CN1278928C - 从含nh3、h2o和co2的气体混合物中获得氨基甲酸铵溶液的方法 - Google Patents

从含nh3、h2o和co2的气体混合物中获得氨基甲酸铵溶液的方法 Download PDF

Info

Publication number
CN1278928C
CN1278928C CN02814654.9A CN02814654A CN1278928C CN 1278928 C CN1278928 C CN 1278928C CN 02814654 A CN02814654 A CN 02814654A CN 1278928 C CN1278928 C CN 1278928C
Authority
CN
China
Prior art keywords
gaseous mixture
ammonium carbamate
weight
mixture
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN02814654.9A
Other languages
English (en)
Other versions
CN1533362A (zh
Inventor
G·M·H·J·拉丁奈斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DSM IP Assets BV
Original Assignee
DSM IP Assets BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DSM IP Assets BV filed Critical DSM IP Assets BV
Publication of CN1533362A publication Critical patent/CN1533362A/zh
Application granted granted Critical
Publication of CN1278928C publication Critical patent/CN1278928C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/082Compounds containing nitrogen and non-metals and optionally metals
    • C01B21/12Carbamic acid or thiocarbamic acid; Salts thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • C01C1/10Separation of ammonia from ammonia liquors, e.g. gas liquors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Gas Separation By Absorption (AREA)
  • Treating Waste Gases (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明涉及一种从含有大于40重量%的NH3、小于50重量%的CO2和小于40重量%的H2O并且压强在0.1MPa和4MPa之间的气体混合物中获得氨基甲酸铵溶液的方法,其包含一个压缩步骤和一个吸收步骤,在所述压缩步骤中气体混合物的压强被增加到0.5MPa和25MPa之间。

