CN1296963C - 用于检测和识别空气中的生物气溶胶颗粒的方法和装置 - Google Patents

用于检测和识别空气中的生物气溶胶颗粒的方法和装置 Download PDF

Info

Publication number
CN1296963C
CN1296963C CNB018206786A CN01820678A CN1296963C CN 1296963 C CN1296963 C CN 1296963C CN B018206786 A CNB018206786 A CN B018206786A CN 01820678 A CN01820678 A CN 01820678A CN 1296963 C CN1296963 C CN 1296963C
Authority
CN
China
Prior art keywords
bio
aerosol particles
laser
wavelength
aerosol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB018206786A
Other languages
English (en)
Other versions
CN1481575A (zh
Inventor
迈克尔·安东尼·斯托尔斯
阿尔然·劳伦斯·威克黑兹
约翰尼斯·科内利斯·马里亚·玛丽吉尼森
查尔斯·伊丽莎·金茨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Powers Barker Ltd
Original Assignee
Nederlandse Organisatie voor Toegepast Natuurwetenschappelijk Onderzoek TNO
Technische Universiteit Delft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nederlandse Organisatie voor Toegepast Natuurwetenschappelijk Onderzoek TNO, Technische Universiteit Delft filed Critical Nederlandse Organisatie voor Toegepast Natuurwetenschappelijk Onderzoek TNO
Publication of CN1481575A publication Critical patent/CN1481575A/zh
Application granted granted Critical
Publication of CN1296963C publication Critical patent/CN1296963C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/16Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission
    • H01J49/161Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission using photoionisation, e.g. by laser
    • H01J49/164Laser desorption/ionisation, e.g. matrix-assisted laser desorption/ionisation [MALDI]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/01Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials specially adapted for biological cells, e.g. blood cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1456Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals
    • G01N15/1459Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals the analysis being performed on a sample stream
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/04Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
    • H01J49/0431Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components for liquid samples
    • H01J49/0445Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components for liquid samples with means for introducing as a spray, a jet or an aerosol
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/40Time-of-flight spectrometers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

在用于检测和识别空气中的生物气溶胶颗粒的方法中,通过荧光技术在ATOFMS(气溶胶微粒飞行时间质谱分析仪)中选择颗粒流中的生物气溶胶颗粒,且仅使所选的生物气溶胶颗粒电离,例如在MALDI(基质辅助的激光解吸/电离)基础上,此后检测生成的离子,并识别出生物气溶胶颗粒。生物气溶胶颗粒的选择是通过激光辐射进行的,所述激光由第一激光装置产生,其波长在生物气溶胶颗粒的特定物质中产生荧光,此后,通过荧光检测器选择生物气溶胶颗粒,然后触发第二激光装置发射光束,其波长使仅由荧光检测器选择的生物气溶胶颗粒电离。

