CN1309835C - 植物可选择标记物和植物转化方法 - Google Patents

植物可选择标记物和植物转化方法 Download PDF

Info

Publication number
CN1309835C
CN1309835C CNB998077828A CN99807782A CN1309835C CN 1309835 C CN1309835 C CN 1309835C CN B998077828 A CNB998077828 A CN B998077828A CN 99807782 A CN99807782 A CN 99807782A CN 1309835 C CN1309835 C CN 1309835C
Authority
CN
China
Prior art keywords
gene
sequence
expression
plant
expression cassette
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB998077828A
Other languages
English (en)
Other versions
CN1306579A (zh
Inventor
R·L·罗德里格斯
黄宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Invitria Inc
Original Assignee
Applied Phytologics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Phytologics Inc filed Critical Applied Phytologics Inc
Publication of CN1306579A publication Critical patent/CN1306579A/zh
Application granted granted Critical
Publication of CN1309835C publication Critical patent/CN1309835C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8222Developmentally regulated expression systems, tissue, organ specific, temporal or spatial regulation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8206Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by physical or chemical, i.e. non-biological, means, e.g. electroporation, PEG mediated
    • C12N15/8207Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by physical or chemical, i.e. non-biological, means, e.g. electroporation, PEG mediated by mechanical means, e.g. microinjection, particle bombardment, silicon whiskers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8209Selection, visualisation of transformants, reporter constructs, e.g. antibiotic resistance markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8222Developmentally regulated expression systems, tissue, organ specific, temporal or spatial regulation
    • C12N15/823Reproductive tissue-specific promoters
    • C12N15/8234Seed-specific, e.g. embryo, endosperm
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8257Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits for the production of primary gene products, e.g. pharmaceutical products, interferon
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • C12N9/1029Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1205Phosphotransferases with an alcohol group as acceptor (2.7.1), e.g. protein kinases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2408Glucanases acting on alpha -1,4-glucosidic bonds
    • C12N9/2411Amylases
    • C12N9/2414Alpha-amylase (3.2.1.1.)
    • C12N9/2422Alpha-amylase (3.2.1.1.) from plant source
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/01Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • C12Y203/01183Phosphinothricin acetyltransferase (2.3.1.183)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01001Alpha-amylase (3.2.1.1)

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Botany (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Developmental Biology & Embryology (AREA)
  • Pregnancy & Childbirth (AREA)
  • Reproductive Health (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明涉及用可选择标记物基因转化宿主植物细胞的植物转化表达盒。序列中按5’到3’方向可操作地连接的所述盒包括(i)来自水稻β葡聚糖酶9基因(Gns9);(ii)可选择标记基因,和(iii)3’未翻译终止子区。同时公开的是含有转化载体的表达盒子对,获得其种子在萌发过程中产生选择性异源蛋白质的转化的单子叶植物的方法,和用嵌合可选择标记基因转化细胞的植物。