Description

从含NH3、H2O和CO2的气体混合物中获得氨基甲酸铵溶液的方法
本发明涉及一种从含有NH3、H2O和CO2的气体混合物中获得氨基甲酸铵溶液的方法。
这种方法应用于三聚氰胺的制备方法中,例如Stamicarbon方法,其描述在2001 Electronic Release出版的Ullmann’sEncyclopedia of Industrial chemistry第六版的第4.1.3段,“Melamine and Guanamines”中。在已知的方法中,气体混合物是从冷却区得到的,在该冷却区中冷却来自反应器的含有三聚氰胺的流体。所述气体混合物的压强约为0.7MPa,其随后经过一个吸收步骤,在该步骤中,除了氨基甲酸铵溶液以外,还得到了NH3的气流。这里和以下的氨基甲酸铵溶液应理解为一种水溶液,所述溶液除了氨基甲酸铵以外,还含有游离NH3和/或CO2和/或衍生自NH3和CO2的其它化合物,例如碳酸氢铵。
从吸收步骤中再循环到的NH3气流在三聚氰胺生产工艺中在其它方面被用作反应器中的流化气体。所述Stamicarbon方法还包含一个热交换器,在该热交换器中,气体混合物在进行吸收步骤之前被部分冷凝。
在许多情况下,从气体混合物中得到的氨基甲酸铵溶液被进一步处理以用作制备脲的原材料。从氨和二氧化碳经氨基甲酸铵制备脲的反应在高压下发生,通常在12.5MPa和25MPa之间,通过下面的反应式进行。
 氨        二氧化碳     氨基甲酸铵              脲             水
氨基甲酸铵溶液的进一步加工特别涉及部分氨溶液的排放和溶液中水量的减少相关,所述氨溶液随后在三聚氰胺生产工艺中被再循环。
已知方法例如Stamicarbon方法的缺点是上述的进一步加工需要很多蒸汽能。而且,进一步的加工在技术上很复杂,这意味着它只能在很高的成本条件下才能实现。
本发明的目标是大大地消除所述缺点。
这个目标通过下面的方法实现:在吸收步骤之前将气体混合物经压缩步骤进行压缩,所述气体混合物含有大于40重量%的NH3、小于50重量%的CO2和小于40重量%的H2O并且压强在0.1MPa和4MPa之间,所述压缩步骤包括将气体混合物的压强增加到0.5MPa和25MPa之间。优选在进入压缩步骤之前气体混合物的压强在0.5MPa和2.5MPa之间。压缩步骤增加了气体混合物的压强;优选增加至少0.4MPa,更优选增加至少0.7MPa。优选在压缩步骤中气体混合物的压强增加至1MPa和5MPa之间,更优选增加至1.5MPa和3MPa之间,如果在制备三聚氰胺的方法中加入本发明方法,这个条件是特别合适的。另外,优选气体混合物的压强增加至12.5MPa和25MPa之间,如果在制备脲的方法中加入本发明方法,这个条件是特别合适的。
我们惊讶地发现在本发明方法中经氨基甲酸铵溶液产生的氨的数量,或者是游离氨或者是铵离子,比已知方法少,因此不需要进一步加工或着只需要较少的进一步加工。这个优点抵消了在压缩步骤中电能或者蒸汽能的消耗。
本发明的另一个优点是从气体混合物得到的氨基甲酸铵溶液在更高的压强下含有的H2O的百分比更小,同时没有形成所不希望的固相。因此本发明方法可应用于这样的气体混合物中,所述气体混合物中H2O的百分比含量过低从而在已知方法中导致由于固体形成而产生问题。所述气体混合物优选含有大于50重量%NH3,10-30重量%的CO2和小于35重量%的H2O。从气体混合物得到的氨基甲酸铵溶液优选含有大于10重量%的水以防止固相形成。特别是当溶液的压强小于3MPa时。
本发明还有一个优点是,如果在压缩步骤中的压强增加至约1.5MPa,优选1.8MPa或更高,例如2MPa或更高,从吸收步骤中获得的NH3气流可以用简单的方式全部或者部分凝结,因为在所述压强下NH3的凝结温度已经增加至大于工厂中通常操作的循环冷却水的温度。
本发明方法还有一个优点是,如果它是三聚氰胺的制备方法的一部分,在所述制备方法中所获得的气体混合物的压强约为反应器的压强,那么就不需要增加反应器的压强来获得更高压力的氨基甲酸铵溶液。因此,例如已有的反应器就不需要进行改造,并且新的反应器的设计可以简单从而便宜。
压缩步骤,其目标是增加气体混合物的压强,可以使用本领域技术人员已知的任何方法进行,例如使用压缩器。考虑到经冷凝形成的任何氨基甲酸铵的腐蚀特性,优选使与气体混合物接触的压缩器组件的温度足够高从而没有冷凝现象发生。这可以通过如下方法达到,例如加热压缩器,或者将压强和温度已经增加到与压缩器入口相同的气体混合物返回。另外,在压缩器拦住已存在的任何液滴之前安装一个分离设备是有利的。进一步通过将几个压缩器串联配置进行压缩步骤可能是必要的或者是所期望的。
吸收步骤包含对进料流体的处理,在本发明方法中该进料流体含有压强增加了的气体混合物,用液氨和任选的水或例如NH3、氨基甲酸铵或脲的水溶液进行处理。这导致氨基甲酸铵溶液的形成。吸收步骤可以使用本领域技术人员已知的任何方法进行,例如在填充柱中或者在板式塔中。在吸收步骤中液氨从气体混合物中吸收CO2和H2O,从而形成氨基甲酸铵溶液。随后CO2以例如氨基甲酸根离子存在在氨基甲酸铵溶液中。液氨可以全部或者部分通过将一部分从吸收步骤中获得的NH3气流冷凝获得。如果H2O的数量过低使得形成了所不期望的固体,加入水或者例如NH3、氨基甲酸铵或脲的水溶液是有利的。
