CN1308225C - 合成气及合成气衍生产品的制备 - Google Patents

合成气及合成气衍生产品的制备 Download PDF

Info

Publication number
CN1308225C
CN1308225C CNB2003801022614A CN200380102261A CN1308225C CN 1308225 C CN1308225 C CN 1308225C CN B2003801022614 A CNB2003801022614 A CN B2003801022614A CN 200380102261 A CN200380102261 A CN 200380102261A CN 1308225 C CN1308225 C CN 1308225C
Authority
CN
China
Prior art keywords
synthetic gas
stage
gas
partial oxidation
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2003801022614A
Other languages
English (en)
Other versions
CN1708451A (zh
Inventor
马丁·雅各布斯·凯泽
马古图·克尔特泽恩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sastech Pty Ltd
Original Assignee
Sastech Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sastech Pty Ltd filed Critical Sastech Pty Ltd
Publication of CN1708451A publication Critical patent/CN1708451A/zh
Application granted granted Critical
Publication of CN1308225C publication Critical patent/CN1308225C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/36Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using oxygen or mixtures containing oxygen as gasifying agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/48Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents followed by reaction of water vapour with carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/06Continuous processes
    • C10J3/16Continuous processes simultaneously reacting oxygen and water with the carbonaceous material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/74Construction of shells or jackets
    • C10J3/76Water jackets; Steam boiler-jackets
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/002Removal of contaminants
    • C10K1/003Removal of contaminants of acid contaminants, e.g. acid gas removal
    • C10K1/004Sulfur containing contaminants, e.g. hydrogen sulfide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/002Removal of contaminants
    • C10K1/003Removal of contaminants of acid contaminants, e.g. acid gas removal
    • C10K1/005Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/08Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors
    • C10K1/16Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors with non-aqueous liquids
    • C10K1/165Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors with non-aqueous liquids at temperatures below zero degrees Celsius
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K3/00Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
    • C10K3/001Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by thermal treatment
    • C10K3/003Reducing the tar content
    • C10K3/005Reducing the tar content by partial oxidation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K3/00Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
    • C10K3/02Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment
    • C10K3/04Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment reducing the carbon monoxide content, e.g. water-gas shift [WGS]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/025Processes for making hydrogen or synthesis gas containing a partial oxidation step
    • C01B2203/0255Processes for making hydrogen or synthesis gas containing a partial oxidation step containing a non-catalytic partial oxidation step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0415Purification by absorption in liquids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0475Composition of the impurity the impurity being carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0485Composition of the impurity the impurity being a sulfur compound
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/062Hydrocarbon production, e.g. Fischer-Tropsch process
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/80Aspect of integrated processes for the production of hydrogen or synthesis gas not covered by groups C01B2203/02 - C01B2203/1695
    • C01B2203/84Energy production
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/093Coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0959Oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0973Water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1603Integration of gasification processes with another plant or parts within the plant with gas treatment
    • C10J2300/1618Modification of synthesis gas composition, e.g. to meet some criteria
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/164Integration of gasification processes with another plant or parts within the plant with conversion of synthesis gas
    • C10J2300/1656Conversion of synthesis gas to chemicals
    • C10J2300/1659Conversion of synthesis gas to chemicals to liquid hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1861Heat exchange between at least two process streams
    • C10J2300/1884Heat exchange between at least two process streams with one stream being synthesis gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1861Heat exchange between at least two process streams
    • C10J2300/1892Heat exchange between at least two process streams with one stream being water/steam

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Industrial Gases (AREA)

Abstract

一种制备合成气的方法(10),该方法包括:在气化阶段(12),气化含碳原料,从而提供至少包括H2、CO和CH4的原合成气;以及在部分氧化阶段(14),在氧气存在下,部分氧化原合成气,从而提供比原合成气所含的CH4少、H2和CO多的改良合成气。本发明延及一种制备合成气衍生产品的方法。