Description

用于检测和识别空气中的生物气溶胶颗粒的方法和装置
技术领域
本发明涉及一种用于检测和识别空气中的生物气溶胶颗粒的方法和装置。
背景技术
这种方法及其所使用的测试装置可以从M.A.Stowers等的论文:基质辅助的激光解吸/电离对在线气溶胶微粒飞行时间质谱分析的应用(Application of matrix-assisted laser desorption/ionization to on-line aerosoltime-of-flight mass spectrometry),Rapid Commun.Mass Spectrom.14,829-833(2000)中可知。该文指出,对于“准实时生物气溶胶微粒检测”有两种选择,即利用生物分子的固有荧光性的方法、和将质谱分析应用于激光解吸产生的离子上的方法。因为生物气溶胶颗粒仅形成空气中的气溶胶颗粒总量的一小部分,所以可以使用公知的“单颗粒”荧光检测器,指示气溶胶颗粒是否是生物起源或非生物起源;然而,它们不能识别生物气溶胶颗粒。所以,上述论文描述了一种识别试验,该试验从雾化液体中的生物气溶胶颗粒开始,然后将喷雾吸入ATOFMS(气溶胶微粒飞行时间质谱分析仪)中。在ATOFMS中,在MALDI(基质辅助的激光解吸/电离)(matrix-assisted laser desorption/ionization)的基础上进行气溶胶颗粒的识别。对于这一试验,即使首先制备了气溶胶微粒,但该论文中示出的研究目的仍然针对实时基础上进行的识别。然而,按所述方式,不能令人满意地实现,因为空气中大部分含有非生物气溶胶颗粒。因此,所使用的ATOFMS检测和识别设备对生物气溶胶颗粒不很灵敏。考虑到在特定情形例如在生物战的情形下生物气溶胶颗粒的快速检测和识别是绝对需要的事实,本发明的目的是针对上述论文中陈述的目标,即快速的在线生物气溶胶颗粒检测和识别。
快速的在线气溶胶颗粒检测和识别,不涉及生物气溶胶颗粒的检测和识别,在这方面,已经可从国际专利申请WO96/31900中得知。根据该申请,含有颗粒的气流经过ATOFMS系统。以这种方式,快速检测和识别特定的生物气溶胶颗粒是不可能的,因为,如前所述,空气中的生物气溶胶颗粒较少,且它们一在空气中散布,就必须精确地检测和识别。
发明内容
为了解决上述问题,在本发明的方法中,在ATOFMS中通过荧光技术选择颗粒流中的生物气溶胶颗粒,随后使选择的生物气溶胶颗粒电离,检测所生成的离子,从而识别生物气溶胶颗粒。对于生物气溶胶颗粒的选择,利用本身公知的特性,即,当用适当的波长照射时,特定物质比如氨基酸的存在导致产生特有的荧光。因此,通过266nm的UV激光照射色氨酸呈现出在300至400nm的波长范围的较宽荧光。而且,合格的是比如酪氨酸、NADH或核黄素的物质的荧光光谱(参见:Fell等:浓度、大小和激励功率作用和含有色氨酸和细菌的微粒,SPIE,vol.3533,pp.52-62)。总之,无机和大多数有机物质不表现出这一特性。为了在本发明的方法中利用这一特性,通过激光辐射进行生物气溶胶颗粒的选择,所述激光通过第一激光装置产生,其波长在生物气溶胶颗粒的特定物质中产生荧光,此后,通过用于检测荧光辐射的检测器选择生物气溶胶颗粒,然后触发第二激光装置发射光束,其波长使仅由荧光检测器选择的生物气溶胶颗粒电离。对于第一激光装置,最好采用连续波激光装置(cw激光装置),而对于第二激光装置,使用脉冲激光装置,所述脉冲由荧光检测器触发。
在选择生物气溶胶颗粒过程中利用气溶胶颗粒的大小也是有效的,即空气动力学尺寸。细菌和病毒的大小基本上在20μm以下的范围内。因为气溶胶颗粒以给定的速度进入ATOFMS的中央空间中,从气溶胶颗粒经过已知距离的持续时间可以确定连续的气溶胶颗粒的大小。通过使第一激光装置的激光束照射在两个具有已知相互距离的连续点上,上述持续时间因而也就是气溶胶颗粒的大小可以从气溶胶颗粒散射和检测的光确定。然而,所述点之间的距离必须小于连续颗粒的相互距离。例如,在所述点之间的距离为2.5mm,气溶胶颗粒的速度约为400m/s时,两测量值之间的持续时间约为6.25μs。为了在上述点的测量值之间获得所需的无歧义性,根据本发明的第一方面,第一激光装置是一种双色连续波激光装置,以266至532nm的波长工作。照射到第一点的光的波长为532nm,而照射到第二点的光的波长为266nm。后一种波长也是使生物气溶胶颗粒显示荧光。
例如,第二激光装置是准分子激光装置,工作在308nm的波长下,且在正确触发之后,确保仅生物气溶胶颗粒电离。为此,如前所述,该激光装置的脉冲由荧光检测器触发。UV准分子激光的使用意味着为了使MALDI基础上的所述方法的性能成为可能,气溶胶颗粒必须具有基质(matrix)。根据本发明的另一方面,在吸入ATOFMS过程中或就在此之前,气溶胶颗粒通过蒸发/冷凝或升华/冷凝而具有这种基质。如果使用IR(红外)激光装置,这不是必需的。