为了能够以有效的方式进行吸收步骤,当进入吸收步骤的流体的露点在65℃和140℃之间时是有利的。更优选露点在80℃和110℃之间。
在一个优选的实施方案中,还进行了一个第一部分冷凝步骤,在该步骤中气体混合物被转变成气/液混合物。所述第一部分冷凝步骤可以在第一压缩步骤之后进行。所述第一部分冷凝步骤可以使用本领域中技术人员已知的方法进行,例如使用热交换器冷却气体混合物使其部分冷凝。在所述第一部分冷凝步骤过程中,许多存在的气态CO2已经通过在水溶液中形成例如氨基甲酸铵进入到液相中。因此相对于不包含第一部分冷凝步骤的实施方案,进入吸收步骤的气态CO2的量更少,所以从吸收步骤中得到氨气流更有效率,这意味着需要的液氨更少和/或可能有更高的生产量。
所述对氨基甲酸铵溶液进行进一步加工以减少其含水量在技术上较复杂,包含许多处理步骤,因此是昂贵的。因此,本发明的另一个目标是提供一种能够不需要所述进一步加工的方法,因为从含有NH3、H2O和CO2的气体混合物中获得了一种浓缩的氨基甲酸铵溶液,其可用于脲的生产中而不需要进一步处理以减少其含水量。在本上下文中,“浓缩的”意味着与气体混合物相比,H2O的质量流量被大大减少了;优选H2O质量流量减少大于25重量%。这个方法包含:
●一个第一部分冷凝步骤,其中将气体混合物转变成气/液混合物;
●一个第一分离步骤,其中将气/液混合物分离成氨基甲酸铵循环溶液和浓缩的气体混合物,所述气体混合物含有大于60重量%的NH3、小于30重量%的CO2和小于10重量%的H2O;
●一个吸收步骤,
使用下列两种混合物中的至少一种:
●气体混合物
●浓缩的气体混合物
它们的压强在压缩步骤中被压缩至0.5MPa和7.5MPa之间。
在第一部分冷凝步骤中冷凝的水比NH3或CO2多。由于冷凝形成了氨基甲酸铵溶液。在浓缩的气体混合物中含水量可以减少到这样一种程度,使得随后从吸收步骤中获得的氨基甲酸铵溶液可以直接用于脲的生产中,这是本发明方法的一个优点。从本发明第一分离步骤中再循环的液流在这里和以后的下文中定义为氨基甲酸铵循环溶液。如果该方法用在三聚氰胺的制备工艺中,使用氨基甲酸铵循环溶液作为冷却从反应器中流出的流体的直接冷却液是有利的。这具有如下的优点:在冷却过程中氨基甲酸铵的存在能够阻止三聚氰胺发生不期望的反应生成例如三聚氰酸二酰胺和三聚氰酸一酰胺的化合物。
第一部分冷凝步骤可以用本领域中技术人员已知的方法进行,例如使用热交换器来冷却气体混合物使其部分冷凝。
第一分离步骤的目标是在第一部分冷凝步骤后从气相中分离存在的液体。第一分离步骤可以使用本领域技术人员已知的方法进行。例如,将第一分离步骤与第一部分冷凝步骤合并是可能的,例如合并在一个如下建造的热交换器中,该热交换器能够收集液相并将液相分离。也可能在一个所谓的分离鼓中进行该第一分离步骤。这是这样一种容器,其中使用重力来进行第一分离步骤:将气/液混合物加入到分离鼓中,然后液体沿著鼓壁流下并从那里除去,气体从容器的中间经顶部除去。
如上面所指出的,气体混合物和/或浓缩的气体混合物要进行压缩步骤。在一个优选的实施方案中将气体混合物进行压缩。压缩步骤也导致气体混合物的温度增加。这样做具有这样的优点:第一部分压缩步骤可以在高温下进行,因此在冷凝过程中释放出的热量可以产生更多量的蒸汽。更优选然后将浓缩的气体混合物在第一分离步骤后进行第二部分冷凝,由此形成第二气/液混合物用作吸收步骤的进料流体。在第二部分冷凝步骤中已经有许多存在的CO2通过形成例如氨基甲酸铵而进入到液相中。因此减少了进入到吸收步骤中的气态CO2的量,所以从吸收步骤中得到NH3气流更有效率,这意味着需要的液氨更少和/或可能有更高的生产量。更优选在这个实施方案中在第二部分冷凝步骤和吸收步骤之间加入第二分离步骤,在该步骤中从第二气/液混合物中分离第一浓缩氨基甲酸铵溶液。这样做的优点是进入吸收步骤的流体更少,减少了吸收步骤的负担。这种实施方案的另一个优点是第一浓缩氨基甲酸铵溶液的组成与从吸收步骤中再循环的浓缩氨基甲酸铵溶液的组成有些不同,因此这两种溶液可以用于不同的目的。如果需要,这两种浓缩氨基甲酸铵溶液也可以合并进行用于进一步加工。