Description

合成气及合成气衍生产品的制备
技术领域
本发明涉及合成气和合成气衍生产品的制备。具体地,本发明涉及合成气的制备方法,和合成气衍生产品的制备方法。
背景技术
为了制备合成气,使用气化器气化固体含碳原料。当使用某些气化器如鲁奇(Lurgi商品名)移动床气化器由煤炭制备合成气时,产生大量的甲烷,并且在由气化器制备的原合成气中存在焦油和固体。在许多依靠使用气化器由固体含碳原料制备的合成气原料的方法中,如费希尔-特罗凯(Fischer-Tropsch)合成气转化方法,合成气中的甲烷会导致问题,因为它惰性地通过该工艺时显著地降低设备的性能。由于为了去除焦油和固体,合成气首先必须淬火,因此合成气中的焦油和固体也会导致问题。其影响在于由于淬火过程中的热能的损失导致降低合成气的蒸汽产生能力,从而仅生成低压蒸汽。
发明内容
根据本发明的一个技术方案,提供一种制备合成气的方法,该方法包括:
在气化阶段,在蒸汽和氧气存在下、在低于含碳原料的灰熔温度的温度下气化含碳原料,从而提供包括至少H2、CO、CH4、高级烃、焦油和固体的原合成气;
将原合成气送入部分氧化阶段;以及
在部分氧化阶段中,通过使原合成气在氧气的存在下、在高于灰熔温度的温度下进行部分氧化而部分地氧化CH4,以提供CO和H2,并且裂解和燃烧焦油和高级烃,从而提供了熔渣和基本上不含有重质烃和固体、并且与原合成气比含有较少CH4的改良合成气。
部分氧化阶段典型地为非催化的热部分氧化阶段。典型地,当含碳原料为煤炭等时,原合成气包含焦油和固体。有利地,通过使原合成气进行热部分氧化,制备的改良合成气基本不含有重质烃(如焦油)和固体、以及甲烷,从而避免了为去除焦油和固体而用水淬火原合成气。固体可以作为熔渣从部分氧化反应器中被去除。
可以在约1000℃~约1600℃之间的温度下进行热部分氧化,更优选在约1100℃~约1400℃之间,如在约1300℃的温度下。部分氧化阶段的操作温度必须高于灰烬熔化温度。
该方法可以包括使改良合成气进行水-煤气变换反应的阶段,从而提供具有更理想的H2和CO摩尔比、如1∶1.7或1∶2的摩尔比的富氢的合成气。使改良合成气进行水-煤气变换反应的阶段典型地包括在至少400℃、优选在约410~约450℃之间的温度下向该改良合成气中加入蒸汽。
该方法可以包括在冷却阶段冷却改良合成气并制备蒸汽。在冷却阶段,在至少34bar、优选在至少41bar压力下制备蒸汽。该高压蒸汽可以有利地在气化阶段和/或在水-煤气变换反应阶段中使用,从而无需制备或提供额外的高压蒸汽。典型地,在冷却阶段,从合成气中去除冷凝水。改良合成气可以被冷却至所述水-煤气变换反应阶段的操作温度,典型地在700℃~900℃之间。
该方法也可以包括在冷却阶段冷却富氢的合成气并制备蒸汽。该蒸汽可以为高压蒸汽,即在至少34bar压力下。
典型地,在氧气和蒸汽存在下,使用如鲁奇(Lurgi,商品名)移动床气化器的气化器气化含碳原料。
该方法可以包括在重整阶段重整蒸汽和含甲烷的原料。重整阶段的产品蒸汽可以与改良合成气混合。可以由高温改良合成气获得这种重整反应所需的能量,也就是,部分在冷却步骤中可以被用于产生蒸汽的能量可以被用于为重整阶段提供能量。
在该方法的包括重整阶段的优选实施例中,因此该重整阶段是气热重整阶段,其中,改良合成气在为重整阶段提供能量的同时被冷却。
因而,该方法可以包括向重整阶段加入气态或液态的含甲烷的原料。
根据本发明的另一技术方案,提供了一种生产合成气衍生产品的方法,该方法包括以下步骤:
以前述方法制备合成气;以及
在合成气转换阶段,将合成气转化为合成气衍生产品。
在本发明的一个实施例中,合成气转换阶段为费希尔-特罗凯烃合成阶段。然而,可以理解,合成气转换阶段可以为任何需要合成气的合成阶段,如甲醇、高级醇或氧代醇合成阶段。
费希尔-特罗凯烃合成阶段可以使用任何适当的反应器,如管形固定床反应器(tubular fixed bed reactor)、泥浆床反应器(slurry bed reactor)或循环床反应器(ebullating bed reactor)。反应器内的压力可以在1bar~100bar之间,同时温度可以在200℃~380℃之间。优选地,费希尔-特罗凯烃合成阶段为高温的费希尔-特罗凯烃合成阶段。因而,反应器包括微粒形态的费希尔-特罗凯催化剂。该催化剂可以包括作为其活性催化组分的Co、Fe、Ni、Ru、Re和/或Rh。可以用一种或多种选自碱金属、V、Cr、Pt、Pd、La、Re、Rh、Ru、Th、Mn、Cu、Mg、K、Na、Ca、Ba、Zn以及Zr的助催化剂促进该催化剂。该催化剂可以为载体催化剂,其中如Co的活性催化剂组分可以负载于如Al2O3、TiO2、SiO2、ZnO或其组合的适当的载体上。
该方法可以包括在将合成气转化为合成气衍生物之前去除该合成气中的硫化合物的步骤。去除硫化合物可以包括使用所谓的甲醇吸收法脱酸性气过程(Rectisol process),其中用甲醇洗涤该合成气。
在合成气的转换阶段中,可以形成包括CH4的产品气。CH4可以从产品气中分离。在本发明的一个实施例中,在冷分离阶段从一种或多种冷凝流中分离CH4。分离的CH4可以被燃烧。或者,该分离的CH4可以被再循环到部分氧化阶段。因而,本发明的方法一个实施例的特征在于,合成气转化阶段的后续处理不需要重整阶段,如蒸汽重整阶段,因为该方法的这一实施例中含碳物质的气化过程中形成的甲烷的大部分的,及可选择地,重循环的甲烷的大部分在部分氧化阶段被氧化。
在包括重组阶段的该方法的另一实施例中,在合成气转化阶段形成包括CH4的产品气,该方法进一步包括从产品气中分离CH4、并且再循环CH4到重整阶段。
附图说明
根据附加的简图,通过实施例描述本发明,其中
图1说明根据本发明的制备合成气衍生产品的方法的实施例,该方法包括制备合成气的方法;
图2说明了根据本发明的制备合成气衍生产品的方法的另一实施例,该方法包括制备合成气的方法。
具体实施方式
根据图1,附图标记10通常表示根据本发明的制备合成气衍生产品的方法。
如图1中的简化流程图所示,方法10包括气化阶段12、部分氧化阶段14、第一冷却阶段15、水-煤气变换反应阶段16、第二冷却阶段18、合成气脱硫阶段20、合成气转化阶段22、CO2去除阶段24以及冷却分离阶段26。
煤炭原料管线28及蒸汽和氧气供应管线30进入到气化阶段12,提供脱灰线32以从气化阶段12去除其中的灰分。原料气体管线34从气化阶段12进到部分氧化阶段14。氧气供应管线36也进到部分氧化阶段14。从部分氧化阶段14引出除渣管线37。
