CN1294262C - 收集以及使用细胞核mRNA的方法 - Google Patents

收集以及使用细胞核mRNA的方法 Download PDF

Info

Publication number
CN1294262C
CN1294262C CNB018213944A CN01821394A CN1294262C CN 1294262 C CN1294262 C CN 1294262C CN B018213944 A CNB018213944 A CN B018213944A CN 01821394 A CN01821394 A CN 01821394A CN 1294262 C CN1294262 C CN 1294262C
Authority
CN
China
Prior art keywords
cell
mrna
rna
nucleus
nuclear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB018213944A
Other languages
English (en)
Other versions
CN1606621A (zh
Inventor
M·米特苏哈施
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co ltd
Showa Denko Materials America Inc
Original Assignee
Hitachi Chemical Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Hitachi Ltd filed Critical Hitachi Chemical Co Ltd
Publication of CN1606621A publication Critical patent/CN1606621A/zh
Application granted granted Critical
Publication of CN1294262C publication Critical patent/CN1294262C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6809Methods for determination or identification of nucleic acids involving differential detection
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1003Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor
    • C12N15/1017Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor by filtration, e.g. using filters, frits, membranes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Plant Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Saccharide Compounds (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

常规基因表达系统和纯化方法目标集中于整个细胞中存在的mRNA。因此,其结果显示为新转录mRNA以及消化mRNA的总和。因此,以前难以在mRNA正在消化的情况下检测新mRNA的表达。而且,当已经存在大量mRNA时,难以检测mRNA量的微小变化,因此敏感性低。已证实新合成的mRNA位于细胞核中,集中于这一事实开发了一种新方法。将细胞捕获在膜上,并用细胞膜透化溶液如NP-40处理,由此增加细胞膜的通透性。在洗去胞质后,用细胞溶解液溶解细胞核,然后由因此获得的溶液成功回收mRNA。该方法非常简单,仅需要2-3分钟的额外时间,但可以处理大量的样品,并且该方法可并入到自动化系统中。因此,该方法有可能成为处理基因表达分析样品的标准方法,特别是对于RT-PCR。