附图说明
现在将在参照附图的示例性实施例基础上更详细地解释本发明的方法和装置,其中:
图1示出了本发明的可以使用用于检测和识别生物气溶胶颗粒的方法的装置;
图2示意性地示出了ATOFMS中颗粒流穿过的一部分距离,其中示出了颗粒受到相应激光辐射的位置。
具体实施方式
图1中所示的ATOFMS以剖面形式示出,即垂直于所述气溶胶颗粒流。所述气溶胶颗粒流基本上沿线2而行。气溶胶颗粒从空气中抽入到ATOFMS中,且在该装置的入口部分在高温下设有源于容易升华的物质的涂层。为此,众所周知例如使用吡啶羧酸或芥子酸。然后通过气动透镜系统、收缩喷嘴和撇离器使气溶胶颗粒成束。图2图示出气溶胶颗粒流是如何从上述入口部分的喷嘴3经300μm的出口4以及分别为400μm和300μm的撇离器开口5和6进入ATOFMS的中央空间7。这一空间被气溶胶颗粒一个接一个地以特定的相互距离连续穿过。在本示例中,气溶胶颗粒进入ATOFMS的中央空间的速度约为400m/s。需穿过的相应空间中的压力分别为1、10-3和10-6毫巴。在所述中央空间7中,气溶胶颗粒流首先受到第一激光装置8的照射。在图1中,这是DPSS(二极管泵激式固态)激光器,它是双色连续波激光器这一特定类型。这种激光装置8将波长为532nm的光束发送到空间7,即在点9处,以及将波长为266nm的光束发送到点10的位置处(见图2)。两种波长的光被分色镜11和12偏转。点9沿线2的方向的宽度约为50μm,且在与线2垂直的平面内该点的直径约为150μm。气溶胶颗粒暴露的时间约为125ns。点10沿线2的方向的宽度约为500μm,在与线2相垂直的平面内该点的直径约为150μm。在点9上暴露的气溶胶颗粒使所述光散射,而在点10上气溶胶颗粒使所述光散射并发射荧光辐射,只要气溶胶颗粒是生物起源。气溶胶颗粒散射的光线由检测器13和14检测。为此,这些检测器设有光电倍增管。检测器13直接检测从点9散射的光线。经半透反射镜15,检测器14检测从点10散射的光线,而荧光辐射由该反射镜传递到荧光检测器16。因为反射镜15总是传递一小部分266nm的散射辐射,所以荧光检测器16包含在入口的通带滤光器17,该滤光器将这一波长进一步过滤掉,但传递在300至500nm范围内的荧光辐射。点10沿线2的方向的宽度较大。在第一个125ns内,相当于点9的宽度,在检测器14中检测气溶胶颗粒的散射光,所以在连续观测点9和10的散射光的基础上,可以确定相应的气溶胶颗粒的尺寸。在下一125ns内,所述荧光检测器16被检查相应的气溶胶颗粒实际上是否是生物起源的检测器所释放。气溶胶颗粒在点10上被辐射的过程中的剩余时间提供了提高荧光测量的可靠性的时机。除了各反射镜18、19和20之外,荧光检测器16还包含衍射光栅21和CCD录像机22。当记录荧光辐射时,控制信号通过摄像控制单元23送往触发电路24。而且来自两检测器13和14的输出信号也送往该触发电路24。在触发电路24中,确定气溶胶颗粒是否是具有特定大小的生物起源,此后,触发信号送往受激准分子激光器25。换言之,特定尺寸的气溶胶颗粒一被认为是生物起源,就触发受激准分子激光器装置。即,受激准分子激光器装置提供激光脉冲,该脉冲影响点26上的相应生物气溶胶颗粒的电离。为了确保所述生物气溶胶颗粒实际上电离,该点相对较大:在线2的方向上约300μm,在与线2相垂直的平面内约500μm。点10和26之间的距离调节为所述气溶胶颗粒的速度和产生触发信号所需的时间。经上述分色镜11、12,所述准分子激光脉冲传递到ATOFMS中的中央空间7中。这样,电离的生物气溶胶颗粒通过电极27以普通的方式加速并且偏转,且经透镜28和偏转装置29到达离子检测器30。在显示器31上示出产生的质谱结果。
本发明不限于参照附图所示的示例性实施例,而包含其所有的改进,当然,只要它们落在所附权利要求的保护范围内。因此,可以使用其他类型的激光装置,且当作为用于识别生物起源的气溶胶颗粒的辅助手段的尺寸确定不再认为必须时,则不必使用双色激光装置。而且,代替具有衍射光栅和CCD录像机的荧光检测器16,可以使用任何其他公知的类型;衍射光栅和CCD录像机可以例如由具有通带滤光器的“选通PMT”(gated PMT)代替。所述点的尺寸仅通过示例给出;它们当然可以不同地选择,正如说明书中提及的其他参数。因为光线被气溶胶散射或发射到各方,所以可以设置数个检测器。严格而言,不是绝对必须使用检测器13和14。荧光检测器足以用于识别生物起源的气溶胶颗粒,并触发受激准分子激光器。然而,在实践中,这种实施例的可靠性是不够的。