部分氧化阶段14通过改良合成气管线38连接到第一冷却阶段15和水-煤气变换反应阶段16。蒸汽供应管线40也进到水-煤气变换反应阶段16,从而如果需要,提供额外的蒸汽。
由第一冷却阶段15引出高压蒸汽管线17和可能的冷凝物去除管线19。
富氢合成气管线42将水-煤气变换反应阶段16连接冷却阶段18。从冷却阶段18引出高压蒸汽管线44和冷凝物去除管线46。此外,冷却阶段18通过冷却的合成气管线48被连接到合成气脱硫阶段20。
合成气脱硫阶段20具有脱石脑油管线50和脱硫管线52。甲醇供应管线54进入合成气脱硫阶段20。
合成气脱硫阶段20通过最终合成气管线56连接到合成气转化阶段22。由合成气转化阶段22引出中间产物管线58和反应水去除管线60。
CO2去除阶段24通过轻气体管线62连接到合成气转化阶段22,及通过无CO2的轻气体管线64连接到冷分离阶段26。从CO2去除阶段24,取CO2管线66,并且从冷分离阶段26,取冷凝水管线68。此外,由冷分离阶段26引出富甲烷管线70。
典型地,气化阶段12包括多个移动床气化器,如鲁奇(Lurgi,商品名)移动床气化器(图中未显示)。这些气化器制备具有1∶1.7~1∶2的CO∶H2摩尔比的合成气,使其适用于制备在费希尔-特罗凯烃合成阶段使用的合成气。如煤炭供应管线28所示,通过闭锁式料斗(图中未显示)向气化器中添加粗煤炭,同时沿蒸汽和氧气供应管线30加入蒸汽和氧气。需要氧气来燃烧某些煤炭,从而为吸热的气化反应提供能量。典型地,在气化器套(图中未显示)中,由加入到该套中的锅炉给水产生部分所用的蒸汽。蒸汽的压力为40bar(标准),温度为390℃,锅炉给水的压力为40bar(标准)、温度为105℃,并且氧气的压力为29bar(标准)、温度为140℃时。
在各气化器中,在气化器床内,由顶部至底部可划分为不同的反应区,即释放湿气的干燥区、发生高温分解的脱挥发区、主要发生吸热反应的还原区、放热氧化或燃烧区以及位于气化器床的底部的灰床。逆流模式的操作的结果是热灰与加入的冷反应物,如蒸汽和氧气或空气,交换热量,而同时热原气与加入的冷煤炭交换热量。这样使灰烬和原气以与其它类型的气化器比较相对低的温度分别通过脱灰管线32(通过旋转筛和闭锁式料斗后)和原气管线34离开气化阶段12,这样提高了热效率,并且降低了气化器中的蒸汽和氧气的消耗。
在气化器的高温分解区内,焦油、油类和沥青等被释放。在鲁奇(Lurgi,商品名)气化器内的较低操作温度下,这些高温分解产物不被破坏。这些高温分解产物可以被用于制备如氨、硫、甲酚和苯酚的有价值的副产物。
在气化器内发生以下反应
燃烧
       ΔH=-406KJ/mol
还原
       ΔH=160KJ/mol
  ΔH=119KJ/mol
水-煤气变换
  ΔH=-40KJ/mol
甲烷形成
        ΔH=-87KJ/mol
  ΔH=-206KJ/mol
   ΔH=182KJ/mol
在各气化器内的温度特征随煤炭通过气化器内的不同区而变化。在气化区内,温度在800~1200℃之间变化。离开气化阶段12的原合成气典型地在约460℃~500℃之间的温度下,但是该温度也可以更低。
煤炭原料的灰熔温度限定了气化器中的最高温度。灰熔在气化器的底部导致去除灰烬的问题。由于这种限制,温度不能够升高,从而比高温情况下使原合成气中形成更多的甲烷部分。
除H2、CO、CO2、H2O和CH4外,从气化阶段12进入到部分氧化阶段14的原合成气也包括固体颗粒和焦油以及如H2S的污染物。
在部分氧化阶段14,甲烷在氧气通过氧气供应管线36被加入到部分氧化阶段14中的燃烧过程中在约1300℃的温度下被加热部分氧化。在该部分氧化反应中,甲烷被被转化为H2和CO,因此提供了与加入到部分氧化阶段14的原合成气相比含有较少甲烷、更多H2和CO的改良合成气。原合成气中存在的焦油和高级烃被裂解和燃烧,从而使从部分氧化阶段14获得的改良合成气不含有这些会导致问题的组分。固体通过管线37作为残渣从部分氧化阶段14中被去除。
对于本发明的方法10,可能有必要使用沉积阶段(图中未显示),其中,灰粒沉积在收集表面,从而在改良合成气进入合成气转化阶段前,将在部分氧化阶段中可能形成的灰粒从改良合成气中分离。
在第一冷却阶段15中,改良合成气被冷却,同时产生具有约40bar(标准)压力的高压蒸汽并沿管线17被移出。在冷却/蒸汽产生过程中,水可以从改良的合成气中被冷凝,同时通过冷凝物去除管线19排除形成的冷凝水。
在水-煤气变换反应阶段16中,如果改良的原料气体中没有足够的水,可以在约420℃温度下将改良合成气与高压蒸汽混合,同时使改良合成气进行水-煤气变换反应,从而提供具有更理想的约1∶1.7的CO∶H2摩尔比的富氢的合成气。水-煤气变换反应的操作温度必须高于300℃,典型地在700℃~900℃之间。因此,由水-煤气变换反应阶段16得到的富氢的合成气含有比加入到水-煤气变换反应阶段16中的改良合成气更多的氢和较少的CO。
在第二冷却阶段18中,冷却富氢的合成气,同时在约40bar(标准)的压力下产生高压蒸汽。在冷却/蒸汽产生过程中,水从富氢的合成气中被凝结,同时通过冷凝水去除管线46去除该形成的冷凝水。
冷却的合成气通过冷却合成气管线48被传送到合成气脱硫阶段20。合成气脱硫阶段20为从冷却的合成气中去除硫化合物、CO2、高级烃(石脑油)和HCN的所谓的甲醇吸收法脱酸性气过程。
在合成气脱硫阶段20中,在一系列热交换器中进一步冷却上述冷却的合成气(图中未显示),并且去除任何残留的煤气冷凝液。由于冷却的合成气仍然是水饱和的,向合成气中加入甲醇以防止结冰。在包括预洗、主洗和精洗段的吸收装置(图中未显示)的预洗段用更多的甲醇清洗该冷却合成气。在预洗段,石脑油、HCN和水被清除至吸收装置的底部,同时合成气通过主洗和精洗段沿吸收装置上升。在主洗和精洗段,使用甲醇从合成气中去除硫气和CO2。最终的清洗过的合成气从吸收装置的顶部引出,并且沿最终的合成气管线56进入合成气转换阶段22。硫化合物通过脱硫管线52从合成气脱硫阶段20被去除,同时石脑油沿脱石脑油管线50通向精炼厂(图中未显示)。
合成气转换阶段22利用了高温费希尔-特罗凯转换。最终的合成气沿最终的合成气管线56进入费希尔-特罗凯反应器,在该反应器中,最终的合成气中的氢气和CO在基于铁的流化催化剂存在下、在约350℃的区间的适度温度下在压力作用下发生反应,以生成C1~C50范围内的光谱烃。高价值的化学成分同时用于制备合成油。在该反应器中也制备氧化烃和反应水。
