铁股份有限公司 | 一种缩短低碳铝镇静钢lf炉冶炼时间的方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04285111A (ja) * | 1991-03-12 | 1992-10-09 | Nippon Steel Corp | 極低炭素溶鋼の減圧脱炭方法 |
JPH08109411A (ja) * | 1994-10-11 | 1996-04-30 | Sumitomo Metal Ind Ltd | 溶鋼の真空脱硫精錬方法 |
JPH09287017A (ja) * | 1996-04-19 | 1997-11-04 | Nippon Steel Corp | 高純度鋼溶製方法 |
JPH1161237A (ja) * | 1997-08-26 | 1999-03-05 | Sumitomo Metal Ind Ltd | 極低炭素鋼の真空精錬による製造方法 |
CN1212022A (zh) * | 1996-11-20 | 1999-03-24 | 新日本制铁株式会社 | 钢水的真空脱碳精炼方法及装置 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62205221A (ja) * | 1986-03-04 | 1987-09-09 | Nippon Steel Corp | 溶鋼の脱ガス、脱燐方法 |
JPH01156416A (ja) * | 1987-12-11 | 1989-06-20 | Nippon Steel Corp | 脱炭特性の優れた高クロム鋼の減圧脱炭法 |
JPH0649896B2 (ja) * | 1988-10-31 | 1994-06-29 | 新日本製鐵株式会社 | 溶鋼の脱ガス・脱りん方法 |
CN2040910U (zh) * | 1988-11-29 | 1989-07-12 | 北京科技大学 | 一种单嘴真空精炼设备 |
JPH0598340A (ja) * | 1991-10-07 | 1993-04-20 | Nippon Steel Corp | 極低炭素鋼の溶製方法およびその装置 |
JP3168437B2 (ja) * | 1992-05-15 | 2001-05-21 | 新日本製鐵株式会社 | 真空精錬方法 |
KR100214927B1 (ko) * | 1995-08-01 | 1999-08-02 | 아사무라 타카싯 | 용강의 진공 정련 방법 |
JPH09157730A (ja) * | 1995-09-29 | 1997-06-17 | Nippon Steel Corp | 槽昇降方式の真空脱ガス設備 |
JP3526687B2 (ja) * | 1996-03-25 | 2004-05-17 | 新日本製鐵株式会社 | 低炭素鋼の精錬方法 |
JPH09287016A (ja) * | 1996-04-19 | 1997-11-04 | Nippon Steel Corp | ステンレス鋼溶製方法 |
JPH1150132A (ja) * | 1997-07-29 | 1999-02-23 | Harima Ceramic Co Ltd | 溶鋼処理用浸漬管 |
-
2000
- 2000-05-12 CN CNB2004100819283A patent/CN1298868C/zh not_active Expired - Lifetime
- 2000-05-12 EP EP06124566A patent/EP1772525A1/en not_active Withdrawn
- 2000-05-12 CA CA002340690A patent/CA2340690C/en not_active Expired - Lifetime
- 2000-05-12 EP EP06124570.0A patent/EP1757706B1/en not_active Expired - Lifetime
- 2000-05-12 CN CNB008014752A patent/CN1316045C/zh not_active Expired - Lifetime
- 2000-05-12 TW TW089109164A patent/TW459051B/zh not_active IP Right Cessation
- 2000-05-12 US US09/763,044 patent/US6432164B1/en not_active Expired - Lifetime
- 2000-05-12 WO PCT/JP2000/003075 patent/WO2000077264A1/ja not_active Application Discontinuation
- 2000-05-12 EP EP00925658A patent/EP1111073A4/en not_active Withdrawn
- 2000-05-12 BR BR0006876-4A patent/BR0006876A/pt not_active IP Right Cessation
- 2000-05-12 KR KR10-2001-7001971A patent/KR100422886B1/ko active IP Right Grant
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04285111A (ja) * | 1991-03-12 | 1992-10-09 | Nippon Steel Corp | 極低炭素溶鋼の減圧脱炭方法 |
JPH08109411A (ja) * | 1994-10-11 | 1996-04-30 | Sumitomo Metal Ind Ltd | 溶鋼の真空脱硫精錬方法 |