Description

收集以及使用细胞核mRNA的方法
                本发明领域
本发明公开了一种分离细胞核mRNA的方法。更具体地说,所述方法包括将细胞捕获在滤膜或膜上、透化细胞以及分离细胞核。然后溶解细胞核并回收提取物。
                本发明背景
常规mRNA分离方法是由细胞分离总mRNA。该方式分离的mRNA包括胞质mRNA和细胞核mRNA。为对表达进行定量和分析,重要之处在于仅分离新合成的mRNA,而不是细胞质中正在降解的mRNA。这样人们就“真实”了解表达水平或基因表达变化。
功能基因组学领域对基因表达分析最感兴趣。现在人类基因组已经完成测序,非常需要鉴定涉及疾病的基因和突变。这些基因可能是上调或下调基因,或者是多态性基因。用于分析这些基因的许多方法都包括分离mRNA。例如,DNA微阵列芯片可同时分析成千上万种不同基因的表达模式。反转录聚合酶链反应(RT-PCR)是一种用于定量各个基因表达的非常敏感的方法,并迅速取代了劳动量更大的RNA印迹分析。还有许多可用于敏感基因检测的其它非PCR技术,例如核酸序列型扩增(NASBA)、链取代扩增(SDA)和分支DNA(bDNA)扩增。
尽管这些技术以及其它检测技术中有许多已得到开发并商业化,但原料一直是细胞或组织样品的总RNA或poly(A)+RNA。当使用全细胞的总RNA或mRNA时,结果是转录产物以及胞质降解产物的混合物。这使得难以在mRNA正在消化的情况下检测新mRNA表达。而且,当已经存在大量mRNA时,难以检测mRNA量的微小变化,因此敏感度低。
未成熟mRNA的转录发生在细胞核中,在细胞核中poly(A)尾附着并根据需要发生剪接。此后,成熟mRNA分子就迁移到细胞质中,并翻译和降解。因为细胞核中的mRNA量与mRNA的转录量而不是降解量直接相关,所以尝试纯化细胞核组分,以便检测细胞核组分中特定mRNA(或细胞核RNA)的量。先前特异性分析细胞核组分的尝试包括检测特定基因转录水平的细胞核连续测定。但是,使用该测定的主要障碍是需要的时间长度、需要非常小心地处理以避免核糖核酸酶污染以及产生放射性废物。其它细胞核组分纯化技术使用耗时的超离心或大劳动量的微注射来进行细胞核mRNA纯化和分析。这些方法不是高通量的,不适于精确定量。而且,对于例如超离心过程中mRNA是否得到保护不清楚。
因此,需要快速、敏感、可靠且高通量的细胞核组分mRNA分离和分析方法。该方法可分析基因的“真实”转录水平。
                    本发明概述
鉴于以上所述,本发明一方面提供一种分离细胞中RNA的方法。该方法包括:(a)将细胞捕获在滤膜或膜上;(b)透化细胞并分离细胞核;和(c)溶解核膜并回收细胞核RNA,通常是细胞核mRNA。以上方法至少可包括以下实施方案:所述滤膜或膜可以为玻璃纤维膜;透化可以应用温和洗涤剂;所述细胞核可通过洗去透化细胞膜而分离;清洗方式可为真空过滤;溶解核膜可利用裂解缓冲液;所述裂解缓冲液可包含强洗涤剂;可通过将透过的细胞核内容物转移至下游RNA制备容器、滤器或柱回收mRNA。本发明可单独或与两个或多个方案组合采用以上实施方案。
按照本发明的以上方面,甚至可以在mRNA正在消化的情况下检测新合成(转录)mRNA的表达。该方法非常简单,与常规分离方法相比仅需要2-3分钟的额外时间,但可以处理大量样品。该方法可轻易并入自动化基因表达系统中。
在本发明的另一方面,提供一种鉴定和/或定量特定基因转录物的方法。该方法包括:(a)用前述分离方法获得分离mRNA;(b)在所述板、滤膜或膜上反转录所述mRNA;以及(c)使用所述基因的特异性引物进行PCR。
在另一方面,提供一种鉴定和/或定量参与DNA修复过程的基因的方法。该方法包括:(a)用DNA损伤剂处理细胞;(b)获得前述分离方法的分离mRNA;(c)反转录所述mRNA;以及(d)鉴定其转录受DNA损伤上调或活化的基因。在以上一个实施方案中,所述鉴定可以利用选自以下的方法:RT-PCR、RNA印迹、RAP PCR、ddPCR、扣除法以及阵列或基因芯片分析。
本发明可有效用于以下方法:
一种检测细胞中基因表达的方法,该方法包括:(a)将细胞捕获在滤膜或膜上;(b)使细胞与细胞膜透化溶液接触,以增加细胞膜的通透性;(c)清洗细胞质;(d)使清洗过细胞质的细胞与细胞溶解溶液接触,以溶解细胞核,由此获得细胞核溶液;(e)由细胞核溶液回收mRNA;以及(f)基于所回收mRNA的量测定细胞内的基因表达。按照此方面,甚至可以在mRNA正在消化的情况下实现大规模处理和高精度基因表达。
以上至少可以包括以下实施方案:所述滤膜或膜可以为玻璃纤维膜;所述细胞膜透化溶液可以为裂解细胞膜但不裂解细胞核的温和洗涤剂;清洗步骤可以在所述滤膜或膜上进行;清洗步骤可以通过真空过滤进行;细胞溶解溶液可以为裂解核膜的裂解缓冲液;所述裂解缓冲液可包含强洗涤剂;mRNA回收步骤可通过将透出的内容物转移至寡脱氧胸苷固定化固相支持体进行;所述固相支持体可以为板、滤器或柱;所述板、滤器或柱可具有使所述滤膜或膜与其相适的结构;所述mRNA回收步骤可通过将透出的内容物转移至寡核苷酸固定化固相支持体进行,所述寡核苷酸序列与所述mRNA互补。本发明可单独或与两个或多个方案组合采用以上实施方案。
在本发明的再一方面,提供一种测定细胞基因表达的方法。该方法包括:(i)收集第一种生物样品的细胞;(ii)将细胞捕获在滤膜或膜上;(iii)使细胞与细胞膜透化溶液接触,以增加细胞膜的通透性;(iv)清洗细胞质;(v)使清洗过细胞质的细胞与细胞溶解溶液接触,以溶解细胞核,由此获得细胞核溶液;(vi)由细胞核溶液回收mRNA;(vii)使用第二种生物样品的细胞重复步骤(i)至(vi);以及(viii)根据步骤(vi)和(vii)分别回收的特定种类mRNA量的变化确定细胞内的基因表达。在以上的一个实施方案中,所述处理可应用于第二种样品而不是第一种样品。该方法可有效用于测定指定目的候选化学物质的有效性。
为了概述本发明及其超越先有技术的优势,上文已经描述了本发明的某些目的和优势。当然,应当理解的是,按照本发明的任一个具体实施方案未必可以实现所有的所述目的或优势。因此,例如,本领域技术人员会认识到,本发明可以实现或优化本文所述的一个或一组优势的方式实施或进行,而不必实现本文描述或提示的其它目的或优势。
以下优选实施方案的详述将使本发明的其它方面、特征和优势更清晰。
                      附图简述
现在,参照优选实施方案的附图描述本发明的上述特征以及其它特征,所述优选实施方案意在说明本发明,而不是限制本发明。
图1是一幅示意图,显示本发明优选实施方案的要点。
图2(A-E)显示证实本发明优选实施方案提取的mRNA是细胞核mRNA。图2A显示光学显微镜法,图2B显示扫描电子显微镜法(SEM),图2C显示琼脂糖凝胶电泳。在图2C和图2D中,使用图2C显示的纯化细胞核物质通过20个PCR循环扩增线粒体DNA,并进行PCR(图2D)。
图3是全细胞提取物mRNA和细胞核组分mRNA之间基因表达分析的对比。图3A显示UV处理后junB和β-肌动蛋白的扩增。图3B显示UV处理细胞后p21的扩增。
                优选实施方案详述
本发明公开了一种快速简单的细胞核mRNA分离方法,该方法包括将细胞捕获在固相支持体上,透化细胞并分离细胞核。溶解细胞核并回收含细胞核mRNA的提取物。该方法允许高通量纯化和分析基因的“真实”表达水平。该方法还允许在没有干扰性降解产物时鉴定基因表达的微小变化。
参照图1,所述步骤中的第一次裂解是温和裂解,使得可以除去细胞膜和细胞质(包括线粒体和mRNA降解产物、tRNA和rRNA),而留下完整的细胞核(包含新合成的mRNA)。可使用温和洗涤剂,以便裂解细胞而不裂解细胞核。可以使用的洗涤剂实例包括但不限于:NP-40、Triton-X 100和皂苷。温和洗涤剂保留在细胞上的时间长度足以透化细胞而不用剧烈搅拌。短时间使用温和洗涤剂使得细胞可以透化,而不裂解或透化核膜,实际上细胞核几乎没有或没有损伤。另外,该方法允许所述溶液接触全部细胞,这使mRNA收率较好,而不必灭活RNA酶。
下一步包括裂解细胞核,通常使用强洗涤剂,时间长得足以裂解细胞核。可使用温和搅拌,以使全部细胞核都接触到裂解溶液并灭活RNA酶,但是,并不认为这步是必需的且可能无益,实际上这可能降低收率。
获得的mRNA可用于任何需要mRNA的方法,但是,现公开的方法对分析基因表达特别有优势。这是因为要分析的mRNA是细胞核中新合成的mRNA。通常,纯化mRNA的方法使用总mRNA,而总mRNA包括存在于细胞质中的全部降解产物。因此,本方法对于分析不同细胞状态下基因产生的转录物特别有优势。本方法可以更精确地鉴定转录物的大小以及水平。
所述优选实施方案方法生产的mRNA的用途包括任何分析mRNA表达的方法。这些方法包括但不限于:PCR、cDNA文库的制备和分析、基因芯片和微阵列分析、ddPCR(和其它类似的技术)以及定量PCR。
在裂解步骤前,将所述细胞加在固相支持体上。所述固相支持体可让细胞通过电荷、共价键或疏水作用附着,或者可仅为所述细胞提供支持。固相支持体的实例包括膜、滤器、玻璃板、纸、塑料、珠、纤维聚酯和柱。可根据mRNA用途选择使用哪种固相支持体。例如,如果要荧光标记mRNA并通过荧光显微镜法分析mRNA,则可以使用载玻片。如果所述mRNA要用于定量PCR,则可以使用带有滤膜的微孔板,或者可以使用芯片或阵列。
初次溶解细胞
初次裂解可以用任何透化或去除细胞质膜但不裂解细胞核的物质、试剂或缓冲液。在裂解过程中保持细胞质与细胞核接触来帮助保护细胞核可能有利。可用于裂解的缓冲液实例包括但不限于含温和洗涤剂的缓冲液、PBS或Hank平衡盐溶液。通常,因为初次裂解是温和的,所以几乎不需要或不需要混合。如果细胞除细胞膜之外还具有细胞壁,则可能需要另外的步骤,以在去除细胞膜之前或同时去除细胞壁。对于原核细胞,不需要裂解细胞核,去除或不去除细胞壁的初次裂解都足够了。
去除细胞壁
如果必要,在初次裂解的同时或之前去除细胞壁。动物细胞、昆虫细胞和原生动物通常不具有细胞壁。因此,它们不需要初始处理来去除细胞壁或细胞壁型结构。但是,大多数细菌具有含肽聚糖的细胞壁。真菌细胞壁含纤维素或几丁质,而植物细胞壁含纤维素、木质素、胶质和/或角蛋白。但是,去除细胞壁同时留下完整细胞膜的方法已为人所知,并应用了几十年。这些方法产生可称为原生质球、原生质体或L型的变异体。下文描述了所述方法的综述。但是,本领域技术人员可确定这些方法。
在细菌中存在各种各种各样的细胞壁类型,从没有细胞壁(支原体)到难以破坏的非常强的保护性结构(称之为内孢子)。真细菌细胞壁经常称作革兰氏阳性或革兰氏阴性,是指细胞对各种染色处理的反应。革兰氏阳性菌仅具有肽聚糖层和细胞膜,而革兰氏阴性菌具有外膜、含肽聚糖的细胞壁和内膜。抗酸细菌如分枝杆菌(Mycobacteria)细胞壁通常含有脂质组分。每种细胞壁需要的去除处理稍有不同。但是,有去除所有类型细胞壁的方法。