在另一个本发明的优选实施方案中,如上所述,在第一部分冷凝步骤和第一分离步骤之前不是气体混合物进行压缩步骤,而是将离开第一分离步骤的浓缩气体混合物进行压缩步骤。因此进入压缩步骤的流体比当气体混合物已经进行压缩步骤,氨基甲酸铵循环溶液已经被分离时更少。更优选然后在压缩步骤和吸收步骤之间将浓缩的气体混合物进行第二部分冷凝步骤,这将导致形成第二气/液混合物作为吸收步骤的进料流体。如上所述,作为第二部分冷凝步骤的结果,许多存在的CO2通过形成例如氨基甲酸铵进入到液相中,这是有利的。这导致进入到吸收步骤中的气态CO2的量减少,所以从吸收步骤中得到NH3气流更有效率,这意味着需要的液氨更少和/或可能有更高的生产量。另外在该第二部分冷凝步骤中释放的热量可用于提供蒸汽。更优选在这个实施方案中在第二部分冷凝步骤和吸收步骤之间加入第二分离步骤,在该步骤中从第二气/液混合物中分离第一浓缩氨基甲酸铵溶液。这样做的优点是,如上所述,进入吸收步骤的流体更少,减少了吸收步骤的负担。这种实施方案的另一个优点是第一浓缩氨基甲酸铵溶液的组成与从吸收步骤中再循环的浓缩氨基甲酸铵溶液的组成有些不同,因此这两种溶液可以用于不同的目的。当然这两种浓缩氨基甲酸铵溶液也可以合并进行用于进一步加工。另外,在第一部分冷凝步骤之前在一个预压缩步骤中将气体混合物的压强增加至0.3MPa和7.5MPa之间是有利的。如果本发明方法是三聚氰胺制备方法的一部分,其中反应器在低压下操作,例如大气压下,这个条件是特别有利的。
当应用本发明方法的那些获得浓缩氨基甲酸铵溶液的实施方案时,这种溶液通常含有25-50重量%的NH3,25-50重量%的CO2和1-30重量%的H2O。那么,如前所述,如果将该浓缩氨基甲酸铵溶液用于制备脲,从气体混合物中除去一定量的水是特别有利的。另外,气态NH3已经从气体混合物中再循环,它可以用于任何所期望的用途。例如,如果本发明方法用于从生产三聚氰胺的方法中获得的气体混合物,气态NH3可以加入到三聚氰胺反应器中用作流动气体。
如上所指出的,本发明的工业可应用性并不限于引入到三聚氰胺的制备方法中。尤其将其引入到脲的制备方法中是可以预见的。例如,在制备脲的传统方法中,存在气体混合物,从该混合物中可以获得氨基甲酸铵溶液。传统的脲制备方法被理解为这样的方法,其中在进行随后的处理步骤例如分离未反应的NH3和CO2和/或降解氨基甲酸铵之前降低合成区的流出物的压强。
如果将本发明应用于脲的制备方法中,优选将气体混合物的压强升高至或稍高于在脲合成区中的压强,也即,升高至12.5MPa和25MPa之间,优选升高至14MPa和22MPa之间。这样做的优点在于减少了返回到脲合成区的气流中的含水量,使在合成区中的转化率更高,这样的结果是:通过简化的技术手段即可完成未反应组分的再循环(也即是说,减少了热或蒸汽的消耗,减少了汽提剂的消耗)。
本发明方法根据下列附图进行解释。
在附图中图1显示了带有一个压缩步骤的实施方案,随后是一个吸收步骤。
图2是带有一个第一部分冷凝步骤和一个分离步骤的实施方案,同时还有一个压缩步骤,其或者在第一部分冷凝步骤之前或者在分离步骤和吸收步骤之间。
图3是这样一种实施方案,其中除了含有一个压缩步骤、一个第一部分冷凝步骤、一个分离步骤和一个吸收步骤之外,还含有一个第二部分冷凝步骤,该步骤在第一分离步骤和吸收步骤之间。
图4是这样一种实施方案,与图3相比,在第二部分冷凝步骤和吸收步骤之间加入了一个第二分离步骤。
图5是这样一种实施方案,与图3相比,压缩步骤在分离步骤之后。
图6是这样一种实施方案,与图5相比,在第二部分冷凝步骤和吸收步骤之间加入了一个第二分离步骤。
图7是这样一种实施方案,其中将气体混合物进行一个预压缩步骤,然后或者进行第一部分冷凝步骤、分离步骤、压缩步骤和吸收步骤或者进行如图6中的一系列处理步骤。
图8是现有技术的一个实施方案。
在附图中的数的第一个数字与图的数字相同。如果不同图中的数的后两位相同,那么它们指的是相同的元件。
在图1中,将气体混合物,例如其来自三聚氰胺制备方法中的冷却区,经管道102加入到压缩器104中。然后将压强增加后的气体混合物经管道106加入到吸收器108中。吸收器108同时经管道110接收液氨并经管道112接收水或者例如氨基甲酸铵的水溶液。管道110和112任选可以合并成一个管道。经管道114氨基甲酸铵溶液从吸收器108中流出并经管道116排出NH3气流。
图2中列出了冷凝器218,在其中将气体混合物进行第一部分冷凝步骤。冷却剂,例如水,经管道220流入并经管道222流出。然后气/液混合物经管道224进入分离器226。从分离器226中,一方面氨基甲酸铵循环溶液经管道228获得,另一方面可提供的浓缩的气体混合物经管道230进入吸收器208中,其进一步按照图1中描述的过程进行操作。冷凝器218和分离器226可以合并为一台仪器。在图2中,通过虚线画出了压缩器204的两个可能位置:或者为冷凝器218的上流,使得经管道202进料的气体混合物进行压缩步骤,或者为吸收器208的上流,使得来自分离器226的浓缩的气体混合物进行压缩步骤。
图3列出了一个实施方案,其中将经管道302进入压缩器304的气体混合物进行压缩步骤,然后将压强增加后的气体混合物经管道328加入到冷凝器318中,在这里进行第一部分冷凝步骤。然后气/液混合物经管道324进入分离器326。从分离器326中出来的浓缩的气体混合物经管道334被加入到下一个冷凝器336中,在这里进行第二部分冷凝步骤。冷凝器336通过冷却剂例如水冷却,所述冷却剂经管道338流入并经管道340流出。第二气/液混合物然后经管道342进入吸收器308中。