Claims (7)

1.一种用于检测和识别空气中的生物气溶胶颗粒的方法,其中在ATOFMS(气溶胶微粒飞行时间质谱分析仪)中,通过荧光技术选择颗粒流中的生物气溶胶颗粒,且仅使从其中检测出荧光辐射的所选生物气溶胶颗粒被电离,此后接着检测生成的离子,并识别出生物气溶胶颗粒。
2.如权利要求1所述的方法,其特征在于,生物气溶胶颗粒的选择是通过激光辐射进行的,所述激光辐射由第一激光装置产生,其波长在生物气溶胶颗粒的特定物质中产生荧光,此后,通过荧光检测器选择生物气溶胶颗粒,然后触发第二激光装置发射光束,该光束的波长使仅由荧光检测器选择的生物气溶胶颗粒电离。
3.如权利要求1或2所述的方法,其特征在于,在吸入ATOFMS过程中或就在此之前,气溶胶颗粒通过蒸发/冷凝或升华/冷凝而具有基质,此后,所选择的生物气溶胶颗粒在MALDI(基质辅助的激光解吸/电离)基础上电离,此后接着检测离子并识别出生物气溶胶颗粒。
4.一种利用ATOFMS的装置,其特征在于,设置有用于发射光束的第一激光装置,该光束的波长在生物气溶胶颗粒的特定物质中产生荧光,该装置还具有用于检测荧光辐射的相应荧光检测器,以及由所述检测器触发、用于发射光束的第二激光装置,该光束的波长使由荧光检测器选择的生物气溶胶颗粒电离。
5.如权利要求4所述的装置,其特征在于,所述第一激光装置是一种连续波激光装置,所述第二激光装置是一种脉冲激光装置。
6.如权利要求4或5所述的装置,其特征在于,所述第一激光装置是一种双色连续波激光装置,在266和532nm的波长下运行。
7.如权利要求4或5所述的装置,其特征在于,所述第二激光装置是一种准分子激光装置,在308nm的波长下运行。
CNB018206786A 2000-12-15 2001-12-14 用于检测和识别空气中的生物气溶胶颗粒的方法和装置 Expired - Fee Related CN1296963C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NL1016887A NL1016887C2 (nl) 2000-12-15 2000-12-15 Werkwijze en inrichting voor het detecteren en identificeren van bio-aÙrosoldeeltjes in de lucht.
NL1016887 2000-12-15

Publications (2)

Publication Number Publication Date
CN1481575A CN1481575A (zh) 2004-03-10
CN1296963C true CN1296963C (zh) 2007-01-24

Family

ID=19772588

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB018206786A Expired - Fee Related CN1296963C (zh) 2000-12-15 2001-12-14 用于检测和识别空气中的生物气溶胶颗粒的方法和装置

Country Status (16)