最终的合成气以流化铁催化剂床的速率进入费希尔-特罗凯反应器的底部,使费希尔-特罗凯反应在约350℃的温度下和20bar的压力下进行。由于反应是放热的,因而在费希尔-特罗凯反应器中具有生成蒸汽的冷却螺管(图中未显示)以去除反应热。为了避免影响床的空隙度和通过床的压力降,因此当需要时,加入新的铁催化剂而不中断过程,从而保持了合成气的高转化,并且确保催化剂颗粒的颗粒尺寸分布保持恒定。典型地,对于高温流化床费希尔-特罗凯反应器,产品的分布大概如下表所示:
                表1
  组分   产品流的质量百分比
  CH4   8
  C2~C4   25
  燃料范围(石油、柴油等)   62
  氧化物   5
从合成气转换阶段22去除各种中间产品流,如澄清油流和稳定的轻油流,以用于在精炼厂进一步加工。这些流一般用中间产物管线58表示。同样,反应水通过反应水去除管线60从合成气转换阶段22中被去除,从而回收有价值的产品,如醇、酮和有机酸。
轻气体产品沿轻气体管线62从合成气转换阶段22中被提取,并通向CO2去除阶段24。CO2去除阶段是所谓的本菲尔德(Benfieid)分离过程,该分离过程用于从通常包括CO2、H2和CH4的轻气体产品中去除CO2。可以理解,在费希尔-特罗凯合成过程中,由于所谓的水-煤气变换反应而形成了大量的CO2。典型地,CO2约占由合成气转换阶段22提取的轻气体产品的11%。
在CO2去除阶段,使用K2CO3和二乙醇胺的溶液分两个阶段从轻气体中吸附CO2气体。轻气体通过K2CO3洗柱(图中未显示),然后经过二乙醇胺洗柱(图中未显示)。K2CO3溶液和二乙醇胺溶液在两个独立的再生柱(图中未显示)中被再生。典型地,如CO2管线66所示,在K2CO3和二乙醇胺溶液的再生过程中回收的CO2被释放到大气中。可选择地,可以通过将CO2再循环到热部分氧化阶段调节制备的合成气中的H2/CO的比例。
从CO2去除阶段24中出来的无CO2的轻气体流通过无CO2的轻气体管线64被送至冷却分离阶段26以从无CO2的轻气体流的残留气体中分离出甲烷、氢气、乙烯和丙稀。这通过在27bar下将无CO2的轻气体流首先冷却至约15℃、并且去除C3烃片断和水而进行。在第二阶段进一步冷却至-35℃并干燥,去除含C3和C2片断的冷凝流,以用于通过去乙烷柱(图中未显示)进一步纯化。再次冷却无CO2的轻气体流的残余物,并且分离氢气和甲烷。将氢气传送到变压吸收器(pressureswing absorbers)(图中未显示)用于纯化。甲烷冷凝物形式的甲烷通过去甲烷柱(de-methaniser column)(图中未显示)被纯化,然后如图所示由富甲烷管线70从冷却分离阶段26被去除。甲烷可以燃烧,或者返回到部分氧化阶段14。各种在冷却分离阶段26被去除的冷凝物流被送至精炼厂,并且一般用冷凝物管线68表示。
该方法10被数学地模拟,并且以下表格提供了一些通过模拟得到的显著的信息。在该模拟中,假设使用37个鲁奇(Lurgi,商品名)气化器,并且假设该方法10中生成的蒸汽也在该方法10中被使用。以下表格也包括在初合成后进行淬火和冷却的常规鲁奇(商品名)气化方法的对比信息,该常规方法到阶段20、22、24和26为止都类似于该方法10。然而在常规方法中,在蒸汽和氧气存在下(以1∶1.5的碳∶蒸汽比),在自热重组装置中重组由合成气转换阶段22获得的甲烷,并且将其再循环以与气化器中得到的原合成气混合。
          表2
      煤炭原料组成
  组分   质量%
  固定碳   46.03
  灰烬   23.67
  挥发物   22.61
  固有水分   4.18
  焦油   3.50
                          表3
             该方法10各阶段之后的合成气组成和状态
气化阶段12后   部分氧化阶段14后   水-煤气变换反应阶段16后
  温度℃   404   1300   850.00
  压力棒(g)   29.00   29.00   29.00
  H2O(mol%)   34.47   29.79   35.08
  H2(mol%)   20.74   31.89   30.71
  CH4(mol%)   10.64   0.22   0.46
  CO(mol%)   12.20   23.63   17.82
  CO2(mol%)   21.10   13.90   15.42
  N2(mol%)   0.60   0.57   0.51
  焦油(mol%)   0.26   0.00   0.00
  H2/CO比   1.7   1.35   1.7
  总计(kmol/hr) 3898.00 4842.82 5424.84
                                 表4
        加入到合成气转换阶段的最终的合成气
            组成(mol%)
  常规方法   本发明的方法10
  H2O   0.17   0.20
  H2   57.37   62.00
  氩   0.06   0.00
  N2   1.96   1.03
  CO   23.70   35.98
  CO2   2.30   0.06
  C1   14.34   0.93
  乙烯   0.01   0.00
  C2   0.06   0.00
  丙稀   0.02   0.00
  总计(kmol/hr)   115442.80   99497.44
                          表5
                   蒸汽和氧气需要量
  常规方法   本发明的方法
  HP蒸汽(kgmol/hr)   87268.52   95941.00
  O2(kgmol/hr)   15693.54   20702.61
尽管,根据模拟,对于相同数目的气化器,常规方法生成多13.8%的加入到合成气转换阶段22的最终合成气,但是,由于较少的甲烷通过设备,因此本发明的方法10具有多13%的可用设备能力。对于相同设备大小的气化器的后处理程序,如上所述,通过本发明的方法10使用越多的气化器就能够生成越多的合成气。此外,对于本发明的方法10,由该方法10制备了所有该方法需要的高压蒸汽,然而,对于常规方法,需要额外燃烧213吨/小时煤炭,以产生足够的用于氧气压缩和其它目的的蒸汽。尽管可以理解,如果获得额外的甲烷,例如从天然气中,使用甲烷重整装置是合理的,但是,如上所述,本发明的方法10不需要甲烷重整装置。
