CN1271065C - α-生育酚的制备方法 - Google Patents
α-生育酚的制备方法 Download PDFInfo
- Publication number
- CN1271065C CN1271065C CN02821423.4A CN02821423A CN1271065C CN 1271065 C CN1271065 C CN 1271065C CN 02821423 A CN02821423 A CN 02821423A CN 1271065 C CN1271065 C CN 1271065C
- Authority
- CN
- China
- Prior art keywords
- solvent
- acid
- phytyl
- tocopherol
- alpha
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D311/00—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
- C07D311/02—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
- C07D311/04—Benzo[b]pyrans, not hydrogenated in the carbocyclic ring
- C07D311/58—Benzo[b]pyrans, not hydrogenated in the carbocyclic ring other than with oxygen or sulphur atoms in position 2 or 4
- C07D311/70—Benzo[b]pyrans, not hydrogenated in the carbocyclic ring other than with oxygen or sulphur atoms in position 2 or 4 with two hydrocarbon radicals attached in position 2 and elements other than carbon and hydrogen in position 6
- C07D311/72—3,4-Dihydro derivatives having in position 2 at least one methyl radical and in position 6 one oxygen atom, e.g. tocopherols
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Pyrane Compounds (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
本发明涉及制备(全外消旋)-α-生育酚的方法,包括让经过分离、纯化的植基三甲基对苯二酚经受酸催化作用,从而促进闭环,形成(全外消旋)-α-生育酚。该方法能够在添加或不添加溶剂的情况下进行,以及当使用溶剂或溶剂混合物时,该溶剂或该溶剂混合物的至少一种溶剂组分优选是具有高于9×10-30C-m(或2.7D)的偶极矩的溶剂。催化剂的性质是无关紧要的,但该催化剂优选是硫酸,磷酸,聚全氟亚烷基磺酸,“NH-酸”,杂多酸,氯化锌,三氟化硼,三氯化铝,或任意上述布朗斯台德酸与任意上述路易斯酸的混合物。该方法的产物是维生素E家族的活性最高和工业上最重要的成员。
Description
本发明涉及通过植基三甲基对苯二酚的酸催化环化(或“闭环”)来制备(全外消旋)-α-生育酚的方法。众所周知,(全外消旋)-α-生育酚(或者如现有技术中的大多数情况表示为“dl-α-生育酚”)是2,5,7,8-四甲基-2-(4′,8′,12′-三甲基-十三烷基)-6-色原烷醇(α-生育酚)的非对映体混合物,它是维生素E家族的活性最高和工业上最重要的成员。
(全外消旋)-α-生育酚在工业上一般通过三甲基对苯二酚(TMHQ)与异植醇(IP)的酸催化的反应来生产,这据信包括基本两个化学步骤,即TMHQ被异植醇的烷基化,尤其获得了植基三甲基对苯二酚(PTMHQ),随后PTMHQ闭环成(全外消旋)-α-生育酚。该两个化学步骤在相同的溶剂或混合溶剂和催化剂的介质中以及在相同的反应条件下,例如在优化窄温度范围内进行。而且,一种反应剂,一般是IP,通常以超过另一种反应剂的量的过量使用,且没有打算在使第一化学步骤(即烷基化步骤)中产生的中间体PTMHQ经历闭环步骤以获得最终产物(全外消旋)-α-生育酚之前分离和任选纯化该中间体。在所有情况下,必须仔细优化工序,以便在生产率和成本的一般工业生产限制条件下获得(全外消旋)-α-生育酚的最高选择性和收率。这些工序的大多数提供了粗生育酚,它是高度着色的和常常不超过90%纯度,然后需要另外的纯化操作,以便获得食品和药品用途所需的高纯度。上述情形在学术和专利文献中得到反映,在这些文献中,公开了用于通过主要的“单步”或“直达”方法由TMHQ和IP生产(全外消旋)-α-生育酚的大量酸催化剂、溶剂和反应条件,例如温度。
据推测,TMHQ与IP的反应获得了瞬时中间体,尤其PTMHQ,它们要么通常不被发现,要么在该方法的中间阶段以少量生成[例如参看Schegovev等人,Khimiko-farmatsevticheskii Zhurnal
17,1,93-95和Wang等人,J.Supercritical Fluids
17,135-143(2000)]。通过使用不太剧烈的反应条件,中间体PTMHQ能够累积到一定程度,然后通过色谱法分离和至少表征[Schegovev等人,在上述引文中,和Khimiko-farmatevticheskiiZhurnal
33,40-42(1999)]。当经受更常见的强酸性反应条件时,已表明PTMHQ可转化为α-生育酚。在这些出版物中,没有描述反应的选择性或收率。其它文献已经指出,PTMHQ的纯手性类似物通过生育酚的环化酶的作用转化为RRR-α-生育酚[Woggon等人,Bioorg.Med.Chem.