图4是建立在图3的实施方案之上的,其通过以下步骤实现:在冷凝器436中进行第二部分冷凝步骤之后,将第二气/液混合物经管道444加入到分离器446中,在这里进行第二分离步骤。第一浓缩氨基甲酸铵溶液经管道448从分离器446中流出,然后其余的流体经管道450进入到吸收器408中。
图5中列出的方法是建立在图2的方法之上的;在这种情况下,压缩器504被安装在第一部分冷凝步骤(在冷凝器518中)和第一分离步骤(在分离器526中)的下流。压缩器经管道552进料浓缩的气体混合物。来自压缩器504的压缩后的流体经管道554进料到冷凝器536中;在这里进行第二部分冷凝步骤。第二气/液混合物然后经管道542加入到吸收器508中。
图6显示了根据本发明通过安装第二分离器656怎样进一步扩展图5中的设计,在该分离器中进行第二分离步骤。第二分离器656经管道642进料第二气/液混合物。第二气/液混合物被分离成第一浓缩氨基甲酸铵溶液,其通过管道658除去,和强浓缩的气体混合物,其经管道660进料到吸收器608中。
图7显示了这样一种形势,其中在压缩器762中进行一个预压缩步骤,然后将预压缩后的气体混合物经管道764进料到冷凝器718中,在这里进行第一部分冷凝步骤。然后在第一部分冷凝步骤和第一分离步骤(在分离器726中进行)之后进行压缩步骤。任选的,并且通过虚线标出,在吸收器708中进行吸收步骤之前仍然可以在冷凝器736中进行第二部分冷凝步骤并且随后任选在分离器中756中进行第二分离步骤。
下面,本发明根据下列实施例进行说明,同时也给出了一个对比实验。
实施例1
在实施例1中使用了图5中的配置。各种流体的组成列在表1中。
表1
   流体     502     524     552     528    554    542    514    510     512   516
 NH3(wt.%)     63     63     74     36    74    74    41    100     0   100
 CO2(wt.%)     18     18     17     20    17    17    39    0     0   0
 H2O(wt.%)     19     19     9     44    9    9    20    0     100   0
 T[℃]     111     70     70     70    215   105    100    45     33   45
 P[MPa]     0.6     0.6     0.6     0.6    2   2    2    2     2   2
 Wt.%气体     100     71     100     0    100   55    0    0     0   100
 Total[t/h]     86     86     61     25    61   61    28    12     0.5   45
对比实验A
见图8。在对比实验A中,经管道802将气体混合物加入到冷凝器818中,在这里进行部分冷凝。从冷凝器818中出来的气/液混合物经管道866被加入到吸收器808中。流体802和866没有经过压缩步骤处理。吸收器808同时经管道810接受液氨并且经管道812接收含水流体。氨基甲酸铵溶液和NH3气流分别经管道814和管道816从吸收器808中流出。
所述流体的组成列在下面的表2中。
表2
流体     802     866     814    810     812    816
NH3(wt.%)     59     59     36    100     0    100
CO2(wt.%)     13     13     19    0     0    0
H2O(wt.%)     28     28     45    0     100    0
T[℃]     119     73     72    45     33    5
P[MPa]     0.6     0.6     0.6    2     0.6    0.6
Wt.%气体     100     46     0    0     0    100
Total[t/h]     81     81     53    12     1    41
从实施例1和对比实验A可以明显看出,尽管在对比实验中流体802的起始氨浓度稍微有点儿低(流体502为59重量%对应于63重量%),实施例1的浓缩的氨基甲酸铵溶液514的氨含量(约11t/h,或者28t/h的41重量%)还是比对比实验A的氨基甲酸铵溶液814的含量(约19t/h,或者53t/h的36重量%)少。另外,实施例1的浓缩的氨基甲酸铵溶液514的含水量(20重量%,约6t/h)比对比实验A的氨基甲酸铵溶液814的含水量(45重量%,约24t/h)少。因此,浓缩的氨基甲酸铵溶液514可以用在脲的制备中而不需要进一步处理来减少含水量,这对于氨基甲酸铵溶液814来说是不可能以一种有效的方式进行的。