Description

植物可选择标记物和植物转化方法
发明领域
本发明涉及用于共转化单子叶植物的含有可选择标记基因的表达盒,涉及利用可选择标记表达盒的转化植物方法,和涉及用可选择标记表达盒转化的植物和植物细胞。
发明背景
携带一个或多个转化基因的表达盒中的可表达异源基因的转基因植物具有许多潜在的优点。携带这样的转基因表达盒的植物可以携带给予除草剂耐受性,杀虫剂耐受性,昆虫耐受性,胁迫耐受性,增强水果或种子的味道或稳定性,或合成有用的,非植物蛋白质,例如,有医学价值的蛋白质的能力或产生不同浓度的植物蛋白质的能力,和对植物产生影响如改变催化包括植物次级代谢的植物代谢物的产生的植物蛋白质的水平的基因。
理想地,将从转基因表达盒表达的异源蛋白质限制于特定地分化的植物组织,例如,水果或种子,和/或在选定的条件下诱导,例如,植物激素诱导。在这点上,我们需要在选定的植物组织如根或叶子或种子中被诱导或可诱导的启动子的控制下,和/或在选定的植物诱导状态如种子成熟或种子萌发过程中,将编码异源蛋白质的基因放置于基因表达盒中。
为了成功地将植物细胞遗传工程化,需要许多技术,方法和生物材料,从而可以从转基因表达盒表达重组分子,并使转基因植物细胞在商业上具有潜在用途和可接受,这些技术,方法等等如下。
首先,能够容易地和快速地检测成功的转化体对于成功的转化植物细胞的方法是重要的。在通常的情况下,这意味着在转化过程的几天到几星期中能够筛选成功转化的细胞。对于许多植物包括单子叶植物,通过将一个或多个转基因表达盒与可选择标记表达盒共转化,和方便地在培养物或培养物平板上筛选转化过程中获取的愈伤组织细胞的可选择标记可以最快速地进行成功转化的阳性筛选。
在可选择标记表达盒中的可选择标记基因是与包括启动子和终止子的可选择标记调节元素可操作地连接的。在转基因植物细胞中可选择标记基因的表达通常编码了给予抗生素或除草剂抗性的蛋白质。普通的可选择标记基因包括例如用于在卡那霉素培养基中选择的nptII卡那霉素抗性基因,或用于在含有膦丝菌素(PPT)的培养基中选择的膦丝菌素乙酰转移酶基因,或用于在含有潮霉素B的培养基中选择的hph潮霉素磷酸转移酶基因。
通过在插入可选择标记和异源基因的未分化愈伤组织中活化的启动子,可以表达可选择标记表达盒中的可选择标记基因。所以,通常用于驱动可选择标记基因的表达的启动子至今一直是构成性基因启动子,如花椰菜花叶病毒(CaMV)35s启动子,遍在蛋白ubil启动子,和肌动蛋白启动子至今一直是构成性启动子,在许多组织包括需要表达异源基因的组织中表达。
其次,能够在有效的物质中进行转化对于成功的转化植物细胞的方法是重要的,因为植物细胞的转化,选择和再生应该需要有限的植物组织如进行转化的愈伤组织的转化后操作,从而能够加工相关数目的转化的植物组织以便具有如位点效应等优点。
第三,不存在可选择标记蛋白质或只以非常低的量存在对于成功地利用和商业接受作为各种成分掺入转基因植物种子或其提取物中的食物或食物配方中的转基因植物器官或组织如转基因植物种子是重要的。
最后,在许多情况中,用一个或多个转基因表达盒同时转化植物细胞是有用处的。这样的方法将允许在单个植物细胞中导入多个转基因特性,例如在单个转基因植物细胞或转基因植物组织或器官如植物种子中促进人或动物健康的多个蛋白质。这样的方法也允许为了利用所述的基因,在单个转基因植物细胞导入多个基因,以此作为结合代谢工程化植物细胞途径,例如,编码植物次级代谢物如苯丙酯途径。在用多个,例如在多个转基因表达盒中发现的5-10个异源基因转化的单子叶植物中,利用这样的启动子的转化和选择方法通常是不成功和无效的。
所以,还没有能够用从可选择标记表达盒表达可选择标记蛋白质的转基因植物组织有效转化和选择和再生的方便的方法,技术和生物物质。
例如,为了决定从转基因表达盒是否能够分离可选择标记表达盒,利用与农杆菌转化结合的双重表达盒载体或多个单一表达盒载体,需要得到的转化体经过培育过程,从而得到转基因植物,得到携带转基因表达盒而不是可选择标记表达盒的种子。这样培育过程需要一定的时间从转基因植物发育为产物。
用弹道转化方法遇到了同样的问题,其中将含有指导可选择标记基因的表达的构成性启动子的可选择标记表达盒以及转基因表达盒共转化。为了生产转基因植物细胞和得到不含有可选择标记蛋白质的转基因植物或植物种子,可选择标记表达盒和转基因表达盒再次需要育种程序,一个限制商业用途的转基因蛋白质的耗时过程,进行遗传分离。
本发明是用于解决现有的这些问题的。首先,本发明包括明显缩短时间的选择和再生转基因植物和劳动加工转基因植物材料的方法。其次,本发明包括在选择过程中但不是在再生后的控制可选择标记基因的表达中利用的调节启动子,因此得到的转基因种子不含有可选择标记蛋白质。
发明概述
在一个方面,本发明包括一组表达盒,包括含有表达盒的载体,该组表达盒是用于在单子叶植物种子中,在选择诱导的条件下,用一个或多个能够生产异源蛋白质的异源基因转化单子叶植物的。这组表达盒包括:(a)具有以5’到3’方向可操作地连接的序列(i)调节转录调节区,(ii)可选择标记基因,和(iii)3’未翻译终止子区的可选择标记表达盒;和(b)至少一个具有以5’到3’方向可操作地连接的序列(i)在植物种子中诱导或可诱导的转录调节区,(ii)编码异源蛋白质的第一个DNA序列,和(iii)3’未翻译终止子区的异源基因表达盒。
在可选择标记表达盒中的调节转录调节区是在转化的愈伤组织细胞中以比选择的靶组织如种子中明显高的水平表达,和在高严谨条件下与水稻β葡聚糖酶基因启动子,序列特征是SEQ ID NO:1的Gns-9杂交的一个区域。该启动子可以包含在SEQ ID NO:1识别的序列中。
在异源基因表达盒中的转录调节区优选地是在种子成熟或种子萌发过程中被诱导或可诱导的。
为了用许多异源基因转化单子叶植物,这组表达盒可以包括许多异源基因表达盒,每个具有以5’到3’方向可操作地连接的序列(i)在植物种子中被诱导或可诱导的转录调节区,(ii)编码异源蛋白质的DNA序列,和(iii)3’未翻译终止子区。
或者,可选择标记基因和一个或多个异源蛋白质的表达盒可以例如串联地携带在单个植物转化载体中。
在另一方面,本发明包括用在单子叶植物种子中,在选定的诱导条件下能够生产异源蛋白质的一个或多个异源基因转化单子叶植物的方法。方法包括用如上所述的表达盒套转化植物愈伤组织细胞;在存在能有效阻止愈伤组织细胞生长的选择试剂,在缺乏可选择标记基因时培养愈伤组织细胞;在存在选择试剂时,根据它们的生长的情况选择表达可选择标记的那些愈伤组织细胞;和在非选择条件下将选定的愈伤组织细胞再生成为转基因植物。
利用上面的多环异源基因表达盒或许多单个的异源基因表达盒,该方法在用多个异源基因,例如4或更多基因,和10或更多基因转化单子叶植物时是有效的。
同时公开的有,用本发明的方法,用本发明的表达盒套转化愈伤组织细胞生产的转基因单子叶植物,和这些植物生产的转基因种子。
仍然是另一方面,本发明包括用于,用含有以5’到3’方向可操作地连接的序列(i)在严格条件下与特征为SEQ ID NO:1的水稻β葡聚糖酶基因启动子杂交,和在愈伤组织细胞中以明显高于选定的靶组织的水平表达的转录调节区,(ii)可选择标记基因,和(iii)3’未翻译终止子区域的可选择标记基因转化单子叶植物细胞的植物转化表达盒。
在不同的实施方案中,可选择标记基因可以包括但不限于,用于在含有卡那霉素培养基中选择的nptII卡那霉素抗性基因,或用于在含有膦丝菌素的培养基中选择的编码膦丝菌素乙酰转移酶的基因,或用于在含有潮霉素B的培养基中选择的编码潮霉素磷酸转移酶(HPH)的基因。在优选的实施方案中,可选择标记基因编码HPH。在其它实施方案中,3’未翻译终止子区域是来自水稻α淀粉酶1A(RAmy1A)基因的3’未翻译区,和标记基因表达盒,特征为SEQ ID NO:2的序列。
本发明也包括含有在调节区控制下的异源可选择标记基因的转基因单子叶植物组织,异源可选择标记基因是在愈伤组织植物组织中诱导的,允许在适当的选择培养基中选择转基因单子叶愈伤组织,但在种子成熟或萌发中基本是休眠的,以防止标记基因在种子中在基因选择水平表达,和在种子成熟或萌发过程中诱导的调节区控制下表达异源蛋白质。
本发明同时形成的部分是至少含有四个不同的表达盒的转基因单子叶植物的种子,四个不同的表达盒的每个含有在种子成熟或萌发时诱导的调节区,编码与单子叶植物异源的蛋白质的基因,和(iii)3’未翻译终止子区,和特征是在种子成熟和萌发过程中表达可检测的表达盒基因。
本发明的这些和其它目的和特征当在了解了下面的详细说明和附图后将变得更加明了。
附图的简要说明
图1A表示了本发明的一个实施方案的pAPI-76可选择标记载体;
图1B表示了根据本发明的另一个实施方案构建的象pAPI-76的pAPI-146载体;
图1C表示了根据本发明的另一个实施方案构建的pAPI-353农杆菌单个盒载体;
图2A一2I是表示在转基因植物中,通过利用本发明的改良的选择/再生方法结合本发明的可选择调节启动子标记构建体同时转化9个质粒稳定整合含有可选择标记基因的9个异源基因(A-I)的Southern印迹。
图3A和3B表示了用于转化进入愈伤组织细胞的高分子量(>50kb)的质粒构建体;和
图4A和4B是表示来自用改良的选择/再生方法结合本发明的可选择调节启动子标记构建体导入转基因植物的图3A的高分子量质粒的稳定整合的DNA的Southern印迹。
发明的详细说明
I.定义:
除非在说明书中特别表明,下面的术语具有下面的意义。
“种子”指含有种子固有物,种子包衣和/或种子外壳或其任何部分的谷粒。
“萌发”指种子中打破休眠,和种子中恢复代谢活性,包括在种子胚乳中产生能有效裂解淀粉的酶。
“种子成熟”或“谷粒发育”指从受精开始,其中可代谢储备如糖,多糖,淀粉,酚醛,氨基酸和蛋白质得到储存,有或没有导致谷粒扩大,谷粒充实的液泡靶击到种子(谷粒)中的各种组织,例如,胚乳,壳,糊粉层,和盾表层,和以谷粒干化结束的时期。
“可调节”启动子是应答生物化学刺激,如存在或缺乏小分子,或在特别的组织,如愈伤组织,根组织,等等,或在植物发育中的特别时期,如未分化愈伤组织细胞对分化的植物组织,或组织发育时期如种子成熟或萌发的上调(“开启”或“诱导”)或下调(“关闭”)。
“构成性”启动子是缺乏任何调节即未调节的启动子。
“可诱导或被诱导”指缺乏或存在小分子而上调,或在特别的组织(例如,愈伤组织,或根组织,等等)或在植物发育的特别时期(例如,在种子成熟的过程中)上调的启动子。
“在种子萌发过程中可诱导或被诱导”指在种子萌发过程中明显(大于25%)或可以明显上调的启动子。
“在种子成熟过程中可诱导”指在种子成熟过程中明显(大于25%)或可以明显上调的启动子。
如果启动子调节的基因是在基本不可检测的水平表达的,启动子是“基本休眠的”。因为术语是用于表示控制可选择标记基因的表达的启动子的,如果产生的可选择标记的量低于将植物细胞或组织放置于适当的选择压力如抗生素下可以区别的越值时,启动子是基本休眠的。例如,在种子的情况中,如果如果在存在适当选择压如抗生素的情况下,区别转化(含有可选择标记基因)和非转化(不含有可选择标记基因)萌发种子是不可能的,可选择标记基因启动子在在种子萌发过程中将认为是休眠的。