Country Link
US (1) US6806464B2 (zh)
EP (1) EP1342256B1 (zh)
JP (1) JP4145651B2 (zh)
KR (1) KR100871938B1 (zh)
CN (1) CN1296963C (zh)
AT (1) ATE411611T1 (zh)
AU (1) AU2002226802A1 (zh)
CA (1) CA2431255C (zh)
CY (1) CY1108708T1 (zh)
DE (1) DE60136217D1 (zh)
DK (1) DK1342256T3 (zh)
ES (1) ES2315318T3 (zh)
IL (2) IL156444A0 (zh)
NL (1) NL1016887C2 (zh)
PT (1) PT1342256E (zh)
WO (1) WO2002052246A2 (zh)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7260483B2 (en) * 2001-10-25 2007-08-21 The Regents Of The University Of California Real-time detection method and system for identifying individual aerosol particles
US7410805B2 (en) 2003-07-30 2008-08-12 The Boeing Company Aerosol detection system using optical and mass discrimination
US7800750B2 (en) * 2003-09-19 2010-09-21 The Regents Of The University Of California Optical trap utilizing a reflecting mirror for alignment
JP2007512148A (ja) * 2003-09-19 2007-05-17 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア ピボット回転する光ファイバを利用した光ビーム平行移動装置及び方法
CN100434899C (zh) * 2004-04-29 2008-11-19 中国科学院安徽光学精密机械研究所 气溶胶粒谱(质谱)飞行时间检测方法及装置
US7837937B2 (en) 2004-07-09 2010-11-23 Hamilton Sundstrand Corporation Biological agent detector
US20090084979A1 (en) * 2004-10-07 2009-04-02 Dewalch Norman Binz High-speed molecular analyzer system and method
US20090218481A1 (en) * 2004-10-07 2009-09-03 Dewalch Norman Binz High-Speed Molecular Analyzer System and Method
DE102004061820A1 (de) * 2004-12-22 2006-07-06 Bruker Daltonik Gmbh Lasersystem für die lonisation durch matrixunterstützte Laserdesorption (MALDI) im ultravioletten Spektralbereich (UV)
DE102005005333B4 (de) * 2005-01-28 2008-07-31 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren zur Probennahme und Aerosol-Analyse
US7981365B2 (en) * 2005-09-15 2011-07-19 The United States Of America As Represented By The Secretary Of The Navy Electrospray coating of aerosols for labeling and identification
US7343782B2 (en) * 2006-04-10 2008-03-18 Northrop Grumman Corporation System and method for performing quantifiable release spore testing on bioaerosol detection technologies
KR20090115930A (ko) * 2006-12-26 2009-11-10 브라이엄 영 유니버시티 혈청 단백질체학 시스템 및 관련 방법
EP2060919A1 (en) * 2007-11-13 2009-05-20 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO MALDI matrix and MALDI method
US8513598B2 (en) * 2007-12-21 2013-08-20 Lawrence Livermore National Security, Llc Aerosol mass spectrometry systems and methods
US8031339B2 (en) * 2007-12-21 2011-10-04 Lawrence Livermore National Security, Llc Particle measurement systems and methods
EP2157599A1 (en) * 2008-08-21 2010-02-24 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Method and apparatus for identification of biological material