根据图2,说明了根据本发明的制备合成气衍生产品的方法的另一实施例,并且一般用附图标记100表示。方法100在许多方面类似于方法10,并且除非另有说明,相同的附图标记也表示相同的或类似的特征。
代替方法10的第一冷却阶段15和水-煤气变换反应阶段16,方法100包括气热重整阶段102。甲烷供应管线108、蒸汽供应管线110和富甲烷管线70进入气热重整阶段102内。重整气体管线104从重整阶段102引出,并且与进入冷却阶段18的改良合成气管线38结合。
如图2所示,在方法100中,气化和部分氧化后,在气热重整阶段102中冷却改良合成气,同时在蒸汽存在下沿管线108和70进入到重整阶段102的甲烷被重整。因此,从改良合成气获得重整反应所需的能量。典型地,气化阶段12获得的原气体包括硫。由于已知硫能够抑止导致气体加热重整装置的蚀斑的碳的形成,因此认为原气体中出现的硫对于重整步骤是有利的。因此,在方法100中,可以认为较便宜材料可用于构建气热重整装置100、或气热重整阶段102中所用的重整装置。
可以理解,气热重整阶段102的运行结果是,由于进入冷却阶段18的管线38中改良合成气中的H2/CO的摩尔比适于费希尔-特罗凯烃合成,因此,在方法100中不要求必须使用水-煤气变换反应阶段。
方法10、100被数学地模拟,并且与利用随后淬火和冷却原合成气的鲁奇(商品名)气化方法的常规的基础方法比较。因此,相关阶段12、20、22、24和26,常规方法类似于方法10。然而,在常规方法中,在蒸汽和氧气存在下(以1∶1.5的碳∶蒸汽比),由合成气转换阶段22获得的甲烷使用自热重整装置重整并再循环以与来自气化器的原合成气结合。其中在气化后进行部分氧化和自热重整的方法也被模拟。该方法在下文被称为“方案4”。
在这些模拟中,对于方法10,假设一个或多个气化器生成具有H2/CO摩尔比为1.7的原合成气。对于方法100,假设阶段14和阶段102排出的混合流(全合成气流)中的H2/CO摩尔比为1.9。同样的假设被用于方案4,即在全合成气流(total syngas stream)中的H2/CO摩尔比为1.9。其它的假设包括在1100℃的温度下进行部分氧化阶段,以及从甲烷和焦油的部分氧化获得能量。对于气化器和部分氧化阶段,都假设操作压力为30bar。也假设在30bar下进行所有其它阶段。假设在800℃下进行水-煤气变换反应阶段。在蒸汽产生过程中或在气热重整阶段102中,将部分氧化阶段排出的气体冷却至180℃。在所有情况下,在40bar、420℃温度下生成高压蒸汽,从而可以在该方法中直接被使用。假设锅炉给水在80℃的温度下进入各方法。
下表给出了数学模拟的结果。在表6中,给出了方法10中的由气化阶段12获得的原气体、由部分氧化阶段14获得的改良合成气和由水-煤气变换反应阶段16获得的富氢的合成气的管流组成。表7提供了总气体流的组分,即,如果根据情况由气化阶段12获得原气体(或者对于方法100,由部分氧化阶段14获得改良合成气)和由气热重整阶段102或自热重整阶段获得的重整合成气被混合而获得的组分。在重整情况下,假设每个气化器以600mol/hr额外地加入甲烷。表7提供了上述提及的常规鲁奇气化方法、包括部分氧化并且随后进行自热重整的方法(方案4)、和方法100的结果。
表8提供了由与表7相关的上述三种方法制备的每单位合成气所用的氧气和蒸汽的计算信息。
当气化、部分氧化和自热重整被模拟(方案4)时,与常规的基本气化方法相比,每单位制备的合成气消耗的氧气增加了69%。此时,蒸汽消耗增加了21%,但是如果考虑该方法中产生的蒸汽,则蒸汽消耗下降了6%。当气化、部分氧化和气体热重整(方法100)被模拟时,则氧气的消耗比常规基本气化方法少了9%,并且蒸汽消耗下降了31.5%。如果考虑产生的蒸汽,则每单位制备的合成气的蒸汽消耗下降了60%。这些模拟预测当使用部分氧化时,所有的焦油和重烃被破坏,从而不必进行黑色产品的处理。这意味着可以避免涉及从气化阶段获得的原气体分离焦油和石油的困难。此外,可以理解,如果在该方法中提前重整甲烷,则可获得更多的后续容量。
                                 表6
                 在方法10的各阶段后合成气的组成和状态
气化阶段12后   部分氧化阶段14后   水-煤气变换反应阶段16后
  H2O(mol%)   54.50   39.29   39.79
  H2(mol%)   39.55   24.67   25.88
  CH4(mol%)   8.96   0.01   0.38
  CO(mol%)   22.86   19.74   14.95
  CO2(mol%)   27.17   15.29   18.05
  N2(mol%)   1.47   0.99   0.94
  焦油(mol%)   0.38   0.00   0.00
  总流量(mol/h)   2889.11   5174.31   5431.81
  H2/CO比   1.70   1.25   1.70
  温度(℃)   450-550   1100   800-900
  压力(bar)   30   30   30
                                   表7
由气化获得的原气体和由重整操作获得的重整气体被混合(假设甲烷以600mol/hr被输入到各气化器中)的管流组成
  常规   方案4   方法100
  H2O(mol%)   33.51   46.74   29.35
  H2(mol%)   32.29   26.57   38.58
  CH4(mol%)   0.31   0.02   0.18
  CO(mol%)   16.86   13.96   20.29
  CO2(mol%)   15.94   11.90   10.69
  N2(mol%)   0.86   0.81   0.90
  焦油(mol%)   0.21   0.00   0.00
  总流量(mol/h)   5145.29   9255.20   7686.45
  H2/CO比   1.90   1.90   1.90
                         表8
        制备每单位的合成气所使用的氧气和蒸汽
  常规   方案4   方法100
  O2/合成气   0.19   0.32   0.17
  蒸汽/合成气   1.07   1.30   0.74
  (蒸汽-产生的蒸汽)/合成气   0.90   0.85   0.37

