CN1283693C - 在聚(亚芳基硫醚)聚合物生产中降低反应剂的腐蚀性的方法 - Google Patents

在聚(亚芳基硫醚)聚合物生产中降低反应剂的腐蚀性的方法 Download PDF

Info

Publication number
CN1283693C
CN1283693C CNB008160961A CN00816096A CN1283693C CN 1283693 C CN1283693 C CN 1283693C CN B008160961 A CNB008160961 A CN B008160961A CN 00816096 A CN00816096 A CN 00816096A CN 1283693 C CN1283693 C CN 1283693C
Authority
CN
China
Prior art keywords
mixture
polar organic
poly
organic compound
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB008160961A
Other languages
English (en)
Other versions
CN1391593A (zh
Inventor
F·C·小维达里
J·S·佛多
J·F·盖贝尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Solvay SA
Original Assignee
Phillips Petroleum Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Phillips Petroleum Co filed Critical Phillips Petroleum Co
Publication of CN1391593A publication Critical patent/CN1391593A/zh
Application granted granted Critical
Publication of CN1283693C publication Critical patent/CN1283693C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/14Polysulfides
    • C08G75/16Polysulfides by polycondensation of organic compounds with inorganic polysulfides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/0231Polyarylenethioethers containing chain-terminating or chain-branching agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/025Preparatory processes
    • C08G75/0268Preparatory processes using disulfides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

本发明提供了制备聚(亚芳基硫醚)聚合物的方法,其中包括含水碱金属氢氧化物和极性有机化合物的聚合反应剂在第一温度下预反应以形成混合物,然后该混合物与硫源在第二温度下在足以除去混合物中含有的至少一部分水的条件下反应,此后如此获得的脱水混合物与至少一种二卤代芳族化合物在聚合条件下接触。