JPH09287017A (ja) * | 1996-04-19 | 1997-11-04 | Nippon Steel Corp | 高純度鋼溶製方法 |
CN1212022A (zh) * | 1996-11-20 | 1999-03-24 | 新日本制铁株式会社 | 钢水的真空脱碳精炼方法及装置 |
JPH1161237A (ja) * | 1997-08-26 | 1999-03-05 | Sumitomo Metal Ind Ltd | 極低炭素鋼の真空精錬による製造方法 |
Also Published As
Publication number | Publication date |
---|---|
EP1757706A3 (en) | 2007-04-04 |
KR100422886B1 (ko) | 2004-03-12 |
EP1772525A1 (en) | 2007-04-11 |
EP1111073A1 (en) | 2001-06-27 |
WO2000077264A1 (fr) | 2000-12-21 |
KR20010072682A (ko) | 2001-07-31 |
CA2340690A1 (en) | 2000-12-21 |
CN1318108A (zh) | 2001-10-17 |
US6432164B1 (en) | 2002-08-13 |
BR0006876A (pt) | 2001-08-07 |
CN1629324A (zh) | 2005-06-22 |
EP1111073A4 (en) | 2005-05-18 |
CN1298868C (zh) | 2007-02-07 |
TW459051B (en) | 2001-10-11 |
EP1757706A2 (en) | 2007-02-28 |
CA2340690C (en) | 2005-03-15 |
EP1757706B1 (en) | 2014-10-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20210143319A (ko) | 극저탄소 극저류강 제련 공정 | |
CN1316045C (zh) | 钢水的精炼方法及精炼装置 | |
CA2042773C (en) | Method of producing ultra-low-carbon steel | |
CN112813230B (zh) | 一种含钒铁水真空提钒的方法 | |
JPH05239534A (ja) | 無方向性電磁鋼板材の溶製方法 | |
JP2582316B2 (ja) | 真空精錬炉を用いた低炭素鋼の溶製法 | |
JP2006183103A (ja) | 低炭素アルミキルド鋼の溶製方法 | |
JP5338124B2 (ja) | 溶鉄の脱硫精錬方法 | |
JP7468567B2 (ja) | 溶鋼の脱窒処理方法 | |
JPH05311231A (ja) | 環流式真空脱ガス装置を用いた高純度鋼の精錬方法 | |
JPH08109410A (ja) | ステンレス鋼の仕上脱炭精錬方法 | |
JP5272480B2 (ja) | 溶鉄の脱硫精錬方法 | |
JP2897647B2 (ja) | 低水素極低硫鋼の溶製方法 | |
JP2915772B2 (ja) | 直胴型浸漬管を用いた真空精錬炉への酸素ガス上吹き方法 | |
TW202246528A (zh) | 鐵水的精煉方法 | |
JPH05156343A (ja) | 極低窒素鋼の溶製方法 | |
JPH05287356A (ja) | 取鍋精錬方法 | |
JP3093317B2 (ja) | 極低炭素鋼の溶製方法 | |
GB1569158A (en) | Methods of and apparatus for vacuum refining molten steel | |
JPH1150133A (ja) | ステンレス鋼の脱ガス精錬方法 | |
JPH0436414A (ja) | 極低炭素・極低窒素鋼の溶製方法 | |
KR20050009781A (ko) | 진공 탈가스 장치에서의 용강 탈류방법 | |
JPH04254508A (ja) | 極低炭素鋼の溶製方法 | |
JPH08120325A (ja) | 高清浄性極低炭素鋼の製造方法 | |
JPH08109409A (ja) | 高清浄極低炭素鋼の溶製方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CP01 | Change in the name or title of a patent holder | ||
CP01 | Change in the name or title of a patent holder |
Address after: Tokyo, Japan Patentee after: NIPPON STEEL & SUMITOMO METAL Corp. Address before: Tokyo, Japan Patentee before: NIPPON STEEL & SUMITOMO METAL Corp. Address after: Tokyo, Japan Patentee after: NIPPON STEEL & SUMITOMO METAL Corp. Address before: Tokyo, Japan Patentee before: NIPPON STEEL Corp. |
|
CX01 | Expiry of patent term | ||
CX01 | Expiry of patent term |
Granted publication date: 20070516 |