Claims (12)

1.从含有大于40重量%的NH3、小于50重量%的CO2和小于40重量%的H2O并且压强在0.1MPa和4MPa之间的气体混合物中获得氨基甲酸铵溶液的方法,其包含一个压缩步骤,在所述压缩步骤中气体混合物的压强被增加到0.5MPa和25MPa之间,然后是一个第一部分冷凝步骤,在该步中将气体混合物转变为气/液混合物,其后是一个吸收步骤。
2.权利要求1的方法,其还包含一个第一分离步骤,在该步骤中将气/液混合物分离成氨基甲酸铵循环溶液和浓缩的气体混合物,所述气体混合物含有大于60重量%的NH3、小于30重量%的CO2和小于10重量%的H2O;
其中吸收步骤使用下列两种混合物中的至少一种进行,所述混合物的压强在一个压缩步骤中被压缩至0.5MPa和7.5MPa之间:
·气体混合物和/或
·浓缩的气体混合物。
3.权利要求2的方法,其中气体混合物被压缩。
4.权利要求3的方法,其中在第一分离步骤之后将浓缩的气体混合物进行第二部分冷凝步骤,在该步中形成的第二气/液混合物作为吸收步骤的进料气流。
5.权利要求4的方法,其中在第二分离步骤中从第二气/液混合物中分离第一浓缩氨基甲酸铵溶液,所述第二分离步骤在第二部分冷凝步骤和吸收步骤之间进行。
6.权利要求2的方法,其中在第一分离步骤之后对浓缩的气体混合物进行压缩步骤。
7.权利要求6的方法,其中在压缩步骤和吸收步骤之间将浓缩的气体混合物进行第二部分冷凝步骤,在该步中形成的第二气/液混合物作为吸收步骤的进料气流。
8.权利要求7的方法,其中在第二分离步骤中从第二气/液混合物中分离第一浓缩氨基甲酸铵溶液,所述第二分离步骤在第二部分冷凝步骤和吸收步骤之间进行。
9.权利要求6-8任一项的方法,其中,在第一部分冷凝步骤之前,在一个预压缩步骤中将气体混合物的压强增加至0.3MPa和7.5MPa之间。
10.权利要求2-8任一项的方法,其中所获得的氨基甲酸铵溶液含有25-50重量%的NH3、25-50重量%的CO2和1-30重量%的H2O。
11.权利要求1或2的方法,其中气体混合物在三聚氰胺的生产方法中获得。
12.权利要求1或2的方法,其中气体混合物在脲的生产方法中获得。
CN02814654.9A 2001-07-24 2002-07-03 从含nh3、h2o和co2的气体混合物中获得氨基甲酸铵溶液的方法 Expired - Fee Related CN1278928C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NL1018624 2001-07-24
NL1018624 2001-07-24