Claims (13)

1、一种制备合成气的方法,该方法包括:
在气化阶段,在蒸汽和氧气存在下、在低于含碳原料的灰熔温度的温度下气化含碳原料,从而提供包括至少H2、CO、CH4、高级烃、焦油和固体的原合成气;
将原合成气送入部分氧化阶段;以及
在部分氧化阶段中,通过使原合成气在氧气的存在下、在高于灰熔温度的温度下进行部分氧化而部分地氧化CH4,以提供CO和H2,并且裂解和燃烧焦油和高级烃,从而提供了熔渣和基本上不含有重质烃和固体、并且与原合成气比含有较少CH4的改良合成气。
2、如权利要求1所述的方法,其特征在于,部分氧化阶段为非催化的热部分氧化阶段。
3、如权利要求2所述的方法,其特征在于,在1000℃~1600℃之间的温度下实现热部分氧化。
4、如权利要求1所述的方法,其特征在于,在移动床气化器中气化含碳原料。
5、如权利要求1所述的方法,该方法还包括使改良合成气进行水-煤气变换反应的阶段,从而提供具有更理想的H2/CO摩尔比的富氢的合成气。
6、如权利要求5所述的方法,该方法包括在使改良合成气进行水-煤气变换反应阶段前,在冷却阶段中冷却改良合成气并且在至少34bar压力下产生蒸汽。
7、如权利要求5所述的方法,该方法包括在冷却阶段中冷却富氢的合成气并在至少34bar压力下产生蒸汽。
8、如权利要求1所述的方法,该方法包括在重整阶段中重整蒸汽和含甲烷的原料,并且将重整阶段的产品流与改良合成气混合。
9、如权利要求8所述的方法,其中,重整阶段为气热重整阶段,其中改良合成气被冷却并同时为该重整阶段提供能量。
10、一种制备合成气衍生产品的方法,该方法包括以下步骤:
以如权利要求1所述的方法制备合成气;
在合成气转换阶段,将合成气转化为合成气衍生产品。
11、如权利要求10所述的方法,其中合成气转换阶段为费希尔-特罗凯烃合成阶段。
12、如权利要求10所述的方法,其中在合成气转换阶段中,形成包括CH4的产品气,该方法进一步包括从产品气中分离CH4并再循环分离的CH4到部分氧化阶段。
13、如权利要求10所述的方法,其中,制备合成气的方法包括在重整阶段中重整蒸汽和含甲烷的原料,制备合成气衍生产品的方法包括在合成气转化阶段中形成包括CH4的产品气,制备合成气衍生产品的方法进一步包括从产品气分离CH4并再循环分离的CH4到重整阶段。
CNB2003801022614A 2002-10-28 2003-10-27 合成气及合成气衍生产品的制备 Expired - Fee Related CN1308225C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ZA200208708 2002-10-28
ZA2002/8708 2002-10-28

Publications (2)

Publication Number Publication Date
CN1708451A CN1708451A (zh) 2005-12-14
CN1308225C true CN1308225C (zh) 2007-04-04

Family

ID=32178054

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2003801022614A Expired - Fee Related CN1308225C (zh) 2002-10-28 2003-10-27 合成气及合成气衍生产品的制备

Country Status (5)

Country Link
US (1) US7008967B2 (zh)
CN (1) CN1308225C (zh)
AU (1) AU2003274439A1 (zh)
WO (1) WO2004037717A1 (zh)
ZA (1) ZA200503843B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8197132B2 (en) 2006-10-06 2012-06-12 Covidien Ag Electronic thermometer with selectable modes