在启动子诱导的上下文中,“小分子”通常是小于1千道尔顿的小的有机或生物有机分子。这样的小分子的例子包括糖,糖衍生物(包括磷酸衍生物),和植物激素(如,赤霉素和脱落酸),和环境气体,如O2。
“异源DNA”或“外源DNA”指DNA,通常指已经从另一来源即非植物来源或另一植物种类导入植物细胞的DNA编码序列(“异源编码序列”),或放置于正常情况下控制另一编码序列的植物启动子的控制下的相同种类的编码序列。放置于植物启动子的控制下的胰岛素编码序列是异源DNA的一个例子,如放置于大麦α淀粉酶启动子的控制下的水稻β葡聚糖酶编码序列。
“转录调节区”或“启动子”指影响和/或促进转录的启动的核酸序列。通常认为启动子包括调节区,如增强子或诱导元素。
“可操作地连接”指作为单位表达异源蛋白质的表达盒的成分。例如,可操作地连接编码蛋白质的异源DNA的启动子能够促进对应于异源DNA的功能性mRNA的生产。
在本发明的上下文中的“嵌合基因”或“表达盒”指可操作地连接编码基因产物的DNA序列例如,可选择的标记基因,需要的异源基因和优选的转录终止子序列的启动子序列。该盒也可以含有在翻译框架中与基因产物编码序列可操作地连接在启动子和基因产物编码序列之间的信号肽编码区,另外可以含有转录调节元素,如上面提到的转录终止信号,以及翻译调节信号如终止密码子。
如果在序列中DNA序列是对应于一个基因的区段或区域,即该DNA序列“起源于”那个基因如水稻β葡聚糖酶基因。起源于一个基因的这些基因的区段包括基因的启动子区域,5’未翻译区,和3’未翻译区。
DNA分子编码的“产物”包括例如RNA分子和多肽。
“稳定转化”指具有稳定地整合进入在几代中遗传的基因组的外源核酸的谷类细胞或植物。
“细胞培养物”指细胞和细胞团,通常是生长在或悬浮于生长培养基中的愈伤组织细胞。
“序列同一性”指利用“LALIGN”序列排列程序(或类似程序),利用有欠缺的参数排列那些序列时,在两个序列之间的同一性的程度。“LALIGN”是FASTA,1.7版的序列比较程序套中发现的(Pearson,等人,1988;Pearson,1990;从William R.Pearson,生物化学部,440信箱,Jordan Hall,Charlottesville,VA得到的程序)。
当第一个多核苷酸片段或多肽片段说成是分别“对应于”第二个多核苷酸片段或多肽片段时,意味着当这些序列代表的片段利用序列排列程序如“LALIGN”或“MACVECTOR”(IBI,New Haven,CT)排列时,这些片段和区域基本上是相互协同延伸。“对应的”多核苷酸或多肽片段通常含有如果不是相同也是相似的许多残基。但是,可以理解的是,对应的片段可能含有相互关联的残基的插入或缺失,以及序列中的一些不同。
“杂交”包括一条链的核酸通过碱基配对与互补核酸链连接的任何过程。所以,严格的说,该术语指靶序列结合测试序列或相反的能力。
“杂交条件”是基于核酸结合复杂度或探针的熔化温度(Tm),通常以检测杂交的条件的“严格度”分类。例如“最大严格度”通常发生在Tm-5℃(低于探针的Tm 5℃);“高严格度”低于Tm约5-10℃;“中等严格度”低于探针的Tm10-20℃;“低严格度”低于Tm约20-25℃。在功能上,最大严格条件可以用于鉴定与杂交探针具有严格同一性或近视严格同一性的序列;而高严格条件用于鉴定与探针具有约80%或更大序列同一性的序列。
“高严格度”条件的例子包括在约65℃,约5×SSPE下杂交和洗涤条件约65℃,约0.1×SSPE(其中1×SSPE=0.15氯化钠,0.010M磷酸钠,和0.001M EDTA二钠)。
如果在中等严格条件即室温下0.1%SSC下相互杂交,认为两个核苷酸序列是“功能同源的”。通常,当利用ALIGN程序最佳地排列时,两个同源的核苷酸序列大于或等于约60%的同一性(Dayhoff,M.O.,在ATLAS OF PROTEIN SEQUENCE AND STRUCTURE(1972)第5卷,国家生物医药研究基地,101-110页,该卷的补充部分,1-10页)。
II.可选择标记表达盒
本发明包括含有在转化的愈伤组织中比靶组织中基本上在更高水平表达可选择标记的可选择标记基因的单子叶植物转化表达盒。该盒从5’到3’方向包括(I)转录调节区域,或调节启动子,(ii)可选择标记基因,和(iii)3’未翻译终止子区。
盒表达可以携带在适当的载体例如克隆载体或植物转化载体中。这一载体另外例如和可选择标记盒串联地含有例如在单子叶植物种子的成熟和萌发中表达异源基因的一个或多个表达盒。
A.转录调节区域
转录调节区或启动子是在愈伤组织中比选择的靶植物组织中以明显高的水平表达的调节启动子。一个优选的启动子是水稻β-葡聚糖酶-9(Gns9)启动子。Gns9启动子以及几个其它的水稻β葡聚糖酶启动子已经在引入本文作为参考的1998年6月25日递交的美国专利申请SN09/105,390中叙述了。
在优选的实施方案中,转录调节区域具有在高度严格度条件下与具有SEQ ID NO:1序列的Gns9启动子有效杂交的核苷酸序列。在各种其它的实施方案中,转录调节区域具有的核苷酸序列与序列为SEQ IDNO:1的Gns9启动子至少有80%的同一性,优选地90%的同一性,更优选地95%的同一性。
在另一个实施方案中,转录调节区域具有的Gns9启动子序列包含在SEQ ID NO:1中。这一启动子可以含有SEQ ID NO:1中的全部序列,或如常规缺失分析鉴定的操作部分,其中进行了SEQ ID NO:1的一系列的5’末端缺失,或3’末端缺失或内部缺失,和测试了启动子在例如下面叙述的转化的愈伤组织中表达可选择标记的能力。
B.可选择标记基因
在Wilmink和Dons(1993)植物分子生物学目录,11(2):165-185中有禾本科植物家族的成员的适当标记的一般综述。一般的可选择标记基因包括例如用于在含有卡那霉素的培养基中选择的nptII卡那霉素抗性基因,或用于在含有膦丝菌素(PPT)的培养基中选择的膦丝菌素乙酰转移酶基因,或用于在含有潮霉素B的培养基中选择的hph潮霉素磷酸转移酶基因,在优选的实施方案中,利用编码潮霉素磷酸转移酶的序列,在存在潮霉素B时进行选择。
C.3’未翻译终止子区
通常,表达盒具有在转录起始调节区相对末端的转录终止区域。转录终止区通常可能与转录起始区相关或来自不同的基因。选择转录终止区可以是特别地为了mRNA的稳定性,增强表达。用于举例说明的转录终止区域包括来自农杆菌Ti质粒的NOS终止子和水稻α淀粉酶RAmy1A终止子。
如引入本文作为参考的美国专利5,889,189和5,888,789勾勒的途径,根据标准的重组根据方法可以构建可选择标记盒。
III.异源基因表达盒
本发明也涉及了用于共转化单子叶植物的能够在转化植物中表达需要的异源蛋白质的异源蛋白质表达盒。该盒优选地是在成熟或萌发过程中,在单子叶植物种子中可诱导的。
A.异源基因。该盒子优选地包括,(i)编码需要的选择蛋白质的异源基因,(ii)在编码序列上游的,在单子叶种子成熟或萌发过程中诱导或可诱导的单子叶启动子,和(iii)如上所述的3’终止序列。
异源基因编码的典型蛋白质包括有商业重要性的治疗蛋白质和多肽,包括促红血细胞生成素(EPO),组织纤溶酶原激活物(t-PA),尿激酶,尿激酶原,生长激素,细胞因子,VIII因子,epoetin-α,粒细胞菌落刺激因子和疫苗。从各种参考文献和序列数据库来源可以获得这些蛋白质的成熟形式的编码序列。
其它异源蛋白质包括形成免疫活性表位的多肽,和催化细胞内代谢物的转化,结果在细胞内产生的选择的代谢物的酶。用于本发明的一个蛋白质组包括淀粉生物合成的酶,包括ADP葡萄糖焦磷酸酶(EC2.7.7.27),淀粉合成酶(EC2.4.1.21),和分枝酶(R,Q)。更常见的是,异源蛋白质可以起源于植物或动物来源。
B.可诱导启动子的诱导。在萌发过程中诱导或可诱导的启动子包括来自水稻α淀粉酶Ramy1A,RAmy1B,RAmy2A,RAmy3A,RAmy3B,RAmy3C,RAmy3C,RAmy3D,和Ramy3e基因,和来自pM/C,gKAmy141,gKAmy155,Amy32b,和HV18大麦α淀粉酶基因的启动子。这些启动子例如在《植物生物技术进展》,Ryu,等人编辑,Elsevier,Amesterdam,1994,p37和本文引证的参考文献中有叙述。
在种子成熟调节过程中诱导或可诱导的代表性启动子包括那些与下面的单子叶储存蛋白质相关的那些启动子:水稻谷蛋白,oryzins,和谷醇溶蛋白,大麦醇溶蛋白,麦醇溶蛋白和谷蛋白,玉米醇溶蛋白和谷醇溶蛋白,玉米谷蛋白,和高粱醇溶蛋白,millet pennisetins,黑麦碱。在种子成熟中表达的一个优选的启动子是来自大麦B1大麦醇溶蛋白基因的特异于大麦胚乳的B1大麦醇溶蛋白启动子(Brandt,A.,等人.,(1985)初级结构。Carlsberg研究通讯50,333-345)。
C.其它盒子元素。除了编码需要的蛋白质,表达盒的基因可以编码允许如适当的蛋白质的加工和移位的信号/靶击/运输的肽。特别是将蛋白质靶击到细胞内体如液泡中的信号/靶击/运输序列有与单子叶成熟特异基因相关的信号/靶击序列,这些基因有:醇溶蛋白,谷醇溶蛋白,大麦醇溶蛋白,谷醇溶蛋白,玉米醇溶蛋白,白蛋白,球蛋白,ADP葡萄糖焦磷酸酶,淀粉合成酶,分枝酶,Em,和lea。
另一类信号/靶击/运输序列是能够在种子萌发过程中有效促进从糊粉细胞分泌异源蛋白质的序列,包括与α淀粉酶,蛋白酶,羧基肽酶,内切蛋白酶,核糖核酸酶,DNase/RNase,(1-3)-β-葡聚糖酶,(1-3)(1-4)β葡聚糖酶,酯酶,酸性磷酸酶,戊糖胺,内木聚糖酶,β-吡喃木糖苷酶,阿拉伯呋喃糖苷酶,α-葡糖苷酶,(1-6)α葡聚糖酶,过氧化物酶和溶血磷脂酶。
如上所述,异源基因表达盒可以根据如美国专利5,889,189和5,889,789勾勒的标准重组构建方法构建。
D.表达盒组。可选择标记表达盒和异源基因表达盒一起形成了如下详细所述的用于本发明的单子叶植物或植物细胞的共转化的表达盒组。这一组可以包括为了表达不同的异源基因构建的两个或几个异源基因表达盒,用于生产,产生一组例如四个或更多不同的异源蛋白质的转化体。
或者,可以构建可选择标记盒和一个异源基因表达盒成为含有例如各种串联排列的表达盒的单一表达单位。
IV.含有表达盒的植物转化载体
如上所述的可选择标记和异源基因表达盒可以放置于在植物中设计的适当的表达载体。适当的载体如上所述,例如,上面叙述的美国专利5,888,789和5,889,189。
用于本发明的表达盒载体包括可选择标记表达盒,以及表达盒上游或下游的陪伴序列。陪伴序列将是质粒或病毒原点,并且给予载体必要的特征,允许载体将DNA从细菌转移到需要的植物宿主中。一个举证的载体是如实施例1A所述构建和图1说明的pAPI76载体。其中的可选择标记表达盒包括Gns9启动子,HPH编码序列,和RAmy1A终止子,并且具有SEQ ID NO:2为特征的序列。
另一个举证的载体,命名为pAPI-146,在图1B中说明了。这一可选择标记表达盒载体的构建在实施例1B中叙述了。