Publications (2)

Publication Number Publication Date
CN1533362A CN1533362A (zh) 2004-09-29
CN1278928C true CN1278928C (zh) 2006-10-11

Family

ID=19773779

Family Applications (1)

Application Number Title Priority Date Filing Date
CN02814654.9A Expired - Fee Related CN1278928C (zh) 2001-07-24 2002-07-03 从含nh3、h2o和co2的气体混合物中获得氨基甲酸铵溶液的方法

Country Status (14)

Country Link
US (1) US6914157B2 (zh)
EP (1) EP1429996B1 (zh)
JP (1) JP2004536011A (zh)
CN (1) CN1278928C (zh)
AT (1) ATE295827T1 (zh)
CA (1) CA2454168A1 (zh)
DE (1) DE60204231T2 (zh)
ES (1) ES2239236T3 (zh)
MY (1) MY128719A (zh)
NO (1) NO20040150L (zh)
PL (1) PL202056B1 (zh)
SA (1) SA02230223B1 (zh)
TW (1) TWI228102B (zh)
WO (1) WO2003010089A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA019704B1 (ru) * 2005-05-13 2014-05-30 Стамикарбон Б.В. Способ концентрирования потока водного карбамата аммония
CN102190601A (zh) * 2010-03-11 2011-09-21 中国科学院兰州化学物理研究所 合成小分子氨基甲酸烷基酯的方法
CN103269980A (zh) * 2011-03-31 2013-08-28 住友精化株式会社 氨的精制方法及氨精制系统
US10604432B2 (en) 2015-01-14 2020-03-31 Bion Environmental Technologies, Inc. Process to recover ammonium bicarbonate from wastewater
US10106447B2 (en) 2015-01-14 2018-10-23 Bion Environmental Technologies, Inc. Process to recover ammonium bicarbonate from wastewater
GB2552040B (en) 2016-12-01 2018-08-01 Univ Loughborough Process for reducing nitrogen oxides
AU2020309245C1 (en) * 2019-07-08 2022-11-10 A.Y. Laboratories Ltd. Process for producing a solution of ammonium carbamate