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7618606B2 (en) * 2003-02-06 2009-11-17 The Ohio State University Separation of carbon dioxide (CO2) from gas mixtures
CA2496839A1 (en) 2004-07-19 2006-01-19 Woodland Chemical Systems Inc. Process for producing ethanol from synthesis gas rich in carbon monoxide
US20060101715A1 (en) * 2004-11-17 2006-05-18 Karel Vlok Apparatus and method for coal gasification
WO2006099599A2 (en) * 2005-03-17 2006-09-21 The Ohio State University High temperature co2 capture using engineered eggshells: a route to carbon management
ES2539761T3 (es) 2006-04-05 2015-07-03 Woodland Biofuels Inc. Sistema y método para convertir biomasa en etanol a través del gas de síntesis
US8152874B2 (en) * 2006-06-19 2012-04-10 Siemens Energy, Inc. Systems and methods for integration of gasification and reforming processes
RU2437830C2 (ru) * 2006-07-11 2011-12-27 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Способ получения синтез-газа
US8444725B2 (en) 2006-09-11 2013-05-21 Purdue Research Foundation System and process for producing synthetic liquid hydrocarbon
CN101541398B (zh) * 2006-09-25 2014-01-22 俄亥俄州立大学 单阶段反应器中高纯高压氢气的制备及co2和硫的就地捕获
US7856829B2 (en) * 2006-12-15 2010-12-28 Praxair Technology, Inc. Electrical power generation method
US7501078B2 (en) * 2007-01-10 2009-03-10 Air Products And Chemicals, Inc. Process for generating synthesis gas using catalyzed structured packing
US7951350B1 (en) 2007-01-26 2011-05-31 West Biofuels, Llc Fuel-gas reforming systems and methods
CN101622328B (zh) * 2007-03-01 2013-03-27 株式会社Ihi 流化床气化方法
US9227895B2 (en) * 2007-07-09 2016-01-05 Albemarle Corporation Methods and apparatus for producing alcohols from syngas
US20090093555A1 (en) * 2007-07-09 2009-04-09 Range Fuels, Inc. Methods and apparatus for producing syngas
US8153027B2 (en) * 2007-07-09 2012-04-10 Range Fuels, Inc. Methods for producing syngas
US20090018371A1 (en) * 2007-07-09 2009-01-15 Range Fuels, Inc. Methods and apparatus for producing alcohols from syngas
US20090014689A1 (en) * 2007-07-09 2009-01-15 Range Fuels, Inc. Methods and apparatus for producing syngas and alcohols
US8142530B2 (en) * 2007-07-09 2012-03-27 Range Fuels, Inc. Methods and apparatus for producing syngas and alcohols
WO2009013233A2 (en) * 2007-07-20 2009-01-29 Upm-Kymmene Oyj Method and apparatus for producing liquid biofuel from solid biomass
WO2009023132A1 (en) * 2007-08-10 2009-02-19 International Financial Services #1, Llc Integrated process for carbonaceous material to co2-free fuel gas for power plants and biomass to ethanol
BRPI0818094A2 (pt) 2007-10-09 2015-07-14 Rentech Inc Método para remover alcatrão de um gás, e, sistema e método de gaseificação de biomassa
US8137655B2 (en) * 2008-04-29 2012-03-20 Enerkem Inc. Production and conditioning of synthesis gas obtained from biomass
US8845771B2 (en) * 2008-07-23 2014-09-30 Latif Mahjoob System and method for converting solids into fuel
US20100040510A1 (en) * 2008-08-18 2010-02-18 Randhava Sarabjit S Method for converting biomass into synthesis gas using a pressurized multi-stage progressively expanding fluidized bed gasifier followed by an oxyblown autothermal reformer to reduce methane and tars
US20100256246A1 (en) * 2009-04-06 2010-10-07 Rentech, Inc. System and method for conditioning biomass-derived synthesis gas
US8690977B2 (en) * 2009-06-25 2014-04-08 Sustainable Waste Power Systems, Inc. Garbage in power out (GIPO) thermal conversion process
US11525097B2 (en) 2010-02-08 2022-12-13 Fulcrum Bioenergy, Inc. Feedstock processing systems and methods for producing fischer-tropsch liquids and transportation fuels
US8604088B2 (en) 2010-02-08 2013-12-10 Fulcrum Bioenergy, Inc. Processes for recovering waste heat from gasification systems for converting municipal solid waste into ethanol
US8592492B2 (en) 2010-03-08 2013-11-26 Praxair Technology, Inc. Using fossil fuels to increase biomass-based fuel benefits
US20120291351A1 (en) * 2011-05-16 2012-11-22 Lawrence Bool Reforming methane and higher hydrocarbons in syngas streams
CN103031154A (zh) * 2011-09-30 2013-04-10 上海国际化建工程咨询公司 Bgl气化炉或碎煤加压熔渣气化炉直连非催化部分氧化炉制取合成气或氢气的方法及装置
FI20116107L (fi) * 2011-11-09 2013-05-10 Upm Kymmene Corp Menetelmä ja järjestelmä nestemäisen polttoaineen tuottamiseksi biomassasta
US8895274B2 (en) * 2011-11-28 2014-11-25 Coskata, Inc. Processes for the conversion of biomass to oxygenated organic compound, apparatus therefor and compositions produced thereby
US9290422B2 (en) 2012-11-27 2016-03-22 Praxair Technology, Inc. Hybrid plant for liquid fuel production
US9359558B2 (en) * 2012-11-29 2016-06-07 General Electric Company Carbon to liquids system and method of operation
US9145525B2 (en) 2013-06-26 2015-09-29 Praxair Technology, Inc. Acid gas management in liquid fuel production process
US9562472B2 (en) * 2014-02-12 2017-02-07 Praxair Technology, Inc. Oxygen transport membrane reactor based method and system for generating electric power
US9133075B1 (en) 2014-05-19 2015-09-15 Gerald P Huffman Method to eliminate all carbon dioxide emissions during the production of liquid fuels from coal and natural gas
WO2020142489A1 (en) * 2019-01-02 2020-07-09 Sabic Global Technologies, B.V. Hydrogen enrichment in syngas produced via catalytic partial oxidation
WO2024086269A1 (en) * 2022-10-19 2024-04-25 Saudi Arabian Oil Company Carbon neutral hydrogen production