许多年前就知道去除细菌细胞壁的产生L型、原生质球和原生质体的方法。这些方法通常包括使用破碎细胞壁组分的酶以及适于所获得细胞(此时没有细胞壁)的渗透稳定性的缓冲系统。或者,在含分解细胞壁的抗生素的培养基中培养细菌,所述培养基适于获得的L型、原生质球和原生质体的渗透稳定性。已经使用的酶包括但不限于:溶菌酶。已经使用的抗生素包括但不限于:青霉素如氨苄青霉素(10X MIC,Hornsten,EG,等,Diagn.Microbiol Infect Dis 1989年3月-4月;12(2):171-5)和球圆霉素(Inukai M.,等,J.Antibiot(Tokyo)1978年5月;31(5):410-20)。
要是细菌还含有荚膜,本领域也知道去除荚膜的方法,包括使用水和PBS在不同温度温育1小时(Gentry等,Am.J.Vet.Res.1982年11月;43(11):2070-3)。由革兰氏阴性菌(包括葡糖杆菌(Gluconobacter)、醋酸杆菌(Acetobacter)、欧文氏菌(Erwinia)、假单胞菌(Pseudomonas)和棒杆菌(Corynebacterium))生产原生质球的标准技术包括Tris-蔗糖-EDTA-溶菌酶(Verma,V.等,Biotechniques 1989年5月;7(5):449-52)。革兰氏阳性菌如芽孢杆菌(Bacillus)和梭菌(Clostridia)可能需要一些略微较强的处理才产生原生质体(Jacobson,ED等,J.Bacteriol.1975年10月;124(1):445-8;和Durban E.等,CanJ.Microbiol 1974年3月;20(3):353-8)。对于鼠疫杆菌(Yersinia),通过使用氯化锂也可以形成原生质球(Gramotina LI.等,Antibiotiki 1977年7月,22(7):634-9)。其它用于革兰氏阴性菌(如大肠杆菌)的方法使用溶菌酶和EDTA(Birdsell D.C.等,J.Bacteriol 1967年1月;93(1):427-37)。农杆菌(Agrobacterium)需要稍微不同的方法(Beardsley等,Cancer Res.1966年8月;26(8):1606-10),而链霉菌(Stretomyces)在补加溶菌酶和青霉素的液体培养基中产生原生质球(Innes C.M.等,J.Appl.Microbiol.2001年3月;90(3):301-8)。
真菌细胞壁含几丁质和/或纤维素。通常酶用于去除细胞壁,该过程在适于渗透稳定性的培养基或缓冲液中进行。用于去除细胞壁的酶包括但不限于:纤维素酶和几丁质酶(Masuda,S.等,BiosciBiotechnol Biochem 2001年8月;65(8):1883-5)。酵母是一类具有各种变异型细胞壁的真菌。酵母细胞可以使用还原剂和分离自担子菌(Basidiomycete)的1,3β-葡聚糖酶或类似酶的混合物产生原生质球(Havelkova,M.Arch Mikrobiol 1973年3月2日;90(1):77-88)。该方法可用于子囊菌(Ascomycetes)和某些半知菌。其它真菌需要加入第二种酶1,4-α-葡聚糖酶。
原生动物如阿米巴不含细胞壁。草覆虫、疟原虫、贾第鞭毛虫、和其它原生动物可具有表皮。脉胞菌(Neurospora)之类的原生动物甚至可以用表皮产生原生质球(Scarborough GA.,等,Anal Biochem 1974年10月;61(2):441-7)。
植物细胞细胞壁很坚固,可含有一种或几种以下物质:胶质、木质素和角蛋白。因此,为产生原生质球,在适于渗透稳定性的培养基中使用可分解细胞壁组分的酶。通常使用的酶包括但不限于:木质素酶、胶质酶和角蛋白酶(Levit,M.N.,等,Bioorg Khim 1992年3月;18(3):309-45)。
分离组织单细胞
本文公开的方法通常使用单细胞。因此,当使用活检组织或器官细胞时,通常去除胞外基质并分离细胞,然后用于初次裂解膜。去除胞外基质和细胞彼此之间分离的技术是已知的,并用于组织培养过程。该方法可包括使用EDTA和胰蛋白酶。或者,使用任何引起组织和胞间基质解离的酶或缓冲液,包括但不限于胶原酶。
最终的细胞核裂解
细胞核裂解步骤可在原先的固相支持体上进行,或者可将所述细胞核移至第二个支持体,例如特异性结合mRNA、RNA、DNA或其任意混合物的膜。但是,通常不移动细胞核,因为尽管它们是完整的,但它们可能较脆弱,且移动它们的过程可能降低mRNA产率。
可通过适于透化和裂解细胞核而不损伤mRNA的任何方法裂解细胞核。通常,可在剧烈搅拌下使用洗涤剂,以使所有的细胞核都完全裂解。本方法能使用的洗涤剂包括但不限于:NP-40、SDS和Triton-X。可使用的其它缓冲液或试剂包括:Invitrogen的Fast痕量试剂盒的裂解缓冲液。或者可以使用具有以下基本组分或其等同物的缓冲液:保持pH的缓冲液、保持寡脱氧胸苷和polyA尾之间杂交严格性的盐、裂解膜的洗涤剂、DNA酶和/或RNA酶抑制剂(包括蛋白酶K、胍、RNasin)。
然后可去除核提取物或核原生质,并以各种方式分离mRNA组分。该组分可上样于mRNA特异性膜、柱或珠。例如,寡脱氧胸苷膜、柱或滤器将用于纯化核原生质中的mRNA。或者,可使用DNA酶和苯酚或其等同物去除蛋白和DNA。
在一个优选的实施方案中,该方法使用一个96孔GF/C玻璃纤维滤板(例如RiboCapTM滤板,RNAture,CA)。在用温和洗涤剂处理细胞后可捕获细胞并可支持细胞核的任何滤板都可以使用。所述滤板最初含有用作细胞固相支持体的玻璃纤维滤膜。用真空过滤洗去细胞质和细胞膜或细胞壁组分。以此方式进行清洗损失的细胞核mRNA最小。这也提供了一种非常简单的高通量方法。
在另一个优选实施方案中,可使用寡脱氧胸苷板(例如GenePlateTM,RNAture,CA)捕获mRNA。GenePlateTM是一种寡脱氧胸苷序列以共价形式固定在其上的微量滴定板。通过加入荧光指示剂染料(Yoyo-1)可使定量测定容易进行。所述装置和定量方法描述于1996年12月20日提交的美国专利申请08/772,150(通过引用结合到本文中)。如果将一个特定序列固定在微量滴定板上,则可以捕获具有该序列互补序列的mRNA。在以上方案中,滤板最好可与微量滴定板相匹配,它们都具有相同的孔数,使得过滤和捕获可连续进行。
表I列出了本文所述方法和常规方法的对比分析。由该分析清楚可见,所述方法可容易转变为高通量甚至自动化的技术,而常规方法对于这样的应用太麻烦且耗时。
             表I:本发明方法和常规方法的对比
  本发明方法  常规方法
  细胞捕获位置   膜  试管
  捕获方法   真空或低速离心  超离心
  初次裂解后清洗   快速容易  耗时
  涡旋   无  需要(由于对细胞核的机械损伤,涡旋程度可能影响结果)
  通量   每次测定96个样品  取决于超离心转子类型
  自动化潜能   易  难
所述方法的应用
所述方法可用于基因芯片和微阵列分析、PCR诊断分析、制备cDNA文库、RNA印迹以及差异展示或扣除文库技术。该方法特别有优势,因为当鉴定一个基因或分离基因可变转录物时,mRNA降解产物可产生错误的结果,例如仅以降解产物形式存在的较小转录物。
在以下的实施例中,分析所述方法,并测试所获得的mRNA的线粒体RNA(细胞质组分)污染情况。通过肌动蛋白PCR检测所获细胞核mRNA的质量。最后通过进行实验检测生成的细胞核mRNA的质量,在该实验中,用UV灯辐射细胞,并检测两种已知基因产物p21和junB的水平。
                    实施例
在以下实施例中使用和分析的方法包括将细胞捕获在玻璃纤维GF/C膜上、缓冲液清洗以及用真空、正压或离心之类的方法去除清洗液。在一个实施方案中,所述细胞与初次裂解缓冲液温育,通过真空、正压或离心释放胞质组分,用PBS清洗胞质组分2-3次,以去除胞质mRNA。使用第二种裂解缓冲液并温育足够长时间以裂解细胞核。通过真空、正压或离心释放第二种裂解缓冲液,显色核组分。
所述方法采用RNAture的RiboCapTM滤板和GenePlateTM对使所述方法成为高通量并适于自动化特别有利。因此,以下实施例概述了对RNAture的RiboCapTM滤板和GenePlate的使用,并分析了纯化水平。所述细胞、装置和缓冲液如下:人组织细胞系U937、人红白血病细胞系K562、jun-B质粒(ATCC,Manassas,VA,USA)、RiboCapTM、GenePlate、WASH BUFFER、LYSIS BUFFER(RNAture,Irvine,CA)。
                    实施例1
          使用RiboCapTM滤板分离细胞核
使用RiboCapTM滤板捕获细胞(RNAture,Irvine,CA)。RiboCap是一种底部附着玻璃纤维膜的96孔板。将细胞加至RiboCapTM,并通过真空过滤将细胞捕获在膜上。将温和洗涤剂NP-40加至RiboCapTM以透化细胞。为避免高浓度NP-40直接接触核膜,在不搅拌或涡旋的情况下于RiboCapTM滤膜上使细胞与NP-40接触。胞质组分甚至在NP-40处理后仍存在于细胞中,它可以保护细胞核免受潜在的损伤。在显微镜下不时检测流出组分,在该组分中一直未发现完整细胞。另外,因为清洗溶液PBS不含NP-40,所以在清洗去除胞质组分的同时保护细胞核。这种温和裂解方法和RiboCapTM组合可高度重现数据。
然后如实施例2所述裂解细胞核,并将mRNA捕获在GenePlate上。
                    实施例2
使用聚脱氧胸苷滤板(GenePlate)分离细胞核mRNA
有利的是,生产的GenePlate(RNAture)与RiboCap滤板相匹配。因此,在裂解RiboCap板中的细胞核后,通过将RiboCap板置于GenePlate板上,使用真空压力转移含mRNA的核原生质,将mRNA收集在GenePlate板中。在将mRNA和核内容物收集在GenePlate板上后,如下使mRNA结合并进行清洗,以去除核内容物:
使用50μl含1%2-巯基乙醇的LYSIS BUFFER(RNAture)释放细胞核的核组分,所述LYSIS BUFFER加至RiboCapTM的孔,并于室温温育15分钟。然后通过以3,200×g于4℃离心5分钟,将裂解物由RiboCapTM转移至含聚脱氧胸苷的微量滴定板上,在某些情况下后接两轮苯酚/氯仿/异戊醇提取和乙醇沉淀(图2C和2D)。图2A和2B未进行苯酚/氯仿/异戊醇提取和乙醇沉淀。
以实施例3和4证实所述方法。
                    实施例3
       通过光学显微镜检测和SEM证实细胞裂解
为证实细胞和核裂解,如下实施所述方法:将U937细胞加至RiboCapTM滤板,并通过4英寸汞柱真空将细胞捕获在玻璃纤维膜(GenePlate)上。为去除胞质组分,将100μl 0.1%的NP-40加至孔中,并于室温温育0、5、15、30和60秒。然后,用100μl PBS清洗RiboCapTM滤板三次。为释放核中的核组分,将50μl含1%2-巯基乙醇的LYSISBUFFER(RNAture)加至RiboCapTM滤板的孔中,并于室温温育15分钟。然后通过以3,200×g于4℃离心5分钟,将裂解物由RiboCapTM滤板转移至微量滴定板,然后进行两轮苯酚/氯仿/异戊醇提取和乙醇沉淀。