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD62559A (zh) *
US3310558A (en) * 1967-03-21 Melamine recovery
DE62559C (de) A. HUBER in Köln a. Rh,, Gereonsmühlengasse 9 Ventilations - Einrichtung für gewerbliche Anlagen, in welchen in offenen Gefäfsen mit heifsem Wasser gearbeitet wird
NL102507C (zh) 1958-08-08 1900-01-01
US3301897A (en) * 1965-11-08 1967-01-31 Chemical Construction Corp Process for urea synthesis
US3503970A (en) * 1967-07-19 1970-03-31 Mitsui Toatsu Chemicals Integrated process for producing urea and melamine
DE1770969C3 (de) * 1968-07-25 1978-08-24 Basf Ag, 6700 Ludwigshafen Verfahren zur Rückführung der Abgase der Melaminsynthese in die Hamstoffsynthese
NL8201479A (nl) * 1982-04-07 1983-11-01 Stamicarbon Werkwijze voor het bereiden van melamine.

Also Published As

Publication number Publication date
US20040199013A1 (en) 2004-10-07
NO20040150L (no) 2004-03-24
ATE295827T1 (de) 2005-06-15
PL366735A1 (en) 2005-02-07
EP1429996B1 (en) 2005-05-18
PL202056B1 (pl) 2009-05-29
DE60204231D1 (de) 2005-06-23
ES2239236T3 (es) 2005-09-16
SA02230223B1 (ar) 2006-11-11
WO2003010089A1 (en) 2003-02-06
EP1429996A1 (en) 2004-06-23
MY128719A (en) 2007-02-28
CA2454168A1 (en) 2003-02-06
DE60204231T2 (de) 2006-01-26
TWI228102B (en) 2005-02-21
JP2004536011A (ja) 2004-12-02
US6914157B2 (en) 2005-07-05
CN1533362A (zh) 2004-09-29

Similar Documents

Publication Publication Date Title
CN1077884C (zh) 尿素制备方法
CN1260208C (zh) 脲的制备方法
CN1278928C (zh) 从含nh3、h2o和co2的气体混合物中获得氨基甲酸铵溶液的方法
CN1380252A (zh) 用于氨回收的改进方法
CN101891695A (zh) 三聚氰胺常压一步循环法
CN1746154A (zh) 用于尿素/三聚氰胺生产的综合工艺及其相关设备
CN1238335C (zh) 生产链烷醇胺的方法及生产装置
CN1902163A (zh) 尿素和三聚氰胺生产的集成工艺
CN1117087C (zh) 制备三聚氰胺的方法
CN1315802C (zh) 用于提高尿素工厂生产能力的方法
CN1158251C (zh) 尿素的制备方法
CN1296351C (zh) 制备脲的装置及方法
CN1174963C (zh) 制备尿素的方法
CN1197850C (zh) 从尿素生产高纯度三聚氰胺的方法
CN102712581A (zh) 用于生产尿素的尿素汽提方法
CN1835932A (zh) 改进催化三聚氰胺生产工艺中的三聚氰胺产率
CN1223580C (zh) 用于制备尿素的方法
CN1020898C (zh) 分离未转变原料的方法
CN1249047C (zh) 分离三噁烷和甲醛的含水混合物的方法及相应的应用
CN1419550A (zh) 生产高纯度三聚氰胺晶体的方法
CN1840523A (zh) 尿素制备方法及相关设备
CN1628105A (zh) 制备三聚氰胺的方法
CN1219755C (zh) 分解来自尿素生产厂的尿素回收段的氨基甲酸酯水溶液的方法
CN1212313C (zh) 制备尿素的方法
US11795140B2 (en) Urea production with triple MP streams

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20061011

Termination date: 20110703