两个载体,和含有异源基因表达载体的类似载体是为了通过金颗粒注射或其它直接导入转化而设计的。
或者,含有一个或两个可选择标记表达盒和异源基因表达盒的转化载体可能是农杆菌载体,如图3A所示的和实施例3A中所述的载体。这一载体是可以用于通过农杆菌感染转化植物的农杆菌载体的一个例子。
除了可选择标记盒和载体,本发明也涉及含有可选择标记盒的表达载体套和含有异源基因盒子的一个或多个载体。
V.另一调节的可选择标记表达盒的改进的植物转化选择/再生方法
用于本发明的方法中的植物起源于单子叶植物,特别是已知为分类学上的禾本科家族的成员。这一家族包括已知为谷类的可食种类的禾本科家族的所有成员。谷类包括许多种类如小麦(Triticum sps.),水稻(Oryza sps.),大麦(Hordeum sps.),燕麦(Avena sps.),黑麦(Secalesps.),玉米(Zea sps.)和小米(Pennisettum sps.),和高粱。在本发明中,优选的家族成员是水稻和大麦。
A.转化
用可选择标记载体和至少一个含有需要的异源基因的异源蛋白质表达载体,用各种标准技术(例如,电穿孔,农杆菌,原生质体融合,或微颗粒轰炸)共转化起源于上面所述的植物家族的愈伤组织细胞。在本发明中,颗粒轰炸是优选的转化方法。异源蛋白质表达载体包括其转录在选定的组织或植物发育状态和/或存在或缺乏小分子,如减少或耗费糖,例如蔗糖,在培养基中或在植物组织例如萌发的种子中上调的转录调节区(启动子)。
除了如上所述的表达基因,本发明构建的表达盒可以含有允许将编码序列整合进入植物基因组的序列。这些可以含有转座子序列和诸如此类用于同源重组的序列,以及允许将异源表达盒串联插入植物基因组的Ti序列。为了农杆菌转化,可以修饰本发明的含有嵌合基因的载体成含有用于农杆菌介导转移到植物染色体的T DNA序列。另外,本发明的该载体可以含有诱导质粒的土壤农杆菌的去臂植物肿瘤。
如下面的参考文献:Li LC,Qu RD,Dekochko A,Fauquet C,Beachy RN(1993),利用生物弹道方法的改进的水稻转化系统表示,转化单子叶植物或植物细胞的方法是已知的。植物细胞报告12:250-225;HieiY,Ohta S,Komari T,Kumashiro T(1994)由农杆菌介导的有效地转化水稻和对T-DNA的边界的序列分析。植物杂志6:271-282;Komari T,HiciY,Saito Y,Murai N,Kumashiro T(1996)携带两个单独的T-DNA的载体,用于由土壤农杆菌介导的高等植物的共转化和没有选择性标记物的转化体的分离。植物杂志10:165-174;Armstrong CL(1999)第一个阶段的玉米转化:综述和将来的展望Maydica 44:101-109;Barro F,Rooke L,Bekes F,Gras P,Tatham As,Fido R,Lazzeri PA,Shewry PR,Barcelo P(1997);高分子量亚单位基因转化小麦导致功能性质的改善。自然生物技术15:1295-1299;Battraw M,Hall TC(1991)用嵌合的潮霉素磷酸转移酶-Ii和β-葡萄糖醛酸酶基因稳定转化Sorghum-Bicolor原生质体。理论和应用遗传学10 82:161-168;Brettschneider R,BeckerD,Lorz:H(1997)有效地转化未成熟玉米胚的小盾角组织。理论和应用遗传学94:737-748;Clinng M,Fry JE,Parig SZ,Thou HP,Hironaka CM,Duncan DR,Conner TW,Wan YC(1997)由土壤农杆菌介导的小麦的遗传转化。植物生理学115:971-980;Fleming GH,Kramer CM,Lc T,Shillito RD(1995)在烟草和玉米中DNA片段大小对转化频率的作用。植物科学110:187-192;Frame BR,Draywn PR,Bagcall Sv,Lewnan CJ,Bullock WP,Wilson HM,Dunwell JM,Thompson IA,Wang K(1994)Silicon Carbide Whisker介导的转化生产可育的转基因玉米植物。植物杂志6:941-948;Hagic T,Blowers AD,Barle ED(1991),用DNA包被的微弹轰击的高粱细胞Qilwres Aeler的稳定转化。Plaxil细胞报告10:26O-264,Halaon DA,Roy M,Rueda 3,Slndhu RK,Sanford 3,Mascreras JP(1992)由瞬时转化测试剖析来自于玉米的花粉特异性启动子。植物分子生物学18:211-218;He Do,Mouradov A,Yang YM,Mouradova E,Soott KJ(1994)通过原生质体电击穿转化小麦。植物细胞报告14:192-196 25 Iser M,Fettig S,Scheyhing F,Viertel K,Hess D(1999)选择德国春小麦品种中基因型依赖的的稳定的遗传转化具有高再生潜力。植物生理学杂志154:509-516;Ishida Y,Saito H,Ohta S,HidY,Komari T,Kumashiro T(1996)由土壤农杆菌介导的玉米的高效率。自然生物学技术14:74~750;Ortiz JPA,ReggiardO MI,Ravizzini RA,Altabe SG,Cervigni CDL,Spitteler MA,Morata MM,Elias FE,VallejosRH(1996)。用于小麦稳定转化的潮霉素抗性作为有效的可选择的标记物。植物细胞报告15:877-881;Pareddy D,Petolino 3,Skokut T,Hopkins N,Miller M,Welter M,Smith K,Clayton D,Pescitelii S,Gould A(1997)借助于氦过载失真的玉米的转化。Maydica42:14~154;Pukhalslcii VA,Smirnov SP,Korostyleva TV,Billnskaya EN,Eliseeva AA(1996)由农杆菌介导的小麦的遗传转化。Genetika32:15~1600,Ritala A,Mannonen L,Aspegren K,Salmenkalliomarttila M,Kurten U,Hannus R,Lozano JM,Teeri TH,Kauppinen V(1993)用颗粒轰击转化大麦组织培养物。植物细胞报告12:435.440;Takurni S,Shimada T(1997)在六个普通小麦栽培品种中通过颗粒轰击scutellar组织中转化频率的变化。Genes & Genetic Systems 72:63-69;Torbert KA,lees HW,Somers DA(1995)。Paromornycin用作为燕麦转化的选择性试剂。植物细胞报告14:63~640;Torbert KA,Rines HW,Somers DA(1998)利用成熟胚胎衍生的组织培养物的燕麦的转化。作物科学38:226~231;Walters DA,Vetsch CS,Potts DE,Lundquist RC(1992)在玉米中潮霉素磷酸转移酶基因的转化和遗传。植物分子学生物学18:189~200;Witrzens B,Bretell RIS,Murray FR,McElroy D,Li ZY,Dennis Es(1998)由微导弹轰击转化小麦比较三个可选择基因。澳大利亚植物生理学杂志25:39-44;和Zhang J,Tiwari VK,Golds TJ,Blackhall NW,Cocking BC,Mulligan RI,Power IB,Davey MR(1995)影响大麦原生质体的瞬时转化和稳定转化的参数(第41卷,Pg 125,1995)。植物细胞组织和器官培养物43:83-84。
B.选择/再生
在实施例2中描述的改善的选择/再生方法具有被调节的启动子的特定的特性的优点,所述的启动子驱动选择性标记物基因的表达。受调节的启动子,如上文描述的,在愈伤组织细胞中强烈地表达选择性标记物基因产物(例如,HPH)。因此用选择性标记物基因转化和表达该基因的愈伤组织细胞能够在选择剂(例如潮霉素B)存在下生长。在转化的愈伤组织被识别后,从非转化的愈伤组织分离,然后在没有选择剂时将非转化的愈伤组织再生为幼苗。
为了验证结果:在愈伤组织中表达选择性标记物基因,但是不在分化的植物组织中表达,将GUS基因置于Gns-9启动子的控制下,并且用于转化水稻植物材料。根据蓝色证明,在愈伤组织中表达了GUS基因,但是在再生的植物和萌发过程中的种子中没有观测到颜色。在第二中测试中,验证在潮霉素B存在下真正选择到了含有潮霉素磷酸转移酶选择性标记物基因。另一方面,从转化的植物繁殖的种子失去了在也含有潮霉素B的萌发培养基上的繁殖能力,证明种子几乎不表达任何一种选择性标记物基因。
特异性的,观测到在含有潮霉素B的培养基中所有的植物死亡或变为黄色。观测到两个发育迟缓的植物具有棕色的根。这些植物由于可怜的的根部系统最终死亡。在没有潮霉素B的培养基上的愈伤组织发育为健康的植物。
为了测试转基因种子是否能够在潮霉素B的培养基上萌发,将10个转基因种子置于含有潮霉素B的培养基上,将10个种子置于相同的培养基上,但是不含有潮霉素B。在没有潮霉素B的培养基上的种子快速的生长,而10个转基因种子不能萌发和发育为健康植物。从这些转基因愈伤组织和种子不能发育为健康植物的原因是下列事实:940碱基对Gus9启动子没有在根部,叶子和种子表达其下游的潮霉素基因的活性,即使这些种子和愈伤组织是基于对在同样的培养基上的潮霉素B的相同浓度的年抗性选择的来自于转基因愈伤组织。
在没有选择性压力存在下进行的新的再生步骤大大地加强了重获转基因植物的效率。而不被理论束缚,重获频率的增加部分是由于没有选择剂存在以及在出现的幼苗中下调选择性启动子标记物基因。由于愈伤组织生长为幼苗选择性标记物基因产物的降低表达减轻了在植物转化的关键时期过程中置于再生植物的代谢压力。相反,在再生阶段过程中构成性启动子保留活性,将其他的代谢负载置于幼苗和较低的回收效力。
由于加强了回收所生长的幼苗的效力,改善的选择/再生方法具有附加的益处,例如所需要的选择剂的量实现本质上的。
VI.同时将多个异源基因导入到愈伤组织细胞
已经发现通过利用与改善的选择/再生方法一起构建的新选择性标记物实现高效率的回收显著地增加出现低频率转化的可能性,例如在一次转化中将多个基因或非常大的DNA分子导入到愈伤组织细胞。
实施例3描述了通过利用改善的选择/再生方法以及上面描述的受调节的启动子-选择性标记物构建体,同时转化总数为9个质粒(包括选择性标记物基因)导入而将9个异源基因,包括选择性标记物基因成功地整合,结果显示于附图2A-2I。在这些研究中,用含有作为异源基因的BPN′(2A),AAT(213),HepC(2C),Hbsg(2D),GUS(3E),GFP(2F),Hph(2G),Bar(2H),和luc(2I)的异源基因表达盒(载体)转化5个植物(愈伤组织细胞)。