对U937细胞进行的光学显微镜检测显示细胞仍然完整。图2A结果包括:阴性对照(未处理的U937细胞,A1)、接触0.1%NP-401分钟后用锥虫蓝染色的U937细胞(A2)以及接触LYSIS BUFFER后的U937细胞(A3)。如图2A1-2所示,通过锥虫蓝染色证实NP-40诱导细胞透化。有趣的是,甚至在接触NP-40 15分钟后,细胞外形也几乎是完整的(图2A2)。
为目测对细胞膜的损伤,通过扫描电子显微镜(SEM)分析细胞表面特征。因为常规SEM需要强真空,所以难以目测细胞表面的天然状态。因此,使用最新型的弱真空SEM(Hitachi S3000N)。如下进行扫描EM:将细胞(U937和K562)重悬浮在10ml Tris pH7.4中,并涂布在载玻片上,插入到60-70Pa真空和5KV加速电压的HitachiS3000N(Nissei Sangyo America,Pleasanton,CA,USA)SEM中。图象记录使用次信号BSE2图像。图2B显示未处理的K562细胞的SEM(扫描电子显微镜)(×5,000 B1)和接触0.1%NP-40 30秒处理的K562细胞的SEM。加速电压是5KV,而真空压力为60Pa(B3)或70Pa(B1-2)。
尽管甚至在弱真空条件下也观察到盐晶,但在无盐区域存在一些细胞表面清楚曝光的细胞(图2B1-3)。在NP-40处理细胞的细胞膜上观察到裂缝(图2B2)和孔(图2B3)(见箭头)。这种损伤是温和的,足以保持细胞中细胞核的完整性,同时使细胞膜穿孔。
在实施例4中,裂解细胞核并证实裂解。
                    实施例4
                  证实细胞核裂解
如实施例3裂解细胞后,用PBS清洗滤板3次,以去除胞质组分。显微镜观察流出组分,但在该组分中未观测到细胞核,提示细胞核仍被捕获在RiboCapTM滤板的玻璃纤维膜上。然后,将LYSISBUFFER加至RiboCapTM滤板,以破碎核膜。通过光学显微镜证实细胞完全破碎。然后用2轮苯酚/氯仿/异戊醇提取接着乙醇沉淀处理核裂解物。
在实施例5-10中,通过琼脂糖凝胶和PCR分析核酸。
                     实施例5
         通过琼脂糖凝胶电泳分析纯化的核酸
为了证实胞质组分已去除,通过琼脂糖凝胶电泳分析纯化的核酸物质。如下实施所述方法:将U937细胞(5.0×105细胞/孔)加至RiboCapTM滤板(RNAture),并通过4英寸汞柱真空将细胞捕获在玻璃纤维膜上。为去除胞质组分,将100μl 0.1%的NP-40(Sigma,St Louis,MO,USA)加至孔中,并于室温温育5-60秒。然后,用100μl PBS清洗RiboCapTM滤板三次。为释放核中的核组分,将50μl含1%2-巯基乙醇(Bio-Rad,Hercules,CA,USA)的LYSIS BUFFER(RNAture)加至RiboCapTM滤板的孔中,并于室温温育15分钟。然后通过以3,200×g于4℃离心5分钟,将裂解物由RiboCapTM滤板转移至微量滴定板,然后进行两轮苯酚/氯仿/异戊醇提取和乙醇沉淀。
为进行电泳,用3.7%甲醛使纯化的核酸物质变性,并通过1.25%琼脂糖凝胶电泳分析,用SYBRGOLD(Molecular Probes,Eugene,OR,USA)染色,用荧光扫描仪(FM-BIO-II,Hitachi Genetic System,Alameda,CA,USA)记录。如图2C所示,NP-40处理后减少了18s-和28s-rRNA条带(下方的两个箭头指示),而DNA(顶部箭头)未改变(MK:分子量标记)。
获得的核酸物质也通过PCR进行分析。
                       实施例6
                   线粒体DNA的PCR
因为琼脂糖凝胶电泳不能定量,所以通过PCR检测线粒体DNA(mtDNA)的水平。因为线粒体仅存在于细胞溶胶中,所以这就能够检测仍然存在的胞质组分。由实施例3获得的核酸用于线粒体DNA(mtDNA)的PCR扩增。向每个孔中加入20μl预混合的PCR缓冲液(0.25μmol每种引物、1x PCR缓冲液、2.5mmol/L MgCl2、100μmol/L每种dATP、dGTP、dCTP和dTTP,1单位Taq聚合酶)和1滴矿物油(Sigma),用热循环仪(UNO II,Biometra,Horsham,PA,USA)以94℃变性1分钟、56℃退火1分钟、接着72℃延伸1分钟、20个循环进行扩增。通过2%琼脂糖凝胶电泳分析PCR产物,用溴化乙锭(Sigma)染色,并用图象检测仪(Alphalmager 2200,Alpha Innotech,San Leandro,CA,USA)记录。线粒体DNA(mtDNA)的引物是5′-TCCACACTAGCAGAGACCAACCG-3′(SEQ ID NO:1)和5′-AGAACAGGGAGGTTAGAAGTAGGGT-3′(SEQ ID NO:2),它们使用对GenBank UniGene数据库的杂交模拟通过计算机程序HYBsimulatorTM(RNAture)设计,以消除非特异性杂交。
如图20所示,用NP-40处理前的全细胞提取物扩增线粒体DNA(mtDNA),但在接触NP-40超过15秒之后,mtDNA PCR产物的量显著减少(图20)。这表明,在NP-40处理以及随后的清洗步骤中胞质组分减少。通过定量NP-40处理前后mtDNA PCR产物的量,计算核组分的纯度。
                    实施例8
               细胞核mRNA的RT-PCR
直接将核裂解物(得自实施例3)由RiboCapTM滤板转移至GenePlate,并于室温温育1小时以便杂交。然后用50μl LYSISBUFFER清洗GenePlate两次,接着用50μl WASH BUFFER(RNAture)清洗两次。使用固定化寡脱氧胸苷作为引物,通过加入20μl预混合cDNA缓冲液(1×RT缓冲液、500μmol/L每种dATP、dGTP、dCTP和dTTP,100单位MMLV反转录酶),在GenePlate中合成cDNA。
                     实施例9
                  肌动蛋白的PCR
琼脂糖凝胶电泳和mtDNA PCR不提供任何有关NP-40处理过程和随后的清洗步骤中细胞核完整性的定量数据。因此,因为未成熟mRNA主要存在于细胞核中,所以通过RT-PCR检测前剪接未成熟β-肌动蛋白mRNA的量。通过离心将粗核裂解物由RiboCapTM滤板直接转移至固定寡脱氧胸苷的PCR微量滴定板。因为LYSISBUFFER对寡脱氧胸苷和mRNA的poly(A)尾之间杂交的严格性最佳,并包含灭活RNA酶活性的强洗涤剂,所以可在1小时的室温温育过程中用GenePlate板捕获mRNA。在用WASH BUFFER清洗每个孔除去未杂交物质后,使用固定化寡脱氧胸苷作为引物在同一块板上合成cDNA。
尽管GenePlate选择性捕获mRNA而不捕获DNA,但PCR产物是否由mRNA产生或是否污染核DNA并不清楚。非特异性结合的DNA可通过杂交后的彻底清洗去除。但是,该步骤也解离了一些mRNA,这将降低敏感性和重复性。因此,因为cDNA通过固定化寡脱氧胸苷共价固定于GenePlate板,所以在合成cDNA之后彻底清洗每个孔。在用10mM Tris pH 7.4清洗每个孔5次后进行PCR。如实施例5所述进行RT-PCR,并如下进行PCR以扩增β-肌动蛋白的内含子部分:用MMLV反转录酶(GIBCO/BRL,Rockville,MD,USA)、PCR试剂(Promega,Madison,WI,USA)和dNTP(Yamasa,Tokyo,Japan)进行20-50个循环的PCR。
使用对GenBank UniGene数据库的杂交模拟通过计算机程序HYBsimulatorTM(RNAture)设计β-肌动蛋白引物5′-TGGCACCACACCTTCTACAA-3′(SEQ ID NO:3)和5′-CATCTCTTGCTCGAAGTCCA-3′(SEQ ID NO:4)以及β-肌动蛋白内含子5′-GTGCTGTGGAAGCTAAGTCCTGC-3′(SEQ ID NO:5)和5′-CACCCACCTTGATCTTCATTGTGCT-3′(SEQ ID NO:6),以消除非特异性杂交。
然后在合成或未合成cDNA的情况下对比PCR。如图2E所示,在没有cDNA合成时β-肌动蛋白没有扩增(RT-),而在cDNA合成时成功扩增β-肌动蛋白(RT+)。而且,如图2E所示,在NP-40处理过程中β-肌动蛋白内含子PCR产物的条带密度未改变。在单独的实验中,证实图2E的条带密度未饱和,并以定量的动态范围存在。这提示在NP-40处理过程中β-肌动蛋白内含子的量被良好保持。
为测试分析基因上调或下调的方法,分析UV辐射对jun-B表达的影响。
                     实施例10
             分析Jun-B和p21表达和UVC诱导
用含100ml/L胎牛血清、500,000单位/L青霉素和500mg/L链霉素的RPMI-1640(磷酸缓冲盐水(PBS)、细胞培养基、抗生素和胎牛血清购自GIBCO/BRL,Rockville,MD,USA)培养U937细胞。通过锥虫蓝排除评价细胞存活度,其总是大于95%。以104细胞/μl的浓度将细胞重悬浮在没有酚红的上述培养基中,将100μl细胞悬浮液加至96孔培养板的孔中。然后将该板置于STRATALINKER 1800(Stratagene,La Jolla,CA,USA)中,并以100、300和500mJ/cm2的能量密度对UVC(254nm)曝光。通过离心将细胞捕获于RiboCapTM滤板的玻璃纤维膜上。为进行全细胞测定(W),将LYSIS BUFFER加至RiboCapTM滤板,并将裂解物转移至GenePlate,以捕获poly(A)+RNA。对于细胞核分析(N),用0.1%NP-40处理RiboCapTM滤板60秒,并立即用PBS清洗。然后应用LYSIS BUFFER,并使用用于全细胞测定的相同方法。在用GenePlate捕获mRNA之后,合成cDNA,然后通过PCR扩增jun-B(30个循环)、β-肌动蛋白(35个循环)和p21(W为30个循环,N为44个循环)。使用对GenBank UniGene数据库的杂交模拟通过计算机程序HYBsimulatorTM(RNAture)设计jun-B引物5′-AGGACAAGGTGAAGACGCTCAAGG-3′(SEQ ID NO:7)和5′-GCAGGGGACGTTCAGAAGGC-3′(SEQ ID NO:8)以及p21引物5′-CCGCTCTACATCTTCTGCCTTAGT-3′(SEQ ID NO:9)和5′-CAGCAGTCTTAGGAACCTCTCATTCAAC-3′(SEQ ID NO:10),以消除非特异性杂交。参见实施例9的肌动蛋白引物。