Description

在聚(亚芳基硫醚)聚合物生产中 降低反应剂的腐蚀性的方法
本发明的领域
本发明涉及聚(亚芳基硫醚),即(PAS)聚合物。在一个方面,本发明涉及用于制备聚(亚芳基硫醚)聚合物的方法,其中在聚合条件下,部分聚合反应剂在与其余聚合反应剂接触之前分两步进行预反应。
在本发明的一个实施方案中,包括含水碱金属氢氧化物和极性有机化合物的聚合反应剂在第一温度下预反应以形成混合物,然后混合物与硫源在第二温度下在足以除去在混合物中含有的至少部分水的条件下反应,此后如此脱水的混合物与至少一种二卤代芳族化合物在聚合条件下接触。
本发明的背景
聚(亚芳基硫醚)聚合物在本领域中是普遍已知的,由于它们具有高耐化学品性和耐热性而发现有用。在现有技术中已经公开了制备这些聚(亚芳基硫醚)聚合物的方法。在典型的制备方法中,至少一种二卤代芳族化合物,硫源和极性有机化合物在聚合条件下接触。通常选择含水硫源,或者硫源与极性有机化合物的反应产生了水或释放了水合水。这种水对高分子量聚合物的形成可以是不利的,因此常常通过将硫源和极性有机化合物的预聚合混合物脱水来除去。这些方法通常在相对高温和压力下进行,以便最大程度地除去水量。该方法具有缺点,在于硫源和极性有机化合物的混合物是高腐蚀性的,不象我们所希望的那样,脱水容器必须频繁更换或修理,或者脱水容器必须由不易腐蚀的昂贵结构材料制成。从经济角度来看,希望具有其中能使所要脱水的硫源和极性有机化合物的含水混合物腐蚀性降低的方法。
本发明的目的
希望提供用于制备聚(亚芳基硫醚)聚合物的方法,其中含水硫源的脱水在两步法中进行,以使脱水混合物腐蚀性降低。
本发明的概述
根据本发明,包括含水碱金属氢氧化物和极性有机化合物的聚合反应剂在第一温度下预反应以形成混合物,然后混合物与硫源在第二温度下在足以除去在混合物中含有的至少一部分水的条件下反应,此后,如此脱水的混合物与至少一种二卤代芳族化合物在聚合条件下接触。
本发明的详细叙述
根据本发明,通过使包括含水碱金属氢氧化物和极性有机化合物的反应剂在第一温度下预反应以形成混合物,然后使该混合物与硫源在第二温度下在足以除去在混合物中含有的至少一部分水的条件下反应,此后使如此脱水的混合物与至少一种二卤代芳族化合物在聚合条件下接触来制备聚(亚芳基硫醚)聚合物。
在本发明的方法中,可以使用任意适合的硫源。在U.S.3,919,177中公开了适合的硫源,该专利在这里引入供参考。这些适合的硫源包括,但不限于硫代硫酸酯,硫脲,硫酰胺,元素硫,硫代氨基甲酸甲酯,金属二硫化物和硫氧化物,硫代碳酸酯,有机硫醇,有机硫醇盐,有机硫化物,碱金属硫化物和硫氢化物以及硫化氢。
用于生产聚(亚芳基硫醚)聚合物的碱金属硫化物可以以水合物或含水混合物使用。可用于本发明的碱金属硫化物包括硫化锂,硫化钠,硫化钾,硫化铷,硫化铯,和它们的混合物。根据本发明的碱金属硫化物的水溶液可以通过碱金属氢氧化物与碱金属硫氢化物在水溶液中的反应来制备。由于成本低而且有效,通常优选使用硫化钠或硫氢化钠和氢氧化钠的结合物作为制备聚(亚芳基硫醚)聚合物的硫源。在使碱金属氢氧化物和极性有机化合物预反应的本发明中,优选使用碱金属硫氢化物作为硫源。
可用于本发明的极性有机化合物是用于生产聚(亚芳基硫醚)聚合物的二卤代芳族化合物和硫源的溶剂这些极性有机化合物的实例包括酰胺,包括内酰胺,和砜。这些极性有机化合物的具体实例包括六甲基磷酰胺,四甲基脲,N,N’-亚乙基二吡咯烷酮,N-甲基-2-吡咯烷酮(NMP),吡咯烷酮,己内酰胺,N-乙基己内酰胺,环丁砜,N,N’-二甲基乙酰胺,1,3-二甲基-2-咪唑啉酮,低分子量聚酰胺等。极性有机化合物目前优选是NMP。
水合或含水硫源和极性有机化合物是在添加二卤代芳族化合物或聚合的开始之前在足以除去至少部分水的条件下进行预反应(脱水)。
已经发现,通过在两步法中进行预反应,可以有利而且令人意外地降低所要脱水的混合物的腐蚀性。首先,含水碱金属氢氧化物与极性有机化合物在第一温度接触,然后混合物与碱金属硫氢化物在更高的第二温度下接触,并且经历足以除去至少部分水(倘若不是全部)的条件,之后使混合物与反应混合物的其余组分接触。在本发明的另一实施方案中,碱金属氢氧化物和极性有机化合物的反应产物在足以除去部分水的条件下经历更高的温度,之后使混合物与碱金属硫氢化物接触。
含水碱金属氢氧化物与极性有机化合物接触的时间应足以使两种组分反应并在水溶液中形成氨基链烷酸碱金属盐。碱金属氢氧化物和极性有机化合物的反应产物的腐蚀性要少得多,此外具有可溶于聚合反应混合物中的优点。在本发明的尤其优选的实施方案中,氢氧化钠和N-甲基-2-吡咯烷酮反应,以形成N-甲基-4-氨基丁酸酯(SMAB)。
第一步接触发生的温度可以变化很大,但一般是在大约50和大约200℃之间。优选使用正好在使反应剂保留在溶液中所必需的温度之上的温度,因为溶液的腐蚀性随温度增加而增加。最优选使用在大约75到大约125℃的温度。
在碱金属氢氧化物和极性有机化合物发生反应之后,温度上升至足以使混合物进行脱水或者促进混合物脱水的第二温度。如果所要使用的碱金属硫氢化物是含水硫源,它可以在脱水之前添加以及可以有效进行脱水以除去随硫一起加入的水。另外,在含水反应剂的各次添加之后可以进行单独的脱水。
脱水可以根据本领域中那些普通技术人员已知的任何方法来进行。在US4,368,321和U.S.4,371,671中公开了适合的方法,二者在这里引入供参考。脱水所用温度一般是大约100到大约240℃;压力一般在稍高于大气压到308kPa(30psig)的范围内。
一般,反应混合物的其余组分可以以任何次序彼此接触。
在本发明的方法中可以使用的二卤代芳族化合物以下式表示:
Figure C0081609600061
其中各X选自氯、溴和碘,以及各R选自氢和烃基,其中烃基可以是烷基,环烷基,或芳基或它们的结合物如烷芳基,芳烷基或类似物,在各分子中的碳原子总数是在6至大约24的范围内。虽然卤素原子可以在二卤代芳族化合物的任何位置,但优选使用对二卤苯作为二卤代芳族化合物。