在实施例3中给出了转化的分析的详细情况。简单地说,PCR分析显示上面描述的所有再生的转化的,选择的和再生的植物携带hph基因。然后将5个代表性的转基因植物进行Sourthern分析以测定所有的9个基因共整合到水稻基因组时的频率(附图2)。基因的整合的发生从单个到多个拷贝。5个转基因植物的2个(10p-8和10p~34)含有来自于9个质粒的DNA。留下的植物携带来自于9个共转化的植物的DNA的7个(10p~28and 10p-64)或8个(10p~2)。
实施例4描述了利用改善的选择/再生方法与调节的启动子-选择性标记物构建体成功地将50kb的高分子量质粒转化和整合到愈伤组织细胞。该例子的结果显示于附图4A和4B。
多个质粒转化和高分子量质粒转化方法允许将多个基因同时导入到转基因植物。例如这些类型的转化方案允许单子叶植物中的代谢基因工程,其中在一条途径的多个基因的表达被正向调节并且通过将附加的同源和/或异源代谢基因导入使得该途径的通量最大。
将高分子量质粒转化单子叶植物的另一个应用是在基因克隆中的表现型进行的互补测试。例如,为了克隆Xa21基因,Song等人(1995;科学270:1804-6)识别了几个在35-50kb的范围内的粘粒克隆。在该时间对转化技术的限制迫使在进行转化之前将这些粘粒亚克隆到较小的质粒,通过本文的改进方法,这种手段是不必要的。
采用本发明的方法同时将多个携带异源基因的质粒或高分子量质粒转化单子叶植物细胞代表在单子叶植物基因表达表达的领域内显著的技术改进。
提供下面的实施例仅仅用于描述而不是为了限制。那些技术人员易于认识到各种各样的非关键参数,对这些参数进行改变或修饰可以产生基本相同的结果。
通用的方法
通常,在Sambrook等人的分子克隆:实验室手册,冷泉港实验室,冷泉港,纽约(1989)和在S.B.Gelvin和LA.Schilperoot,植物分子生物学(1988)找到原名和实验室程序标准重组DNA技术。在该文献中提供了其他的参考文献。本文的程序是本领域内已知的并且提供这些资料以便方便读者。
                   实施例1A-1C
              选择性标记物载体的构建
A.pAPI-76载体
在3个步骤构建代表性的选择性标记物载体。首先,利用引物1AR1:5′AAC AAT ACT′GGA ATT CGA,GAA GTA AAA AG 3′(SEQ IDNO:3)和1ASma:5′CTA CGC AAC CCG GGA GAA AAT C 3′(SEQ IDNO:4)从水稻α-淀粉酶基因Ramy1A扩增DNA片段(Huang N.等人(1990)植物分子生物学14:655-668)。将含有Ramy1A终止子的297碱基对的扩增的片段克隆到pBluecript Ks+的SmaI/EcoRI选择性位点,获得质粒plAT。第二,将编码潮霉素磷酸转移酶(HPH)的来自于质粒pGU的BamHI DNA片段(Shimamoto等人(1989)自然338:274-276)克隆到pIAT的BamHI位点,获得质粒pAPfl4。PGL2BamHI片段编码减去C-末端的4个氨基酸。第三,利用引物5′GAC TTA ACT′TTA GTCATA TTr AG 3′(SEQ ID NO:5)和GnsR 5′TTC GCr C,1,T GCT GCTGCT CACT 3′(SEQ ID NO:6)从水稻β-葡聚酶基因Gns9扩增SacI/XbaI,并且插入到pAP174的SacI/XbaI位点形成pAN76。通过DNA测序证实所有片段的序列。
如在附图1显示的,如上所述5206碱基对选择性载体含有嵌合选择性标记物基因,包括Gns9启动子,失去了hph基因的4个C-末端的密码子和终止子,和Ramy1A终止子的HPH编码序列。由于在BamHI HPH编码序列中没有终止子,产生了具有其他C-末端14个氨基酸的融合蛋白(如附图1的插入物所示)。
B.进-步改进pAP1-76载体
首先,通过位点特异性诱变(SDM)去除靠近转译起始密码子的额外的ATG,并且为了克隆的目的,同时将BamH1位点改变为Bg1H。合成两个位点的特异性诱变引物:
API引物#110-Hph-SDM1
BamHI(pAPI76)
     GGATCC   T
GCAGTCTAGAACTAGT AGATCTCGGGGGGCAACGAAATATGAAAAAGCC
        BgIII
API引物#109  Hph-SDM2
GGCTTTTCATATTTCGITGCCCCCCGAGATCTACTAGTTCTAGACTGC
通过利用PCR和来自于Stratgene,CA的Quick变化试剂盒完成诱变。获得的质粒称为pAP176(SDM)。为了修补pAP176(SDM)的C-末端,合成下面的2个引物以便产生PCR片段:
API引物#111-Hph-Rev
             E  K A  R
T AAT  GGATCC  TCA TTC  CAT TTC CIT TOC CCT CGG ACG AGT GCT GGG G
       BamHI 终止子  终止子
       API引物#114-Hph-fwd
ATC GCCGCGGCTCCGGGCGTATATGC
       SacII
将利用pAPI76作为模板利用两个引物产生的PCR片段用SacII和BanHI消化并且插入到pAPI 76(SDM),该载体已经用SacII和BanHI消化,获得质粒称为pAPI106。DNA测序证实正确的位点特异性诱变。
在pAPT76和pAPI106的质粒骨架含有Amp抗性基因。为了用kan基因替代amp基因,需要两个步骤。
用来自于pCR2.1的氨基葡糖苷磷酸转移酶(卡那霉素抗性)替代pUC19的β-内酰胺酶(氨苄霉素抗性):
利用SspI和DraI裂解pUC19被切割的载体的1748碱基对谱带制造1748,692,227,和19碱基对的4个片段而将β-内酰胺酶裂解。这些片段在限制性位点留下结合末端。利用PFU聚合酶从pCRZ.1进行PCR扩增卡那霉素基因,因此获得具有平齐末端的PCR产物以便克隆到pUC19(1748片段)。
引物-1(KANFI)开始于kan基因的的ATG上游的146nt并且引物-2(KANRI)结束于相同基因的终止密码子下游的19nt。
           SspI半位点
引物-1(KanF1)5′ ATTGCAAGCGAACCGGAATTGCCAG-3′
           Dral半位点
引物-2=KanR1 5′- AAACTCTTCCTTTTTCAATTCAG-3′。
对PCR引物进行核苷酸叠加以保存限制性位点用于克隆。然后将连接物转化到大肠杆菌,将其置于含有卡那霉素的培养基,对从Kan抗性菌落获得的质粒进行分析以用Kan基因替代Amp基因。获得的质粒称为pUC19Kan。
为了将Gns9-hph-1A表达盒置于pUC19Kan,用HindIII和SacI两次消化pAPl106。分离HindIII/SacI片段并且插入到pUC19Kan,其中已用HindIII和SacI预切割。获得的质粒称为pAPI146。
C.农杆菌载体
由Dr.Diter von Wettstein,华盛顿州立大学友好地提供了质粒pJH2600用于产生新的选择性标记物质粒,用农杆菌进行谷物的转化。该载体大小约为14.3kb。从pAPI146分离SacI/EcoRI片并且插入到用相同酶切割的pJH260O。获得的质粒称为pAP1352。然后从pAP1146分离ECORI片段并且置于pAP1352,它已经用EcoRI消化。通过hph基因的连接区域的DNA测序识别了具有正确ECORI定向的质粒。将该质粒称为pAP1353。
                       实施例2
               水稻转化,选择和植物再生
如下所示,将微导弹介导的水稻转化的基本步骤(Sivatnati E.,等人(1996)植物细胞报道15:322-327;Thang S.等人(1996)植物细胞报告15:465-469)进行修饰。约200 TP309水稻种子脱壳,在50%商用漂白粉中灭菌25分钟并且用无菌水洗涤3次,各5分钟,将无菌的种子置于含有N6培养基的几个平板(Sigma化学有限公司;St.louis,MO)以诱导愈伤组织10天。将起始的愈伤组织剥离并且置于新鲜的N6培养基上3个星期。从最初的愈伤组织分离次级愈伤组织并且置于N6培养基以产生四级愈伤组织。将四级愈伤组织用于轰击和每隔2星期亚培养,共传代4-5次。
在轰击之前选择直径为1-4毫米的愈伤组织并且以4厘米的环置于具有0.3甘露醇和0.3M的山梨醇的N6培养基,培养5-24小时。用Biolistic PDC-1000/He系统(BIORAD,Richmond,CA)进行Biolistic轰击。该程序需要用2.5微克的pAPI76 DNA包被的1.5毫克的金颗粒(60微克/微升)。用氦压力1100psi将DNA-包被的金颗粒轰击到水稻愈伤组织。在轰击之后,允许愈伤组织在相同的平板上恢复48小时,然后转移到具有20毫克/升的潮霉素B的NB培养基上。被轰击的愈伤组织在选择性培养基上在黑暗在26℃培养45天。选择显示不透明的白色,致密的并且易于与显示黄-棕色,软和带水的非转化体区分的转化体,并且转移到由N6培养基(没有2,4-D),5mg/l ABA,2mg/l BAP,1mg/l NAA和20mg/l的潮霉素B的预再生培养基(PRH),培养9-12天。然后将转化体转移到由N6(没有2,4-D),3mg,1LBAP,0.5mg/1NAA,和没有潮霉素B组成的再生培养基(RN)上,并且在连续光照条件下培养2星期。当再生的植株到1-3厘米高时,将幼苗转移到生根培养基,它的强度是含有0.05mg/1NAA的MS培养基的一半。在2个星期内,生根培养基上的幼苗发育为根并且它的茎的生长超过10厘米。然后将植物转移到含有50%的商品土壤,Sunshine(Sun Gro Horticulture Inc.WA)和50%自然土壤的2.5英寸的盆。将置于透明的塑料容器内以保持100%的湿度。在光照条件下培养植物1星期。然后将透明塑料盖每天逐渐开大以逐渐减低湿度,之后完全去除塑料盖。如果必要加入水和肥料。当植物生长到约5英寸高时,将它们转移到温室以生长到成熟。
表1显示了所进行试验以测定选择性标记物基因的整合和在与选择性标记物载体共转化的载体上携带的异源“靶”基因的整合之间的关系的结果。对于hph选择性标记物基因的稳定的整合的PCR分析显示100%的如上所述的转化和选择的水稻植株含有hph基因。与选择性标记物载体共转化的在载体上携带的各种靶基因(例如GUS)也以非常高的效率整合,如PCR分析和Southern印迹证实(表2)。总之,除了选择性标记物基因,与选择性标记物载体和靶载体共转化的97%的再生植株携带靶基因。
                                表1
  靶载体   选择性标记物载体 选择性标记物基因温表   靶基因
  PCR阳性   PCR阴性   PCR阳性   PCR阴性