该方法首先用于证实紫外(UVC)诱导的jun-B表达。用于该实验的UVC剂量(100、300和500mJ/cm2)相比于其它报导非常高。但是,因为细胞处于96孔板的PBS中对UVC曝光,所以即使在辐射24小时通过锥虫蓝检测存活度也总是在95%以上。如图2A所示,在全细胞(W)中观测到jun-B高背景表达,掩盖了UVC诱导的jun-B表达增加。当通过NP-40处理去除胞质组分时,背景jun-B表达显著降低,并在细胞核组分(N)中清楚观测到UVC诱导的jun-B表达。有趣的是,在UVC刺激之前,也观测到jun-B在细胞核组分中微弱表达,这可能表示U937细胞的jun-B代谢水平。因为在相同条件下同时分析全细胞提取物和细胞核组分,所以条带密度的差异可能表示胞质jun-BmRNA的量。还由全细胞提取物扩增对照β-肌动蛋白,但在UVC刺激之前和之后都未检测到变化(图2A)。有趣的是,即使在UVC刺激后也未在细胞核组分中检测到β-肌动蛋白,提示β-肌动蛋白mRNA的代谢水平比该细胞系的jun-B低。
因为UVC刺激对jun-B上调和下调的相当令人惊奇的结果,所以用U937细胞的全细胞提取物分析p21基因表达。在300mJ/cm2以上的UV照射后p21水平下降(图2B)。但是,一旦去除胞质组分,UVC照射后细胞核组分中的p21表达显著增加(图3B)。这些结果提示对U937细胞的UV照射可能不仅仅增加其p21转录,而且增加降解。
                  实施例11
          所述方法用于PCR诊断分析
通常通过有或没有杂交的RTPCR鉴定患者样品中的单个核苷酸多态性(SNP)。因此,如实施例1-4所述使用患者的血细胞分离细胞核mRNA。使用SNP特异性引物和已确认的SNP反转录mRNA。
以此方式在出现2B型von Willebrand病症状患者中鉴定出与该病相关的SNP。分离患者的白细胞,并如实施例1-4所述使用其分离细胞核mRNA。使用vWF基因外显子28的氨基酸510-600(Wood,N.等,Thrombosis and Haemostasis,1996,75(2)363-7)作为引物,使用mRNA进行RTPCR。
使用的引物能够鉴定以下与2B型von Willebrand病相关的SNP(密码子544和551/552的两个3个碱基缺失,密码子574/575和577/578的两个2个碱基缺失)。发现患者在氨基酸544缺失3个碱基。
                    实施例12
            所述方法用于微阵列分析
基因芯片和微阵列迅速改变了研究者探索基因表达的方式。实验可以同时推测成千上万个基因的基因表达模式,而不是每次研究一个基因。微阵列通常通过打点标记cDNA或标记cDNA产生。然后,通过与病变组织和正常组织的标记cDNA杂交对比完成分析。但是,如果cDNA由细胞或组织的总RNA或mRNA产生,则结果将不准确,甚至是错误的。因此,癌基因、原癌基因和抑制基因微阵列使用本发明方法分离的mRNA的cDNA或cRNA产生。
                     实施例13
              所述方法用于生产cDNA文库
cDNA文库用于使用探针分离基因的同源物或全长克隆。在分离同源物的过程中,鉴定由单个基因表达的各种大小转录物的身份。如果用于生产文库的mRNA包含mRNA降解产物,那么所述文库不大可能提供全长克隆,并可能产生有关目的基因其它转录物的错误信息。因此,为生产用于躁狂抑郁病的cDNA文库,遵循以下方法:分离躁狂抑郁病患者的脑脊液(CSF),并如实施例1-4所述使用细胞组分分离细胞核mRNA。使用LAMBDA ZAP-cDNA合成试剂盒和LAMBDA ZAP II载体(Stratagene,La Jolla,CA),按照说明书用所述mRNA生产cDNA文库。
                   实施例14
           所述方法用于CASTAWAY SYSTEM
               鉴定差异表达基因产物
有大量的方法和试剂盒可用于鉴定差异表达基因产物。这些方法的一个常见问题是使用全细胞或组织的总RNA或mRNA进行分析。这导致不准确,有时产生不正确的结果。尽管本文描述的方法可用于任何一种这样的系统,但选择RAP-PCR系统作为原型,并选择Stratagene CASTAWAY预制凝胶(Stratagene,La Jolla,CA)快速分析结果。
用乙酸肉豆蔻佛波醇(PMA)刺激人骨髓单核细胞系(HL60)4小时。使用随机引物由实施例l-4分离的细胞核RNA合成第一条链。对反转录细胞细胞核mRNA进行PCR扩增。按照Stratagene指引的概述用CASTAWAY系统进行PCR。将PCR条带图谱与未刺激对照的图谱对比。鉴定出许多独一无二的条带,由凝胶分离这些条带,并通过PCR再扩增,用于进一步研究。使用刺激和未刺激细胞的核组分mRNA进行RNA印迹,以验证结果。
                    实施例15
           定量DNA修复功能的方法及其应用
所述方法包括用DNA损伤剂刺激细胞,制备细胞核RNA或mRNA,并定量新表达基因的水平。没有本文公开的细胞核mRNA方法时,常规方法不能鉴定特定基因表达的增加,因为胞质中的降解增大。因此,所述方法使用本文公开的mRNA分离方法(参见实施例1和2)。
所述刺激可用组织培养物或试管体外进行,或者通过使用全身刺激体内进行。所述方法可使用任意类型的细胞,但典型细胞包括全血、血液白细胞、活检标本、手术切除标本、毛囊、灌洗液、渗出物、整个肌体等。
所述细胞用DNA损伤剂损伤,所述DNA损伤剂包括但不限于:放射、紫外辐射、X-射线、化学品、超声、食品、化妆品、环境因素、胁迫、化学诱变剂、毒素等。
在用DNA损伤剂损伤细胞后,通过实施例1-4概述的方法制备细胞核mRNA。通过RNA印迹、RNA酶保护测定、夹心杂交测定、基因扩增(PCR、实时PCR、LCR、NASBA、sDNA、bDNA、侵袭物等)定量基因表达。实时PCR包括TAQMAN、MOLECULARBEACON、AMPLIFLUOR、SCORPION、SYBR-DYE、POLICEMAN等。通常,将已经用某些因子损伤的细胞与未受损的细胞对比。
鉴定以此方式通过DNA损伤活化或上调的基因。新表达的基因包括负责DNA修复机制的基因、负责凋亡的基因以及未知功能的基因。
已知对DNA修复机制敏感的基因包括p53、p21、DNA聚合酶等。已知对凋亡敏感的基因包括天冬氨酸特异性半胱氨酸蛋白酶(caspases)、BAX、bcl-2等。这些基因可用作对照,以确认所述方法是否有效。但是,最感兴趣的是这些过程所涉及的基因在以前还没有鉴定出这种作用。
未知功能基因包括通过DNA微阵列芯片、扣除杂交、差异展示等发现的基因。这些基因可通过数据库分析,以发现同源物和活性位点。但是,所述功能最好通过体外方法鉴定。
所鉴定基因的用途包括以下几种:筛选癌症高风险个体、药物筛选防癌化合物(即药物、草药、食品等)、评价衰老、监测健康和疾病、鉴定非癌诱导产品(食品、化妆品、药物、香料等)。筛选可通过基因芯片或阵列技术进行。
因此,本文描述的方法对于代表没有降解产物的转录的“真实”基因表达分析非常快速且敏感。另外,所述方法适于使用商售设备的高通量自动化系统。核基因表达分析在未来可能成为基因表达分析的标准方法。
本领域技术人员应当理解:可在不背离本发明精神的情况下进行多种且各异的修改。因此,应当清楚了解本发明的形式仅是阐述性的,没有限制本发明范围的意图。
                            序列表
<110>Mitsuhashi,Masato
<120>收集以及使用细胞核mRNA的方法
<130>HITACHI.047VPC1
<150>60/244,672
<151>2000年10月31日
<150>60/308,038
<151>2001年7月26日
<160>10
<170>FastSEQ for Windows Version 4.0
<210>1
<211>23
<212>DNA
<213>人工序列
<220>
<223>线粒体DNA正向引物
<400>1
tccacactag cagagaccaa ccg                                            23
<210>2
<211>25
<212>DNA
<213>人工序列
<220>
<223>线粒体DNA反向引物
<400>2
agaacaggga ggttagaagt agggt                                          25
<210>3
<211>20
<212>DNA
<213>人工序列
<220>
<223>β肌动蛋白正向引物
<400>3
tggcaccaca ccttctacaa                                                20
<210>4
<211>20
<212>DNA
<213>人工序列
<220>
<223>β肌动蛋白反向引物
<400>4
catctcttgc tcgaagtcca                                                20
<210>5
<211>23
<212>DNA
<213>人工序列
<220>
<223>β肌动蛋白内含子正向引物
<400>5
gtgctgtgga agctaagtcc tgc                                            23
<210>6
<211>25
<212>DNA
<213>人工序列
<220>
<223>β肌动蛋白内含子反向引物
<400>6
cacccacctt gatcttcatt gtgct                                          25
<210>7
<211>24
<212>DNA
<213>人工序列
<220>
<223>jun-B正向引物
<400>7
aggacaaggt gaagacgctc aagg                                           24
<210>8
<211>20
<212>DNA
<213>人工序列
<220>
<223>jun-B反向引物
<400>8
gcaggggacg ttcagaaggc                                                20
<210>9
<211>24
<212>DNA
<213>人工序列
<220>
<223>p21正向引物
<400>9
ccgctctaca tcttctgcct tagt                                           24
<210>10
<211>28
<212>DNA
<213>人工序列
<220>
<223>p21反向引物
<400>10
cagcactctt aggaacctct cattcaac                                       28