适合的对二卤苯的实例包括对二氯苯(DCB),对二溴苯,对二碘苯,1-氯-4-溴苯,1-氯-4-碘苯,2,5-二氯甲苯,2,5-二氯-对-二甲苯,1-乙基-4-异丙基-2,5-二溴苯,1,2,4,5-四甲基-3,6-二氯苯,1-丁基-4-环己基-2,5-二溴-苯,1-己基-3-十二烷基-2,5-二氯苯,1-十八烷基-2,5-二碘苯,1-苯基-2-氯-5-溴苯,1-(对甲苯基)-2,5-二溴苯,1-苄基-2,5-二氯苯,1-辛基-4-(3-甲基环戊基)-2,5-二氯-苯等,和它们的任何两种或多种的混合物。由于可获得性和有效性,优选用于本发明的二卤代芳族化合物是对二氯苯(DCB)。
在聚合反应混合物中或聚合过程中使用其它组分也是在本发明的范围内。例如,分子量改性或增强剂如羧酸碱金属盐,卤化锂或水可以加入或在聚合过程中产生。可以使用的适宜羧酸碱金属盐包括具有结构式R’COOM的那些,其中R’是选自烷基、环烷基、芳基、烷芳基、芳烷基中的烃基,以及在R’中的碳原子数是在1到大约20的范围内,和M是选自锂、钠、钾、铷和铯中的碱金属。羧酸碱金属盐可以作为水合物或作为溶液或水中的分散体使用。由于可获得性和有效性,优选的羧酸碱金属盐是乙酸钠。
在现有技术,例如,U.S.3,354,129(该专利在这里引入供参考)中普遍公开了聚(亚芳基硫醚)聚合反应,以及U.S.3,919,177和U.S.4,645,826全都公开了制备聚(亚芳基硫醚)聚合物的方法。上述专利出版物还公开了回收有用的聚(亚芳基硫醚)聚合物产物的方法。在U.S.4,415,729中公开了回收聚(亚芳基硫醚)聚合物产物的另一适宜方法,该专利在这里引入供参考。这些专利出版物全部描述了从含有各种杂质和未反应的聚合组分的反应混合物中分离所需聚合物产物。
用本发明方法制备的聚(亚芳基硫醚)可以是高或低分子量聚合物。当描述用本发明方法制备的聚合物时,术语低分子量聚(亚芳基硫醚)聚合物一般是指当根据ASTM D 1238,条件316/5测量时,熔体流动值在高于1000g/10min到大约30,000g/10min.范围内的聚(亚芳基硫醚)聚合物。
这里使用的术语高分子量聚(亚芳基硫醚)聚合物一般是指当在未固化状态时具有低于大约1000g/10min的熔体流动值的基本线性聚(亚芳基硫醚)聚合物。这里使用的基本线性聚(亚芳基硫醚)被定义为没有支化或使得对聚合物性能基本没有影响的这种少量支化的聚合物。例如,在聚(亚芳基硫醚)聚合方法中使用的二卤代芳族化合物中发现的多卤代芳族杂质的量不足以使所得聚(亚芳基硫醚)是在基本线性定义范围之外。
通常,在聚合方法中使用的反应剂的比率可以变化很大。优选的是,二卤代芳族化合物的量与硫源的量的比率是在大约0.8/1到大约2/1的范围内。如果羧酸碱金属盐作为分子量改性剂使用,优选羧酸碱金属盐与二卤代芳族化合物的摩尔比是在大约0.05/1到大约4/1的范围内。
在聚合过程中所用极性有机化合物的量可以在宽范围内变化。然而,在聚合过程中,优选极性有机化合物的量与硫源的量的摩尔比是在1/1到10/1的量内。
这里所使用的术语聚合开始定义为聚合反应混合物首先经历足以引发聚合反应的聚合条件的时刻。这里所用的术语聚合终止定义为采取切实的步骤以去掉有效持续聚合所必需的条件,例如通过从聚合混合物中开始回收聚(亚芳基硫醚)聚合物的时刻。必须指出的是,术语聚合终止的使用不意味着聚合反应组分已经发生了完全的反应。还应该指出的是,这里所使用的术语聚合终止也不意味着反应剂不能发生进一步的聚合。通常,为了经济的原因,聚(亚芳基硫醚)聚合物回收通常在当聚合基本完成的时候开始,即,由进一步聚合导致的聚合物分子量的增加不足以明显证明需要其它聚合时间。
虽然进行聚合的反应温度可以在宽范围内变化,通常它是在大约170℃(347°F)到大约325℃(617°F),优选大约200℃到大约290℃的范围内。反应时间可以变化很大,部分取决于反应温度,但一般是在大约10分钟到大约72小时,优选大约1小时到大约8小时的范围内。压力应足以保持极性有机化合物和二卤代芳族化合物基本在液相中。
根据本发明制备的聚(亚芳基硫醚)聚合物可以通过本领域中那些普通技术人员已知的任何方法来回收。
提供了以下实施例以便进一步说明本发明,但不用来限制它的范围。
实施例
在以下实施例中,通过ASTM D 1238,条件316/0.345的方法测定聚合物挤出速度,以克/10分钟(g/10min)报道。用于测量挤出速度的孔口具有2.096+/-0.005mm直径和31.75+/-0.05mm长度。聚合物熔体流动值(按g/10min单位计)通过ASTM D 1238,条件316/5的方法测定。用于测量熔体流动的孔口具有2.096+/-0.005mm直径和8.000+/-0.025mm长度。
存在于聚合物样品中的挥发物的相对量使用石英晶体微量天平(QCM)测量。该试验包括从熔融的PPS样品中蒸发挥发物质,用水冷却收集蒸汽,使石英晶体振动,和通过振动晶体的频率变化来评定冷凝物质的量。将称量的PPS聚合物样品放入加热(325℃)不锈钢烧杯的底部,该烧杯用含振动晶体的盖子覆盖。当蒸汽在晶体上冷凝时,晶体的共振频率与沉积量成比例减少。试验值以在10分钟试验时间内与晶体频率的变化成比例的无量纲相对值报道。报道的值较低,表明试验样品在试验温度下与具有较高QCM值的样品相比具有更低水平的挥发物。
对粗反应混合物中未反应的二氯苯的聚合物分析通过DCB/NMP混合物的气相色谱法(GC),使用由HP 3365 Series II ChemStation(DOSSeries)控制的HP 5890气相色谱仪来进行。所用的载气是氦。使用标准溶液测定响应因子。使用0.5微升注射器制备所要分析的注射溶液,通常使用0.05-0.4微升注射量。气相色谱法所用的柱子是30米0.53mm毛细管柱(DB Wax),购自J & W Scientific(Cat.No.125-7032)。DCB/NMP分析用的程序升温首先是在120℃保持2分钟,然后温度以30℃/min直线上升至190℃,并在该温度保持1.30分钟。总分析时间是大约5.63分钟。典型混合物是从大约0.1wt%对二氯苯在NMP中的溶液到大约4wt%的对二氯苯在NMP中的溶液。用于对比的GC标准是属于1.5wt%对二氯苯的NMP溶液的混合物,它的组成精确已知。标准溶液用异丙醇稀释,以便落在所需浓度范围内。来自反应器的粗PPS反应混合物的实验样品与大约10倍量的异丙醇在Waring共混机中共混。过滤样品,获得了含异丙醇、NMP和未反应的对二氯苯的透明液体。