  pAPI65   pAP176   33   0   33   0
  pAPI72   pAP176   27   0   27   0
  pAPI96   pAP176   30   0   30   0
  pAPI85   pAP176   26   0   22   4
  pAPI98   pAP176   13   0   13   0
  pAPI9O   pAPfl6   13   0   13   0
  pAPI64   pAN76   13   0   13   0
  pAPI178   pAPt76   28   0   26   2
  总数   133   0   177   6
                     实施例3
            用多个质粒转化愈伤组织细胞
为了用多个基因转化水稻的愈伤组织细胞,基本上如上所述选择9个不同的植物转化载体。8个质粒含有异源基因,并且第9个表达如上所述构建的嵌合选择性标记物基因。将9个质粒以1∶1∶1∶1∶1∶1∶1∶1∶1的摩尔比例(即异源载体DNA预选择性标记物载体的比例为8∶1)进行混合。将总共为40微克的载体混合物用于包被48毫克的金颗粒并且用于轰击3个平板。
PCR分析显示如上所述转化,选择和再生的所有再生植物携带hph基因。5个代表性转基因植物进行Southern分析以测定当所有9个基因共整合到水稻基因组时的频率(附图2)。基因的整合可以以单个到多个拷贝发生。5个转基因植物中的两个(10p-8和10p-34)含有来自于所有9个质粒的DNA。留下的植物携带来自于9个共转化的基因的7个(10p-28和10p-64)或8个(10p-2)的DNA。
D.用高分子量质粒转化水稻
高分子量质粒来自于细菌人工染色体(BAC)文库(Yang DC,等人(1997)应用遗传学理论95:1147-1154)。BAC DNA和pAPr76选择性标记物载体以1∶1的摩尔比例在包被金颗粒之前混合。将约40微克的混合的DNA用于包被48微克的金颗粒以轰击3个植物。如上所述,轰击,选择和植物再生。
限制性图谱表明两个BAC克隆的分子量(附图)超过50kb。在转化之后,获得77个植株。用hph和氯霉素基因进行的PCR分析显示大多数的植物携带两个基因。来自于5个代表性的组基因植物的DNA采用Southern印迹进行分析(附图3B)。由于BAC克隆的插入物来自于水稻基因组(Yang等人,见上文),讲转化的DNA和天然的DNA区分是困难的,因此将BAC克隆的载体片段用作为探针。推测如果该载体整合到水稻基因组,相同质粒上的BAC DNA的任何部分具有等同的机会整合到水稻基因组。
                           序列表
SEQ ID NO:1:Gns 9启动子
GGATCCAGGG GACTTAACTT TAGTCCATAT ATTTAGACAC TAATTTAGAG TATTAAATAT     60
AAATTACTTA CAAAACTAAT TCAATAAATG AAAGCTAATT TGCGAGACAA ATTTTTTATG    120
TTTAATTAAT CCATAATTAG AGAATGTTTA CTGTAGCATC ACATAGACTA ATCATGGATT    180
AATTAGGCTC AATAGATTCG TCTCGTGAAT TAGTCCAAGA TTATGGATGG ATTTTATTAA    240
TAGTCTACGT TTAATATTTA TAATTAGTGT TCAAACATCC GATGTGATAG GGACTTAAAA    300
AGTTTAGTCC CATCTAAACA GGGCCACAGT CTATGTGGAG CATGTTCACC GAACACCGAT    360
AAATATTGCA AAGCCCAGAA TGATTTTGGT CCCACATGCC AGAAACTACC ACACCCACAT    420
TTCGGTTCAT TTTCAGCTCA GGAAAATCGT CCAACAATTT CAGCTCAGGA AATTAAATCG    480
TCCGAGAAAG GAACAAGTTT GGAGCCGTTG GGATGAGAGC AATTAGGTCA CGCTTAACTA    540
CAAGTACAGT CTCATTCATC GCCATTGATT AGCCAGCAAC TAACCACTTA ACCCCGAGCC    600
AGCCCAAGCG CTCCGTACGT TCGTTGGGCC CCCGCCGCGC AGGCGGAGAC AACGGTCATC    660
CGGCGCGCCG GTCGCTCTCC CTCGCTCGCA CGGCCGCACC ACCCACTTCG CCACGAACCC    720
GACGCGAGCG CGACGTGCAT CTCCCAACAT CCCCGCCATT TCCTCCCCAC CCAAAACCAA    780
CCCGCCCGCG TGCGGCTGGC CCAGTTTACA GCGCCTCACC TCCCCCAACC ATAAATCCCC    840
GCCCTTTTCC CCCCCTCTCC ACCACTCACC ACGCTCTCCA CTACACGACT CGTCGCCGTC    900
TTGCTCTGCT GCCTCTCGCG CCCGCGCAGC AGTGAGCAGC AGCAAGAGCA GCAAA         955
SEQ ID NO:2  Gns9-HPH-Ramy1A嵌合可选择标记物基因
AACTTTAGTCCATATATTTAGACACTAATTTAGAGTATTAAATATAAATTACTTACAAAACTAATTCAATAAATG
AAAGCTAATTTGCGAGACAAATTTTTTATGTTTAATTAATCCATAATTAGAGAATGTTTACTGTAGCATCACATA
GACTAATCATGGATTAATTAGGCTCAATAGATTCGTCTCGTGAATTAGTCCAAGATTATGGATGGATTTTATTAA
TAGTCTACGTTTAATATTTATAATTAGTGTTCAAACATCCGATGTGATAGGGACTTAAAAAGTTTAGTCCCATCT
AAACAGGGCCACAGTCTATGTGGGAGCATGTTCACCGAACACCGATAAATATTGCAAAGCCCAGATGATTTTGGT
CCCACATGCCAGAAA
CTACCACACCCACATTTCGGTTCATTTTCAGCTCAGGAAAATCGTCCAACAATTTCAGCTCAGGAAATTAAATCG
TCCGAGAAAGGAACAAGTTTGGAGCCGTTGGGATGAGAGCAATTAGGTCACGCTTAACTACAAGTACAGTCTCAT
TCATCGACATTGATTAGCCAGCAACTAACCACTTAACCCCGAGCCAGCCCAAGCGCTCCGTACGTTCGTTGGGCC
CCCGCCGCGCAGGCGGAGACAACGGTCATCCGGCGCGCCGGTCGCTCTCCCTCGCTCGCACGGCCGCACCACCCA
CTTCGCCACGAACCCGACGCGAGCGCGACGTGCATCTCCCAACATCCCCGCCATTTCCTCCCCACCCAAAACCAA
CCCGCCCGCGTGCGGCTGGCCCACTTTACAGCGCCTCACCTCCCCCAACCATAAATCCCCGCCCTTTTCCCCCCC
TCTCCACCACTCACCACGCTCTCCACTACACGACTCGTCGCCGTCTTGCTCTGCTGCCTCTCGCGCCCGCGCAGC
AGTGAGCAGCAGCAAGAGCAGTCTAGAACTAGTGGATCCCGGGGGGCAATGAGATATGAAAAAGCCTGAACTCAC
CGCGACGTCTGTCGAGAAGTTTCT
GATCGAAAAGTTCGACAGCGTCTCCGACCTGATGCAGCTCTCGGAGGGCGAAGAATCTCGTGCTTTCAGCTTCGA
TGTAGGAGGGCGTGGATATGTCCTGCGGGTAAATAGCTGCGCCGATGGTTTCTACAAAGATCGTTATGTTTATCG
GCACTTTGCATCGGCCGCGCTCCCGATTCCGGAAGTGCTTGACATTGGGGAATTCAGCGAGAGCCTGACCTATTG
CATCTCCCGCCGTGCACAGGGTGTCACGTTGCAAGACCTGCCTGAAACCGAACTGCCCGCTGTTCTGCAGCCGGT
CGCGGAGGCCATGGATGCGATCGCTGCGGCCGATCTTAGCCAGACGAGCGGGTTCGGCCCATTCGGACCGCAAGG
AATCGGTCAATACACTACATGGCGTGATTTCATATGCGCGATTGCTGATCCCCATGTGTATCACTGGCAAACTGT
GATGGACGACACCGTCAGTGCGTCCGTCGCGCAGGCTCTCGATGAGCTGATGCTTTGGGCCGAGGACTGCCCCGA
AGTCCGGCACCTCGTGCACGCGGATTTCGGCTCCAAGAATGTCCTGACGGACAATGGCCGCATAACAGCGGTCAT
TGACTGGAGCGAGGCGATGTTCGGGGATTCCCAATACGAGGTCGCCAACATCTTCTTCTGGAGGCCGTGGTTGGC
TTGTATGGAGCAGCAGACGCGCTACTT
CGAGCGGAGGCATCCGGAGCTTGCAGGATCGCCGCGGCTCCGGGCGTATATGCTCCGCATTGGTCTTGACCAACT
CTATCAGAGCTTGGTTGACGGCAATTTCGATGATGCAGCTTGGGCGCAGGGTCGATGCGACGCAATCGTCCGATC
CGGAGCCGGGACTGTCGGGCGTACACAAATCGCCCGCAGAAGCGCGGCCGTCTGGACCGATGGCTGTGTAGAAGT
ACTCGCCGATAGTGGAAACCGACGCCCCAGCACTCGTCCGGGATCCCCCCTACGCAACCCGGGAGAAAATCTGAG
CGCACGATGACGAGACTCTCAGTTTAGCAGATTTAACCTGCGTTTTTTACCCTGACCGGTATACGTATATACGTG
CCGGCAACGAGCTGTATCCGATCCGAATTACGGATGCAATTGTCCACGAAGTACTTCCTCCGTAAATAAAGTAGG
ATCAGGGACATACATTTGTATGGTTTTACGAATAATGCTATGCAATAAAATTTGCACTGCTTAATGCTTATGCAT
TTTTGCTTGGTTCGATTGTACTGGTGAATTATTGTTACTGTTCTTTTTACTTCTCGAAT