Claims (23)

1.一种检测细胞基因表达的方法,该方法包括:
将细胞捕获在滤膜或膜上;使所述细胞与细胞膜透化溶液接触,以增加细胞膜的通透性;在所述滤膜或膜上清洗细胞质;使洗去细胞质的细胞与细胞溶解溶液接触,以溶解细胞核,由此获得细胞核溶液;由所述细胞核溶液回收RNA;根据回收的RNA量确定细胞的基因表达。
2.按照权利要求1的方法,其中所述滤膜或膜是玻璃纤维膜。
3.按照权利要求1的方法,其中所述细胞膜透化溶液为温和洗涤剂,其裂解细胞膜,但不裂解细胞核。
4.按照权利要求1的方法,其中所述清洗步骤通过真空过滤进行。
5.按照权利要求1的方法,其中所述细胞溶解溶液是一种裂解核膜的裂解缓冲液。
6.按照权利要求5的方法,其中所述裂解缓冲液包含强洗涤剂。
7.按照权利要求1的方法,其中所述RNA回收步骤通过将所述细胞核溶液转移至固定有寡脱氧胸苷的固相支持体进行。
8.按照权利要求7的方法,其中所述固相支持体为板、滤器或柱。
9.按照权利要求1-8任一项的方法,其中所述RNA回收步骤通过将细胞核溶液转移至固定有寡核苷酸的固相支持体进行,所述寡核苷酸序列与所述RNA互补。
10.一种测定细胞基因表达的方法,该方法包括:
(a)收集第一种生物样品的细胞;
(b)将所述细胞捕获在滤膜或膜上;
(c)使所述细胞与细胞膜透化溶液接触,以增加细胞膜的通透性;
(d)在所述滤膜或膜上清洗细胞质;
(e)使洗去细胞质的细胞与细胞溶解溶液接触,以溶解细胞核,由此获得细胞核溶液;
(f)由所述细胞核溶液回收RNA;
(g)使用第二种生物样品的细胞重复步骤(a)至(f);
(h)根据步骤(f)和(g)分别回收的RNA量变化确定细胞的基因表达。
11.按照权利要求10的方法,其中用DNA损伤剂对第二种样品而不是第一种样品进行了处理。
12.一种分离细胞RNA的方法,该方法包括:
将细胞捕获在滤膜或膜上;透化所述细胞并分离细胞核;溶解核膜并回收细胞核RNA。
13.按照权利要求12的方法,其中所述滤膜或膜是玻璃纤维膜。
14.按照权利要求12的方法,其中所述透化是利用温和洗涤剂。
15.按照权利要求12的方法,其中所述细胞核通过洗去细胞质而分离获得。
16.按照权利要求15的方法,其中所述清洗是通过真空过滤。
17.按照权利要求12的方法,其中所述RNA是mRNA。
18.按照权利要求12的方法,其中所述溶解核膜是利用裂解缓冲液。
19.按照权利要求18的方法,其中所述裂解缓冲液包含强洗涤剂。
20.按照权利要求12的方法,其中所述回收所述mRNA是将细胞核溶液转移至寡脱氧胸苷板、滤器或柱。
21.一种用于鉴定和/或定量特定基因转录物的方法,该方法包括:
获得权利要求12的分离RNA;在所述板、滤膜或膜上反转录所述RNA;使用所述基因特异性引物进行PCR。
22.一种鉴定或定量参与DNA修复过程的基因的方法,该方法包括:
用DNA损伤剂处理细胞;获得权利要求12-20任一项的分离mRNA;反转录所述mRNA;鉴定其转录受到DNA损伤上调或激活的基因。
23.按照权利要求22的方法,其中所述鉴定是利用选自以下的方法:RT-PCR、RNA印迹、RAP PCR、ddPCR、扣除法以及阵列或基因芯片分析。
CNB018213944A 2000-10-31 2001-10-25 收集以及使用细胞核mRNA的方法 Expired - Fee Related CN1294262C (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US24467200P 2000-10-31 2000-10-31
US60/244,672 2000-10-31
US30803801P 2001-07-26 2001-07-26
US60/308,038 2001-07-26