对从聚合物的样品的裂解中留下的灰尘的硝酸水溶液消化液通过感应耦合等离子体/质谱法进行金属分析。金属浓缩物以百万分率(ppm)报道。
实施例I
本实施例(聚合试验I-1)描述了根据普遍已知的方法的聚(对亚苯基硫醚)聚合物(PPS)的一般制备法。在该典型PPS制备中,将40.97g的纯度98.6%的氢氧化钠(NaOH)粒料(1.01g-mol NaOH),40.0g双蒸水(2.22g-mol),95.49g含水硫氢化钠(NaSH)(58.707wt%NaSH)(1.00g-mol),和198.26g的N-甲基-2-吡咯烷酮(NMP)(2.00g-mol)加到一升搅拌不锈钢反应器中。反应器用5个释压循环的446kPa(50psig)氮和5个循环的1479kPa(200psig)氮脱气。然后将反应器和内容物缓慢加热至100℃,而后打开脱水出口和起动速度为32mL/min的氮气流。脱水在加热的同时持续到大约204℃的最终温度。然后,关闭脱水出口,再使用加料量筒将溶解在1.00g-mol NMP中的148.49g对二氯苯(DCB)(1.0g-mol)加到反应器中。加料量筒用量外1g-mol NMP清洗,再加到反应器中。再次用如以上相同的方式将反应器脱气。然后将反应器加热到聚合条件(235℃),并维持2小时,然后温度上升至260℃,保持达2小时,以生产出PPS。在聚合结束时,将反应器冷却到室温,再使用异丙醇萃取PPS聚合物和NMP的混合物。
通过气相色谱法分析NMP/异丙醇中的PPS,以获得wt%DCB。反应器产物然后在90℃用水洗6次,用粗滤纸过滤来回收PPS产物,产物再于通风橱中干燥一夜。第二天,将PPS放入真空烘箱中,并在100℃干燥24小时,获得了101.23g的干燥PPS聚合物产物。如上所述测量PPS产物的挤出速度,测得是72.71g/10min。
实施例II
本实施例叙述了使用使氢氧化钠和NMP预接触和在添加硫氢化钠之前脱水的本发明方法的效果。对于聚合试验II-1,反应器中加入40.97g的纯度98.6%的氢氧化钠(NaOH)粒料(1.01g-mol NaOH),79.43g双蒸水(4.41g-mol)和198.26g的N-甲基-2-吡咯烷酮(NMP)(2.00g-mol)。反应器用5个释压循环的446kPa(50psig)氮和5个循环的1479kPa(200psig)氮脱气。在反应器用氮气脱气后,将内容物加热到100℃,并在该温度下保持1小时。此后,打开脱水出口,以及在升温至大约204℃的脱水进行脱水。然后,关闭脱水出口,再将反应器内容物冷却到室温。
在该第一脱水之后,将95.49g含水硫氢化钠(NaSH)(58.707wt%NaSH)(1.00g-mol)加到反应器中,再次如上述那样脱气,只是将377kPa(40psig)的氮气在反应器中保留一整夜。第二天,释放压力,和将反应器加热至105℃,此后,打开脱水从出口。反应器进一步加热至大约204℃,然后关闭该出口。此后,将1.01g-mol的DCB(148.49g)和1.00g-mol NMP加到脱水混合物中,再将反应器加热到235℃并保持1小时。然后将反应器加热到265℃,并保持2小时。然后,冷却和打开反应器。除去反应器中的液体样品。PPS产物与异丙醇混合,然后在90℃的温度下过滤和用蒸馏水洗涤6次,然后过滤以回收聚合物产物。在干燥后获得了大约102.08g的具有62.64g/10min的挤出速度的PPS。
使用试验II-1中所述的工序,进行试验II-2(38218-98),只是在第一次加料中添加的水量是大约2.22g-mol,而不是4.41g-mol,以及在第二次加料中将95.30g的NaSH加到反应器中。
实施例I和实施例II的试验1和2的产物的比较表示在以下的表I中。通过本发明方法生产的聚合物具有与用已知方法生产的聚合物可比的挤出速度;然而,用本发明方法生产的聚合物的金属污染物的水平要远远低得多,尤其铬、铁和镍,它们是反应器结构的材料。在最终聚合物产物中测得的金属的水平较低是反应器中腐蚀性低的指示。
实施例III
以在实施例II试验II-2中所述的方式进行二个附加PPS聚合试验III-1和III-2,以进一步证明使碱金属氢氧化物与极性有机化合物在添加硫源之前接触的本发明效果。
聚合试验III-3以实施例I中所述的方式进行,提供了使用已知聚合方法的其它对比。
本实施例的试验在表I中总结。使用使碱金属氢氧化物与极性有机化合物在相对低温下预接触,然后添加硫源和进行脱水的本发明方法导致了脱水混合物的腐蚀性显著降低,如由所得聚合物中金属污染物水平比具有基本相同挤出速度的对照试验I-1和III-3低得多所证明的那样。
表1
实施例试验号 脱水步骤编号 异丙醇萃取物wt%DCB  PPS产量(g) 挤出速度(g/10min)  10minQCM  Na(ppm) Cr(ppm) Fe(ppm) Ni(ppm)
 I-1  1  1.1730  101.23  72.71  0.28  489  108  492  41.1
 II-1  2  1.070  102.08  62.64  0.278  443  6.8  39.3  8.9
 II-2  2  1.2150  100.75  35.61  0.275  367  14.5  55.2  9.1
 III-1  2  0.8930  101.46  37.54  0.351  379  11.2  45.6  14.5
 III-2  2  0.9905  101.45  48.5  0.345  409  11.1  37.2  9.3
 III-3  1  0.9520  100.48  56.04  0.328  375  132  558  52.4
虽然就说明的目的详细描述了本发明,但本发明的目的不是受限于其中,而是意图覆盖在其范围内的所有合理的变化。