US8358411B2 (en) * 2008-12-18 2013-01-22 Biovigilant Systems, Inc. Integrated microbial collector
CN101581698B (zh) * 2009-06-23 2012-08-22 中国科学院安徽光学精密机械研究所 气溶胶场致电离电荷源装置
EP2483649A4 (en) * 2009-09-30 2017-09-06 Genia Photonics Inc. Spectrometer
KR101235145B1 (ko) * 2011-06-21 2013-02-20 광주과학기술원 연속파 레이저 및 광전증배관을 이용하는 분광분석장치
KR101523658B1 (ko) * 2014-12-04 2015-05-29 국방과학연구소 형광 에어로졸을 이용한 필터류의 입자 투과 성능 평가 시험 방법 및 장치
WO2017035229A1 (en) 2015-08-24 2017-03-02 Zeteo Tech, Llc Coating of aerosol particles using an acoustic coater
KR101787579B1 (ko) * 2016-03-31 2017-10-19 주식회사 아스타 근적외선 형광을 이용한 질량 분석 장치 및 방법
CN106248777A (zh) * 2016-08-18 2016-12-21 东南大学 一种常压敞开式进样系统
CN106442449A (zh) * 2016-10-17 2017-02-22 中国科学院合肥物质科学研究院 一种激光诱导荧光探测生物气溶胶装置
NL2018940B1 (en) 2017-05-18 2018-11-28 Biosparq B V Maldi mass spectrometry method
CN107389627B (zh) * 2017-05-26 2020-04-03 清华大学 一种单液滴单细胞培养和细胞代谢产物实时检测装置
CN107841453A (zh) * 2017-11-02 2018-03-27 广州禾信仪器股份有限公司 微生物收集装置及收集检测方法
EP3732303A4 (en) * 2017-12-29 2021-09-15 The Regents Of The University Of Colorado HI-FI BIOAEROSOL CONDENSATION DIRECTLY INTO GENOMIC PRESERVATIVES
WO2019234544A1 (en) * 2018-06-04 2019-12-12 Dh Technologies Development Pte. Ltd. Lbmfi detector for fluorophore labeled analytes at the taylor cone in esi-ms
US11808688B2 (en) * 2018-10-25 2023-11-07 Plair, SA Method and device for detection and/or measurement of impurities in droplets
RU2722066C2 (ru) * 2018-11-19 2020-05-26 Самсунг Электроникс Ко., Лтд. Многоканальный датчик пыли
KR102201084B1 (ko) * 2019-01-21 2021-01-11 연세대학교 산학협력단 황사탐지인자(tdci)를 이용한 에어로졸 유형 분석 시스템
CN110018090B (zh) * 2019-05-17 2020-10-27 中国科学院化学研究所 一种颗粒物化学组分测量系统及方法
WO2021061247A2 (en) * 2019-06-29 2021-04-01 Zeteo Tech, Inc. Methods and systems for detecting aerosol particles without using complex organic maldi matrices
KR102100774B1 (ko) * 2019-10-15 2020-04-14 광주과학기술원 초미세입자의 크기-성분 측정 장치 및 크기-성분 측정 방법
NL2027583B1 (en) 2021-02-18 2022-09-15 Deem Consulting B V A time-of-flight mass spectrometer device
CN114459965A (zh) * 2021-12-30 2022-05-10 中船重工安谱(湖北)仪器有限公司 一种气溶胶监测系统及方法
KR102506969B1 (ko) 2023-02-05 2023-03-06 김인영 실내공기 중의 바이오 에어로졸을 신속하게 검출하는 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4383171A (en) * 1980-11-17 1983-05-10 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Particle analyzing method and apparatus
US4686366A (en) * 1985-05-15 1987-08-11 Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften E.V. Laser mass spectrometer
US4740692A (en) * 1985-06-13 1988-04-26 Mitsubishi Denki Kabushiki Kaisha Laser mass spectroscopic analyzer and method
WO1996031900A1 (en) * 1995-04-03 1996-10-10 Stichting Scheikundig Onderzoek In Nederland A method and device for the analysis of the chemical composition of particles