Publications (2)

Publication Number Publication Date
CN1606621A CN1606621A (zh) 2005-04-13
CN1294262C true CN1294262C (zh) 2007-01-10

Family

ID=26936712

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB018213944A Expired - Fee Related CN1294262C (zh) 2000-10-31 2001-10-25 收集以及使用细胞核mRNA的方法

Country Status (7)

Country Link
US (1) US7374881B2 (zh)
EP (1) EP1330518B1 (zh)
JP (1) JP5416326B2 (zh)
CN (1) CN1294262C (zh)
AT (1) ATE480618T1 (zh)
DE (1) DE60143046D1 (zh)
WO (1) WO2002066637A2 (zh)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6844158B1 (en) * 1997-12-22 2005-01-18 Hitachi Chemical Co., Ltd. Direct RT-PCR on oligonucleotide-immobilized PCR microplates
US7285199B2 (en) 2000-10-31 2007-10-23 Hitachi Chemical Research Center, Inc. Apparatus and method for electrophoretic microspot concentration
US20050277121A1 (en) 2004-06-11 2005-12-15 Ambion, Inc. Crude biological derivatives competent for nucleic acid detection
US20080206761A1 (en) * 2005-04-28 2008-08-28 Masato Mitsuhashi Ex Vivo Gene Expression in Whole Blood as a Model of Assessment of Individual Variation to Dietary Supplements
GB0522193D0 (en) 2005-10-31 2005-12-07 Axis Shield Asa Method
US20090311684A1 (en) * 2006-04-07 2009-12-17 Hitachi Chemical Co., Ltd Enhanced fc receptor-mediated tumor necrosis factor superfamily and chemokine mrna expression in peripheral blood leukocytes in patients with rheumatoid arthritis
WO2007117611A2 (en) * 2006-04-07 2007-10-18 Hitachi Chemical Co., Ltd. Enhanced t cell receptor-mediated tumor necrosis factor superfamily and chemokine mrna expression in peripheral blood leukocytes in patients with crohn's disease
CN101855367A (zh) 2007-11-14 2010-10-06 日立化成工业株式会社 外周血白细胞中FC受体介导的肿瘤坏死因子超家族mRNA表达
US8546127B2 (en) * 2008-06-30 2013-10-01 General Electric Company Bacteria/RNA extraction device
US8304185B2 (en) 2009-07-17 2012-11-06 Canon U.S. Life Sciences, Inc. Methods and systems for DNA isolation on a microfluidic device
US20100062946A1 (en) * 2008-09-08 2010-03-11 Lis John T Genome-wide method for mapping of engaged rna polymerases quantitatively and at high resolution
CN101497925B (zh) * 2008-12-17 2012-05-02 安徽医科大学 Leber氏遗传性视神经病变相关mtDNA突变位点集成检测基因芯片及其制备与应用
JP5729904B2 (ja) * 2009-06-02 2015-06-03 キヤノン株式会社 細胞から蛋白質、dna、rnaを調製する方法
JP5815518B2 (ja) * 2009-07-17 2015-11-17 キヤノン ユー.エス. ライフ サイエンシズ, インコーポレイテッドCanon U.S. Life Sciences, Inc. マイクロ流体装置においてdnaを単離する方法及びシステム
US20120271043A1 (en) * 2009-08-04 2012-10-25 John Steichen Process and device for collecting nucleic acids of microorganisms from a particulate sample
CN102639716A (zh) 2009-12-04 2012-08-15 株式会社日立制作所 使用二维cDNA文库的基因表达解析方法
WO2011156763A1 (en) 2010-06-11 2011-12-15 Hitachi Chemical Co., Ltd. Methods for characterizing kidney function
WO2011156734A2 (en) * 2010-06-11 2011-12-15 Hitachi Chemical Co., Ltd. Method of characterizing vascular diseases
US20110312841A1 (en) * 2010-06-17 2011-12-22 Geneasys Pty Ltd Fabrication system for lab-on-a-chip (loc) devices with differing application specific functionality
EP2717989B1 (en) 2011-06-10 2018-05-30 Hitachi Chemical Co., Ltd. Vesicle capturing devices and methods for using same
US9662649B2 (en) 2013-05-06 2017-05-30 Hitachi Chemical Company America, Ltd. Devices and methods for capturing target molecules
US10266895B2 (en) 2014-11-05 2019-04-23 Hitachi Chemical Company Ltd. Exosomes and microvesicles in intestinal luminal fluids and stool and use of same for the assessment of inflammatory bowel disease
EP3218521B1 (en) 2014-11-12 2019-12-25 Hitachi Chemical Co., Ltd. Method for diagnosing organ injury
DE112016003948T5 (de) 2015-08-31 2018-05-09 City Of Sapporo Molekulare verfahren zum beurteilen einer urothelialen erkrankung
RU2018128685A (ru) * 2016-01-08 2020-02-10 Патоквест Способ in vitro выделения, амплификации и секвенирования нуклеиновых кислот инфекционных агентов, набор
CN115247204A (zh) * 2022-02-15 2022-10-28 温州医科大学 一种基于qRT-PCR技术检测lncRNA亚细胞定位的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998021321A1 (en) * 1996-11-12 1998-05-22 Qbi Enterprises Ltd. Method for identifying translationally regulated genes
WO1999032654A1 (en) * 1997-12-22 1999-07-01 Hitachi Chemical Co., Ltd. Direct rt-pcr on oligonucleotide-immobilized pcr microplates