Claims (7)

1.制备聚(亚芳基硫醚)聚合物的方法,该方法包括:
使含水碱金属氢氧化物与极性有机化合物在包含铁、铬和镍中的一种或多种的金属容器中以及在50℃-200℃的第一温度范围内反应以形成具有该金属氢氧化物和极性有机化合物的反应产物的溶液;
将溶液脱水以便将至少一部分水从溶液中除去;
将硫源加入到溶液中以形成混合物;
在100℃-240℃的温度下将混合物脱水以便从混合物中除去至少一部分水;以及
在聚合条件下将一种或多种包括至少一种二卤芳基化合物的聚合反应剂加入到混合物中以形成聚(亚芳基硫醚)聚合物,其中所述溶液和混合物中的至少一种对于金属容器的腐蚀性降低了。
2.权利要求1的方法,其中所述含水碱金属氢氧化物包括氢氧化钠。
3.权利要求1的方法,其中极性有机化合物包括N-甲基-2-吡咯烷酮。
4.权利要求1-3中任一项的方法,其中所述硫源包括碱金属硫氢化物。
5.权利要求4的方法,其中硫源是硫氢化钠。
6.权利要求1-3中任一项的方法,其中第一温度范围是75-125℃。
7.权利要求1-3中任一项的方法,其中反应产物包括N-甲基-4-氨基丁酸酯。
CNB008160961A 1999-12-30 2000-12-27 在聚(亚芳基硫醚)聚合物生产中降低反应剂的腐蚀性的方法 Expired - Fee Related CN1283693C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/476,249 US20020183481A1 (en) 1999-12-30 1999-12-30 Method to decrease corrosiveness of reactants in poly(arylene sulfide) polymer production
US09/476,249 1999-12-30