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2284870C (en) * 1997-03-17 2003-11-25 Tsi Incorporated System for detecting fluorescing components in aerosols
US6959248B2 (en) * 2001-10-25 2005-10-25 The Regents Of The University Of California Real-time detection method and system for identifying individual aerosol particles
US6777673B2 (en) * 2001-12-28 2004-08-17 Academia Sinica Ion trap mass spectrometer
GB2409036B (en) * 2002-06-24 2006-02-15 Tsi Inc Analysis systems detecting particle size and fluorescence

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4383171A (en) * 1980-11-17 1983-05-10 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Particle analyzing method and apparatus
US4686366A (en) * 1985-05-15 1987-08-11 Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften E.V. Laser mass spectrometer
US4740692A (en) * 1985-06-13 1988-04-26 Mitsubishi Denki Kabushiki Kaisha Laser mass spectroscopic analyzer and method
WO1996031900A1 (en) * 1995-04-03 1996-10-10 Stichting Scheikundig Onderzoek In Nederland A method and device for the analysis of the chemical composition of particles

Also Published As

Publication number Publication date
PT1342256E (pt) 2009-01-08
CY1108708T1 (el) 2014-04-09
US20040075049A1 (en) 2004-04-22
NL1016887C2 (nl) 2002-06-18
EP1342256B1 (en) 2008-10-15
JP2004520576A (ja) 2004-07-08
KR100871938B1 (ko) 2008-12-08
WO2002052246A3 (en) 2003-01-23
DK1342256T3 (da) 2009-02-16
KR20030077554A (ko) 2003-10-01
DE60136217D1 (de) 2008-11-27
CA2431255C (en) 2010-07-20
ES2315318T3 (es) 2009-04-01
CN1481575A (zh) 2004-03-10
IL156444A0 (en) 2004-01-04
CA2431255A1 (en) 2002-07-04
ATE411611T1 (de) 2008-10-15
JP4145651B2 (ja) 2008-09-03
IL156444A (en) 2009-07-20
AU2002226802A1 (en) 2002-07-08
WO2002052246A2 (en) 2002-07-04
US6806464B2 (en) 2004-10-19
EP1342256A2 (en) 2003-09-10

Similar Documents

Publication Publication Date Title
CN1296963C (zh) 用于检测和识别空气中的生物气溶胶颗粒的方法和装置
Zelenyuk et al. Single particle laser ablation time-of-flight mass spectrometer: An introduction to SPLAT
US7260483B2 (en) Real-time detection method and system for identifying individual aerosol particles
US4383171A (en) Particle analyzing method and apparatus
US7057712B2 (en) Analysis systems detecting particle size and fluorescence
US8373858B2 (en) System and method for real time determination of size and chemical composition of aerosol particles
US7256396B2 (en) Sensitive glow discharge ion source for aerosol and gas analysis
Trimborn et al. Online analysis of atmospheric particles with a transportable laser mass spectrometer
JP2007526478A (ja) 生物学的アラーム
JP2002506201A (ja) 大気中粒子の分析器
US5545304A (en) Ion current detector for high pressure ion sources for monitoring separations
CN114383984B (zh) 一种捕获颗粒物并测量其相态、形貌和化学组分的系统
Kane et al. Nanoparticle detection by aerosol mass spectrometry
CN111220515A (zh) 一种用于在线分析单颗粒中金属元素的装置及方法
KR101235145B1 (ko) 연속파 레이저 및 광전증배관을 이용하는 분광분석장치
CN114459965A (zh) 一种气溶胶监测系统及方法
Sullivan et al. Characterization of individual aerosol particles
WO2014141994A1 (ja) 粒子分析方法及び粒子分析装置
Liao et al. Single-particle measurements of bouncing particles and in situ collection efficiency from an airborne aerosol mass spectrometer (AMS) with light-scattering detection
US20090250606A1 (en) Aerosol mass spectrometry systems and methods
Harris et al. Transportable real-time single-particle ion trap mass spectrometer
CN112074927A (zh) 用于粒子的质谱分析的装置和方法
CN220323045U (zh) 一种单颗粒生物气溶胶多谱联用在线检测系统
WO2007129495A1 (ja) 液滴イオン化法、質量分析法及びそれらの装置
JP7198166B2 (ja) イオン源異常検出装置、およびそれを用いた質量分析装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Free format text: FORMER OWNER: TECHNISCHE UNIVERSITEIT DELFT

Effective date: 20150204

Owner name: BOLSPARK LTD.

Free format text: FORMER OWNER: NEDERLANDSE ORGANISTATIE VOOR TOEGEPAST-NATUURWETENSCHAPPELIJK ONDERZOEK TNO

Effective date: 20150204

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20150204

Address after: Leiden

Patentee after: Powers Barker Ltd

Address before: About Holland

Patentee before: Nederlandse Organistatie Voor Toegepast-Natuurwetenschappelijk Onderzoek TNO

Patentee before: Technische Universiteit Delft

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070124

Termination date: 20201214