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4139346A (en) * 1977-11-28 1979-02-13 Enzo Bio Chem Incorporated Nucleic acid and protein binding paper
US4906561A (en) * 1981-09-14 1990-03-06 Thornthwaite Jerry T Nuclear isolation medium and procedure for separating cell nuclei
US4430278A (en) 1982-02-01 1984-02-07 Jones Sr John L Process for increasing the permeability of plastic membrane
US5057438A (en) 1986-09-24 1991-10-15 Agency Of Industrial Science And Technology Electrophoretic antigen-antibody determination with laminate of multiple membranes
DE3715856A1 (de) 1987-05-12 1988-12-01 Biometra Biomedizinische Analy Vorrichtung zum konzentrieren von in einer fluessigkeit befindlichen, elektrisch geladenen - insbesondere aus einem gel eluierten - makromolekuelen
JPH01179090A (ja) * 1988-01-06 1989-07-17 Yamaha Corp 自動伴奏装置
US5158661A (en) 1991-03-22 1992-10-27 Fotodyne Incorporated Electrophoresis temperature control apparatus
EP0587951B1 (en) * 1992-09-18 1997-12-17 AMERSHAM INTERNATIONAL plc Cell nuclei capture method and device used therefor
US5955272A (en) * 1993-02-26 1999-09-21 University Of Massachusetts Detection of individual gene transcription and splicing
US6113763A (en) 1996-11-04 2000-09-05 Board Of Trustee Operating Michigan State University Method for measuring cellular chemical profiles
WO1998026284A1 (en) * 1996-12-11 1998-06-18 Nycomed Amersham Plc Selective lysis of cells
US5964997A (en) 1997-03-21 1999-10-12 Sarnoff Corporation Balanced asymmetric electronic pulse patterns for operating electrode-based pumps
JP2003144149A (ja) * 1997-03-31 2003-05-20 Takara Holdings Inc 分離装置及びその使用方法
DE19725190A1 (de) 1997-06-14 1998-12-17 Innova Gmbh Vorrichtungen mit integrierten Elektroden aus elektrisch leitfähigen Kunststoffen
US5990298A (en) * 1997-09-12 1999-11-23 The University Of Connecticut CIS-acting cellular nucleic acid molecules
US6844158B1 (en) 1997-12-22 2005-01-18 Hitachi Chemical Co., Ltd. Direct RT-PCR on oligonucleotide-immobilized PCR microplates
WO1999055913A2 (en) * 1998-04-27 1999-11-04 Sidney Kimmel Cancer Center Reduced complexity nucleic acid targets and methods of using same
WO2000021973A1 (en) * 1998-10-09 2000-04-20 Whatman Bioscience Limited Isolation method for nucleic acid and apparatus
US6287440B1 (en) 1999-06-18 2001-09-11 Sandia Corporation Method for eliminating gas blocking in electrokinetic pumping systems
US6664104B2 (en) * 1999-06-25 2003-12-16 Cepheid Device incorporating a microfluidic chip for separating analyte from a sample
US6319379B1 (en) 1999-08-23 2001-11-20 The Regents Of The University Of California Modified electrokinetic sample injection method in chromatography and electrophoresis analysis
US6432290B1 (en) 1999-11-26 2002-08-13 The Governors Of The University Of Alberta Apparatus and method for trapping bead based reagents within microfluidic analysis systems
US7745180B2 (en) 2002-04-24 2010-06-29 Hitachi Chemical Co., Ltd. Device and method for high-throughput quantification of mRNA from whole blood

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998021321A1 (en) * 1996-11-12 1998-05-22 Qbi Enterprises Ltd. Method for identifying translationally regulated genes
WO1999032654A1 (en) * 1997-12-22 1999-07-01 Hitachi Chemical Co., Ltd. Direct rt-pcr on oligonucleotide-immobilized pcr microplates

Also Published As

Publication number Publication date
EP1330518A2 (en) 2003-07-30
ATE480618T1 (de) 2010-09-15
JP5416326B2 (ja) 2014-02-12
WO2002066637A8 (en) 2003-10-30
WO2002066637A3 (en) 2003-05-22
EP1330518B1 (en) 2010-09-08
US7374881B2 (en) 2008-05-20
DE60143046D1 (de) 2010-10-21
CN1606621A (zh) 2005-04-13
US20040072193A1 (en) 2004-04-15
JP2004519234A (ja) 2004-07-02
WO2002066637A2 (en) 2002-08-29

Similar Documents

Publication Publication Date Title
CN1294262C (zh) 收集以及使用细胞核mRNA的方法
CN1310931C (zh) 分离核酸的方法
TWI425093B (zh) Method for Extracting Bursaphelenchus xylophilus from Wood Tablets, LAMP Primer of Bursaphelenchus xylophilus and Method for Detecting Bursaphelenchus xylophilus from Wood
CN1610752A (zh) 多参数全面分析核酸以及同样样品上的形态学特征
EP1992689B1 (en) Method for extraction of nucleic acid from biological material
CN1742093A (zh) 细胞和/或核酸分子分离的方法和系统
CN1882688A (zh) 用于分离小rna分子的方法和组合物
CN1688693A (zh) 使用结合mRNA的探针筛选和分离活细胞
CN1274846C (zh) 用于微生物检测分析系统、套组及方法
US20140242584A1 (en) Genomic dna extraction reagent and method
CN1258316A (zh) 植物转化方法
WO2015119719A1 (en) Genomic dna extraction reagent and method
CN1930302A (zh) 用于检测临床样品中的病原分枝杆菌的方法
EP3186390B1 (en) Methods and devices involving oil matrices
CN1738913A (zh) 定量评价至少一种生物培养基总的和特定的dna修复能力的方法及其应用
CN1580278A (zh) NF-κB检测双链DNA微阵列芯片及制备
CN1772925A (zh) 肺特异性X蛋白mRNA表达量检测试剂盒及其专用引物与探针
CN101045942A (zh) 转基因番木瓜及其加工产品中转基因成分的检测
CN1772922A (zh) 鉴定入侵南美红火蚁的方法及所用的核酸序列、探针与试剂盒
Chevignon et al. De novo transcriptome assembly and analysis of the flat oyster pathogenic protozoa Bonamia ostreae
JP5320915B2 (ja) 微生物汚染検出用キット、微生物汚染検出方法、及び汚染源判別方法
CN1277933C (zh) 用核酸酶解活性和杂交技术鉴别核酸分子的方法和组合物
Takahara et al. Isolation of fungal infection structures from plant tissue by flow cytometry for cell-specific transcriptome analysis
CN1730662A (zh) 对藻类进行定性与定量分析的方法
CN101054554A (zh) 用于提高微生物细胞壁透性的组合物和用于在膜上检测所述微生物的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: HITACHI CHEMICAL RESEARCH CENTER; HITACHI CHEMICA

Free format text: FORMER OWNER: HITACHI CHEMICAL RESEARCH CENTER; HITACHI CHEMICAL CO., LTD.; HITACHI CO., LTD.

Effective date: 20070525

C41 Transfer of patent application or patent right or utility model
C56 Change in the name or address of the patentee
TR01 Transfer of patent right

Effective date of registration: 20070525

Address after: American California

Co-patentee after: Hitachi Chemical Co., Ltd.

Patentee after: Hitachi Chemical Res Ct Inc.

Address before: American California

Co-patentee before: Hitachi Chemical Co., Ltd.

Patentee before: Hitachi Chemical Res Ct Inc.

Co-patentee before: Hitachi Ltd.

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070110

Termination date: 20161025