Publications (2)

Publication Number Publication Date
CN1391593A CN1391593A (zh) 2003-01-15
CN1283693C true CN1283693C (zh) 2006-11-08

Family

ID=23891102

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB008160961A Expired - Fee Related CN1283693C (zh) 1999-12-30 2000-12-27 在聚(亚芳基硫醚)聚合物生产中降低反应剂的腐蚀性的方法

Country Status (11)

Country Link
US (2) US20020183481A1 (zh)
EP (1) EP1242508B1 (zh)
JP (1) JP4950402B2 (zh)
KR (1) KR100802211B1 (zh)
CN (1) CN1283693C (zh)
AT (1) ATE284912T1 (zh)
AU (1) AU2600501A (zh)
BR (1) BR0015998A (zh)
DE (1) DE60016801T2 (zh)
ES (1) ES2233496T3 (zh)
WO (1) WO2001049706A2 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6062924B2 (ja) * 2012-03-30 2017-01-18 株式会社クレハ 粒状ポリアリーレンスルフィド及びその製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3867356A (en) * 1973-11-19 1975-02-18 Phillips Petroleum Co Arylene sulfide polymers
US4025496A (en) * 1975-10-10 1977-05-24 Phillips Petroleum Company Sequenced addition of components in poly(arylene sulfide) production
US4060520A (en) * 1976-03-30 1977-11-29 Phillips Petroleum Company Continuous reaction for preparation of arylene sulfide polymer
US4324886A (en) * 1980-05-06 1982-04-13 Phillips Petroleum Company Arylene sulfide polymer prepared from aminoalkanoate
US4370470A (en) * 1981-04-16 1983-01-25 Phillips Petroleum Company Multistage, agitated contactor and its use in continuous production of arylene sulfide polymer
JPH02180928A (ja) * 1988-08-31 1990-07-13 Idemitsu Petrochem Co Ltd ポリアリーレンスルフィドの製造方法
MY104185A (en) 1988-08-31 1994-02-28 Idemitsu Petrochemical Company Ltd A process for preparing polyarylene sulfides
US5023315A (en) * 1990-04-18 1991-06-11 Phillips Peteroleum Company Process for preparing arylene sulfide polymers
JPH05202189A (ja) * 1991-09-23 1993-08-10 Phillips Petroleum Co アリーレンスルフィドポリマーの調製方法
US5438115A (en) * 1993-11-30 1995-08-01 Phillips Petroleum Company Process for preparing poly(arylene sulfide) polymers
US5856533A (en) * 1995-12-28 1999-01-05 Praxair Technology, Inc. High efficiency heat and mass transfer for vapor phase heterogeneous reactions
JPH09278888A (ja) * 1996-04-16 1997-10-28 Idemitsu Petrochem Co Ltd ポリアリーレンスルフィド製造用機器およびそれを用いたポリアリーレンスルフィドの製造方法