Claims (23)

1.在选定的诱导条件下用一个或多个能够在水稻种子中产生异源蛋白质的异源基因转化水稻植物的方法,包括
将一组两个或更多个表达盒共转化水稻愈伤组织细胞,所述的组包括:
(a)以5’到3’方向的可操作连接在序列中的可选择性标记物表达盒具有(i)转录调节区,它在转化的愈伤组织细胞中以比在所说的选定的靶组织中显著高的水平表达,并且在高严谨条件下与具有序列SEQ IDNO:1的水稻β-葡聚酶基因启动子的互补序列杂交;(ii)一个选择性标记基因,所述的调节区能够促进所述的可选择标记基因的表达,和(iii)一个3’未翻译的终止子区域;和
(b)至少一个异源基因表达盒,在序列中以5’到3’方向可操作连接的所说的异源基因表达盒具有(i)调节启动子,它在植物种子中被表达,诱导或可诱导的,(ii)编码选定的异源蛋白质的DNA序列,和(iii)一个3’未翻译的终止子区域;
在没有可选择性标记物基因表达的条件下,在有效地阻止愈伤组织细胞生长的选择剂的存在下培养愈伤组织;
根据其在选择剂存在下的生长情况证明,选择表达可选择标记物的那些愈伤组织细胞;和
在非选择性条件下将选定的愈伤组织细胞再生为转基因植物;其中在具有序列SEQ ID NO:1的Gns9启动子中包含可选择性标记基因中的转录调节区域。
2.根据权利要求1所述的方法,其中在种子成熟或种子萌发过程中诱导异源基因表达盒中转录调节区域。
3.根据权利要求1所述的方法,其中可选择的标记物基因编码潮霉素磷酸转移酶,并且选择剂是潮霉素B。
4.根据权利要求1所述的方法,为了由多个异源基因转化水稻植物,其中异源基因表达盒包括多个多联嵌合基因,每个基因以5’到3’方向可操作连接在序列中,具有(i)可在植物种子中可诱导的调节启动子,(ii)编码异源蛋白质的DNA序列,和(iii)一个3’未翻译的终止子区域。
5.根据权利1所述的方法,为了由多个异源基因转化水稻植物,其中以可选择标记物表达盒和多个异源表达盒共转化愈伤组织细胞,每个表达盒以5’到3’方向可操作连接在序列中,具有(i)可在植物种子中可诱导的调节启动子,(ii)编码异源蛋白质的DNA序列,和(iii)一个3’未翻译的终止子区域。
6.根据权利要求1所述的方法,其中所述的转化包括用包被了可选择标记物和异源基因表达盒的金颗粒轰击愈伤组织细胞。
7.根据权利要求6所述的方法,其中金颗粒含有至少4个不同的异源基因表达盒。
8.根据权利要求1所述的方法,所述的水稻是用至少4个不同的异源基因转化,以在种子成熟或萌发期间表达。
9.根据权利要求1所述的方法,其中所述的转化的水稻还包含所述的转基因的水稻植物的种子。
10.根据权利要求1所述的方法,其中所述的至少一种异源基因表达盒含有至少4个不同的表达盒。
11.植物转化表达盒组,用于以一个或多个异源基因转化水稻植物,所述的基因能够在水稻植物种子中产生异源蛋白质,所述表达盒组包括
(a)序列中以5’到3’方向可操作连接的含有嵌合可选择标记物基因的可选择性标记物表达盒,具有(i)转录调节区,它在转化的愈伤组织细胞中以比在所说的选定的靶组织中显著高的水平表达,并且包括在高严谨条件下有效地与具有序列SEQ ID NO:1的水稻β-葡聚酶基因启动子的互补序列杂交的序列;(ii)一个选择性标记基因,所述的调节区能够促进所述的可选择标记基因的表达,和(iii)一个3’未翻译的终止子区域;和
(b)至少一个异源基因表达盒,它以5’到3’方向可操作连接在序列中,具有(i)调节启动子区,它植物种子中可诱导的,(ii)编码异源蛋白质的DNA序列,和(iii)一个3’未翻译的终止子区域;
其中在具有序列SEQ ID NO:1的Gns9启动子中包含可选择性标记基因中的转录调节区域。
12.根据权利要求11所述的表达盒组,其中具有序列SEQ ID NO:1的序列中包含选择性标记基因中的转录调节区域。
13.根据权利要求12所述的表达盒组,其中在种子成熟或种子萌发过程中异源基因表达盒中可诱导转录调节区域。
14.根据权利要求11所述的表达盒组,为了由多个异源基因转化水稻植物,其中异源基因表达盒包括多个多联嵌合基因,每个基因可操作连接以5’到3’方向的序列,具有(i)调节启动子区,它在植物种子中可被诱导,(ii)编码异源蛋白质的DNA序列,和(iii)一个3’未翻译的终止子区域。
15.根据权利要求11所述的表达盒组,为了由多个异源基因转化水稻植物,其中异源基因表达盒包括多个异源表达盒,每个表达盒以5’到3’方向可操作连接到序列中,所述的每个表达盒具有(i)调节启动子区,它在植物种子中可被诱导,(ii)编码异源蛋白质的DNA序列,和(iii)一个3’未翻译的终止子区域。
16.植物转化表达盒,用于以可选择标记物基因转化水稻植物细胞,在5’到3’方向所述的表达盒包括:
(i)转录调节区,其包括一个序列,所述序列在愈伤组织细胞中以比在选定的靶组织中显著高的水平表达,并且在高严谨条件下与具有序列SEQ ID NO:1的水稻β-葡聚酶基因启动子杂交;
(ii)一个选择性标记基因,所述的调节区能够促进所述的可选择标记基因的表达,和
(iii)一个3’未翻译的终止子区域;
其中在具有序列SEQ ID NO:1的Gns9启动子中包含可选择性标记基因中的转录调节区域。
17.根据权利要求16所述的表达盒,其中具有序列SEQ ID NO:1的序列中包含可选择标记物基因中的转录调节区域。
18.根据权利要求16所述的表达盒,其中可选择标记物基因选自于nptII潮霉素抗性基因,膦丝菌素乙酰转移酶基因和潮霉素磷酸转移酶基因。
19.根据权利要求18所述的表达盒,其中可选择标记物基因编码潮霉素磷酸转移酶。
20.根据权利要求18所述的表达盒,其中3’未翻译终止子区域是3’未翻译区域,它来自于水稻α-淀粉酶1A(Ramy1A)基因。
21.根据权利要求18所述的表达盒,其中嵌合可选择标记物基因具有由SEQ ID NO:2识别的序列。
22.根据权利要求18所述的表达盒,在植物转化载体中进一步包括异源蛋白质的第二个表达载体,在序列中以5’到3’方向可操作连接的所述第二个表达盒具有(i)调节启动子区,它在植物种子中可被诱导,(ii)编码异源蛋白质的DNA序列,和(iii)一个3’未翻译的终止子区域。
23.根据权利要求22所述的表达盒,它在所述载体中以串联方式携带第二个表达盒。
CNB998077828A 1998-06-25 1999-06-25 植物可选择标记物和植物转化方法 Expired - Fee Related CN1309835C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US9089698P 1998-06-25 1998-06-25
US60/090,896 1998-06-25