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3972958A (en) * 1975-04-08 1976-08-03 Mobil Oil Corporation Conversion of coal to high octane gasoline
US4046830A (en) * 1975-09-18 1977-09-06 Mobil Oil Corporation Method for upgrading Fischer-Tropsch synthesis products
EP0082702A1 (en) * 1981-12-23 1983-06-29 Mobil Oil Corporation Conversion of Fischer-Tropsch synthesis products to benzene, xylene and toluene
US4778826A (en) * 1985-09-26 1988-10-18 Amoco Corporation Conversion of a lower alkane
EP0693539A2 (en) * 1994-07-20 1996-01-24 Mitsubishi Jukogyo Kabushiki Kaisha Combustion of organic wastes

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB671490A (en) * 1948-12-04 1952-05-07 Standard Oil Dev Co Synthesis of hydrocarbons
US4199327A (en) * 1978-10-30 1980-04-22 Kaiser Engineers, Inc. Process for gasification of coal to maximize coal utilization and minimize quantity and ecological impact of waste products
US4252736A (en) 1979-06-01 1981-02-24 Mobil Oil Corporation Conversion of synthesis gas to hydrocarbon mixtures utilizing dual reactors

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3972958A (en) * 1975-04-08 1976-08-03 Mobil Oil Corporation Conversion of coal to high octane gasoline
US4046830A (en) * 1975-09-18 1977-09-06 Mobil Oil Corporation Method for upgrading Fischer-Tropsch synthesis products
EP0082702A1 (en) * 1981-12-23 1983-06-29 Mobil Oil Corporation Conversion of Fischer-Tropsch synthesis products to benzene, xylene and toluene
US4778826A (en) * 1985-09-26 1988-10-18 Amoco Corporation Conversion of a lower alkane
EP0693539A2 (en) * 1994-07-20 1996-01-24 Mitsubishi Jukogyo Kabushiki Kaisha Combustion of organic wastes

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8197132B2 (en) 2006-10-06 2012-06-12 Covidien Ag Electronic thermometer with selectable modes
US8585285B2 (en) 2006-10-06 2013-11-19 Covidien Ag Electronic thermometer with selectable modes

Also Published As

Publication number Publication date
CN1708451A (zh) 2005-12-14
US7008967B2 (en) 2006-03-07
ZA200503843B (en) 2007-01-31
WO2004037717A1 (en) 2004-05-06
US20050261382A1 (en) 2005-11-24
AU2003274439A1 (en) 2004-05-13

Similar Documents

Publication Publication Date Title
CN1308225C (zh) 合成气及合成气衍生产品的制备
CA2693401C (en) Method and apparatus for producing liquid biofuel from solid biomass
US20080103220A1 (en) Synthetic fuel production using coal and nuclear energy
EP2350233B1 (en) Method and apparatus for producing liquid biofuel from solid biomass
CN1018449B (zh) 燃料气的生产
JP2003041268A (ja) バイオマスのガス化方法
WO2008067221A1 (en) Improved synthetic fuel production methods and apparatuses
CN102918136A (zh) 生产烃组合物的方法
Kumar et al. Thermochemical conversion routes of hydrogen production from organic biomass: processes, challenges and limitations
CN101845319B (zh) 以生物质为原料生产蜡及清洁燃料油工艺
Devi Catalytic removal of biomass tars: olivine as prospective in-bed catalyst for fluidized-bed biomass gasifiers
JP2018500403A (ja) 原料をガス化する方法および装置ならびにガス状生成物
EP2935517A1 (de) Verfahren zur verwertung von kuppelgasen, begleitgasen und/oder biogasen
CN102559310B (zh) 用焦炉气等工业废气进行煤碳加氢气化制天然气等烃类的方法
JP4124627B2 (ja) 液体燃料合成システム
CN104053754B (zh) 生物甲烷的生产方法
CN105001899A (zh) 清洁煤基合成制蜡的方法
US8821153B2 (en) Method and system for the production of a combustible gas from a fuel
JP4388245B2 (ja) バイオマスガス化炉
AT405937B (de) Verfahren zur erzeugung eines stickstoffarmen gases und vergasungsanlage
CN104651005B (zh) 一种褐煤催化直接制甲烷的装置和方法
CN116946974A (zh) 一种低碳燃料移动床重整制氢的方法
CN115125044A (zh) 一种用低阶煤与天然气制取油品联产电的方法
CN115029160A (zh) 一种循环流化床生物质与煤协同转化增产油气的装置及方法
JP2506361B2 (ja) 石炭の水添乾留方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: SASOL - LURGI TECHNOLOGY (HOLDINGS) CO., LTD.

Free format text: FORMER OWNER: SASOL TECH PTY LTD.

Effective date: 20070928

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20070928

Address after: Johannesburg

Patentee after: - Sasol Lurgi Technology (Holdings) Limited

Address before: Johannesburg

Patentee before: Sastech (Proprietary) Ltd.

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20090306

Address after: Johannesburg

Patentee after: Sastech (Proprietary) Ltd.

Address before: Johannesburg

Patentee before: - Sasol Lurgi Technology (Holdings) Limited

ASS Succession or assignment of patent right

Owner name: SASOL TECH PTY LTD.

Free format text: FORMER OWNER: SASOL-BERTOLUCCI TECHNOLOGY ( STOCK ) CO., LTD.

Effective date: 20090306

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070404

Termination date: 20161027

CF01 Termination of patent right due to non-payment of annual fee