Also Published As

Publication number Publication date
DE60016801D1 (de) 2005-01-20
AU2600501A (en) 2001-07-16
DE60016801T2 (de) 2005-11-24
US20020183481A1 (en) 2002-12-05
EP1242508A2 (en) 2002-09-25
JP4950402B2 (ja) 2012-06-13
EP1242508A4 (en) 2003-01-29
JP2003519251A (ja) 2003-06-17
WO2001049706A2 (en) 2001-07-12
KR20020059833A (ko) 2002-07-13
ES2233496T3 (es) 2005-06-16
BR0015998A (pt) 2002-08-20
ATE284912T1 (de) 2005-01-15
KR100802211B1 (ko) 2008-02-11
WO2001049706A3 (en) 2001-12-13
CN1391593A (zh) 2003-01-15
EP1242508B1 (en) 2004-12-15
US20040097698A1 (en) 2004-05-20

Similar Documents

Publication Publication Date Title
US8183336B2 (en) Poly (arylene sulfide)
CA2072165C (en) Process for preparing poly(arylene sulfide) polymers using waste material
US5438115A (en) Process for preparing poly(arylene sulfide) polymers
KR100283368B1 (ko) 금속 오염이 매우 낮은 폴리(아릴렌 설파이드)의 제조 방법
US9228059B2 (en) Preparation of thioether polymers
JPH0651792B2 (ja) ポリ(p−フエニレンスルフイド)の改良製造方法
US6242501B1 (en) Processes for the recovery of poly(arylene sulfide)
CN1283693C (zh) 在聚(亚芳基硫醚)聚合物生产中降低反应剂的腐蚀性的方法
JP6136292B2 (ja) ポリアリーレンスルフィドの製造方法
JPH02276826A (ja) ポリ(アリ―レンスルフィドケトン)の製造法
JPS63243133A (ja) 硫化アリーレン重合体の製法
US11427683B2 (en) Preparation method of polyarylene sulfide
US6307011B1 (en) Recovery of modifier compounds and polar organic compounds from a poly(arylene sulfide) recycle mixture
RU2441038C2 (ru) Способ получения полисульфидов, полисульфиды и их применение
JP7214998B2 (ja) カルボキシアルキルアミノ基含有化合物の製造方法、および環式ポリアリーレンスルフィドの製造方法
JP2017031404A (ja) ポリアリーレンスルフィドの製造方法
JP2014172926A (ja) ポリアリーレンスルフィドの製造方法
EP1226184B1 (en) Methanol extraction of polar organic compounds and modifier compounds from poly(arylene sulfide) polymer and oligomer streams
JP6390079B2 (ja) 分岐型ポリアリーレンスルフィド樹脂の製造方法
CN1300104C (zh) 一种芳香单硫环状低聚物及其无催化的制备方法
US5177174A (en) Branched aromatic sulfide/sulfone polymer production
KR20200036327A (ko) 폴리아릴렌 설파이드의 제조 방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: CHEVRON PHILLIPS CHEMICAL CO., LTD.

Free format text: FORMER OWNER: PHILLIPS PETROLEUM CORP.

Effective date: 20150807

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20150807

Address after: American Texas

Patentee after: Chevron Phillips Chemical Co., Ltd.

Address before: Oklahoma

Patentee before: Phillips Petroleum Corp.

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20160530

Address after: Brussels

Patentee after: Solvay & Cie

Address before: American Texas

Patentee before: Chevron Phillips Chemical Co., Ltd.

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20061108

Termination date: 20161227

CF01 Termination of patent right due to non-payment of annual fee