Publications (2)

Publication Number Publication Date
CN1306579A CN1306579A (zh) 2001-08-01
CN1309835C true CN1309835C (zh) 2007-04-11

Family

ID=22224859

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB998077828A Expired - Fee Related CN1309835C (zh) 1998-06-25 1999-06-25 植物可选择标记物和植物转化方法

Country Status (7)

Country Link
US (1) US6284956B1 (zh)
EP (1) EP1090134A1 (zh)
JP (1) JP2002518055A (zh)
CN (1) CN1309835C (zh)
AU (1) AU774004B2 (zh)
CA (1) CA2331385A1 (zh)
WO (1) WO1999067406A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6781044B2 (en) * 1998-06-25 2004-08-24 Ventria Bioscience Plant selectable marker and plant transformation method
WO2002064814A2 (en) 2001-02-14 2002-08-22 Ventria Bioscience Expression of human milk proteins in transgenic plants
US7659102B2 (en) 2001-02-21 2010-02-09 Verenium Corporation Amylases, nucleic acids encoding them and methods for making and using them
WO2002068597A2 (en) 2001-02-21 2002-09-06 Diversa Corporation Enzymes having alpha amylase activity and methods of use thereof
AU2003285906A1 (en) 2002-10-31 2004-06-07 Diversa Corporation Amylases, nucleic acids encoding them and methods for making and using them
CA2515340C (en) * 2003-03-06 2016-04-26 Diversa Corporation Amylases, nucleic acids encoding them and methods for making and using them
ES2620288T3 (es) 2006-12-21 2017-06-28 Basf Enzymes Llc Amilasas y glucoamilasas, ácidos nucleicos que las codifican y métodos para formarlas y utilizarlas
CN101993482B (zh) * 2009-08-24 2013-04-03 夏新界 与水稻长粒卷叶相关的蛋白及其编码基因与应用
EP2357239A1 (en) * 2009-10-29 2011-08-17 Universität zu Köln Methods and means for a selectable marker system in plants
CN102191243B (zh) * 2010-03-04 2012-11-28 北京北方杰士生物科技有限责任公司 一种来源于水稻的植物转化终止子dna序列及其应用
CN102876694B (zh) * 2012-11-01 2013-08-28 中国农业科学院生物技术研究所 优化的葡聚糖酶基因及其重组植物表达载体和应用
CN116004558B (zh) * 2020-11-02 2024-05-07 武汉大学 乙酰转移酶OsG2基因及其编码的蛋白质在调节水稻植株高度方面的应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993005164A1 (en) * 1991-09-02 1993-03-18 The University Of Leicester Callus-specific promoters

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5420034A (en) * 1986-07-31 1995-05-30 Calgene, Inc. Seed-specific transcriptional regulation
WO1998059046A1 (en) * 1997-06-25 1998-12-30 The Regents Of The University Of California Rice beta-glucanase enzymes and genes

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993005164A1 (en) * 1991-09-02 1993-03-18 The University Of Leicester Callus-specific promoters

Also Published As

Publication number Publication date
WO1999067406A1 (en) 1999-12-29
CA2331385A1 (en) 1999-12-29
JP2002518055A (ja) 2002-06-25
AU4834899A (en) 2000-01-10
US6284956B1 (en) 2001-09-04
EP1090134A1 (en) 2001-04-11
CN1306579A (zh) 2001-08-01
AU774004B2 (en) 2004-06-10

Similar Documents

Publication Publication Date Title
CN1210404C (zh) 用于表达植物中导入的基因的乙酰羟酸合成酶启动子
CN1145691C (zh) 抗旱或抗盐胁迫转基因谷类植物的生产
CN1309699A (zh) 植酸酶变体
CN1309835C (zh) 植物可选择标记物和植物转化方法
CN1930293A (zh) 具有降低的饱和脂肪酸水平的转基因植物及其制备方法
CN1191357C (zh) 口服的免疫原性细菌肠毒素在转基因植物中的表达
CN1914321A (zh) 来自甘薯的蔗糖诱导型启动子
CN1292822A (zh) 修饰植物中次级代谢化合物水平的方法和组合物
CN1219885C (zh) 转基因植物及其生产方法
CN101063139A (zh) 一种种子特异性高效启动子及其应用
CN1195856C (zh) 启动子
CN1367831A (zh) Bnm3转录激活物控制植物胚胎发生和再生过程的用途
CN1887903A (zh) 硅藻的硝酸盐转运蛋白及其编码基因与应用
CN101056983A (zh) 用于植物的启动子分子
CN1842601A (zh) 通过靶向抑制内源贮藏蛋白增强植物种子中异源多肽的累积
CN1202203A (zh) 植物谷胱甘肽s-转移酶启动子
CN1685047A (zh) 用于生产转质体基因组被子植物的载体
CN1821395A (zh) 一种水稻促分裂原活化蛋白激酶及其编码基因与应用
CN1330720A (zh) 硫氧还蛋白和谷物加工
CN1325448A (zh) 植物纤维的修饰
CN101050462A (zh) 来源于拟南芥的缺磷诱导基因及其编码蛋白与应用
CN1130375C (zh) 抗虫融合蛋白,其编码基因以及用该基因生产转基因植株的方法
CN1766116A (zh) 一种提高农作物对土壤植酸磷利用能力的方法
CN1537861A (zh) 从大豆中分离到的种子特异性启动子序列及其应用
CN105693834B (zh) 大豆蛋白GmVPS9a2在调控植物贮藏蛋白分选中的应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070411

Termination date: 20150625

EXPY Termination of patent right or utility model