4,1129-34(1986)和Helv.Chim.Acta
76,1729(1993)]。在该著作中,所报导的转化率和收率均很高,但用于转化的条件明显不同于用于这些化学转化的那些条件。因此,副产物和化学转化的选择性迄今是未知的。
从事本技术领域的人员公知的是,正常通过TMHQ与IP的反应以粗形式生产的(全外消旋)-α-生育酚是高度着色的和含有各种副产物,如植二烯和它们的聚合物,生育酚的取代苯并呋喃异构体的非对映体,以及其它已知和仍未确定的副产物,其量为几个百分数到10%或10%以上。这些产物的起源肯定是未知的。这些副产物必须通过各种手段,如蒸馏从粗(全外消旋)-α-生育酚或其乙酸酯中除去,以便获得高纯度(全外消旋)-α-生育酚乙酸酯。这导致了额外的操作和资本费用。此外,纯化方法通常不是充分有效的,导致少量的这些副产物不可避免地存在于商品中。
在本发明中,现已发现,分离、纯化形式和照此完全表征的PTMHQ令人惊奇地能够以非常高的收率,在某些情况下接近定量收率,并且以几乎完全的选择性转化为(全外消旋)-α-生育酚。因此,首次可以以不需要进一步大量纯化的形式从反应混合物中获得(全外消旋)-α-生育酚,因为它实际上不含要不然会形成(即,当使用“直达方法”时)的副产物。
而且,已经发现,该相关闭环反应可使用各种酸催化剂和溶剂完全地进行,而它们在“直达”方法中使用时,不能获得相等的高选择性和收率。该闭环反应尤其有效地在具有高偶极矩的溶剂中进行。
尤其,已令人惊奇地发现,如果使用分离、纯化的PTMHQ作为起始原料代替其前体TMHQ和IP,该闭环反应的效率急剧提高。而且,所使用的溶剂优选是具有高偶极矩的溶剂,尤其高于9×10-30库仑-米(C-m)的溶剂。使用替代单位表示时,所用溶剂的偶极矩高于2.7德拜(D)。
因此,本发明的目的是提供以高收率选择性地生产(全外消旋)-α-生育酚的方法,因此避免了形成不希望有的副产物。该目的通过使用分离、纯化的PTMHQ作为起始原料来达到。溶剂、酸催化剂和进行反应的其它反应条件,例如反应温度可以基本对应于迄今用于由TMHQ和IP生产(全外消旋)-α-生育酚的方法的那些。然而,就溶剂来说,它优选是具有高偶极矩的溶剂,尤其具有高于9×10-30C-m(或2.7D)的偶极矩的溶剂。因此,根据本发明的方法,提供了生产(全外消旋)-α-生育酚的方法,特征在于让分离、纯化的植基三甲基对苯二酚经受酸催化,从而促进闭环,形成(全外消旋)-α-生育酚。在其中进行闭环反应的溶剂或溶剂混合物的至少一种组分优选是具有高偶极矩、尤其高于9×10-30C-m(或2.7D)的偶极矩的溶剂。
所涉及的闭环反应在以下反应路线中表示:
植基三甲基对苯二酚
(全外消旋)-α-生育酚
用作本发明方法的起始原料的PTMHQ可以通过任何合乎需要的已知或迄今未知的方式来生产。例如,从USP 4,208,334(Fitton等人)的教导可以得知,TMHQ与IP的反应可以在布朗斯台德酸三氟乙酸或其酸酐的合并溶剂和催化剂介质中进行。与之相反,已经发现,在使用仅催化量的三氟乙酸或其酸酐和附加溶剂,尤其两相溶剂体系如碳酸亚乙酯和庚烷或碳酸亚丙基酯和庚烷时,主要形成了PTMHQ,而非(全外消旋)-α-生育酚,其中反应一般在大约20℃到大约140℃的温度,尤其在大约40℃到大约120℃范围内的那些温度,最优选在大约80℃到大约100℃的范围内进行。在这些条件下,发生了所希望的TMHQ与IP的烷基化反应,而后续闭环步骤没有进行到任何明显的程度。在其它方面,一般包括其中进行反应的溶剂的选择,可以利用在所述US专利说明书中给出的条件。因此,可以使用更普通的溶剂如甲苯,庚烷,二氯甲烷,乙酸,二乙醚或芳族烃,例如苯或二甲苯,与少量、即催化量的催化剂作为用于生产PTMHQ的反应的溶剂。如上所述,优选使用混合(两相)碳酸亚乙酯或碳酸亚丙基酯-庚烷体系作为溶剂;在这种情况下,碳酸亚乙酯或碳酸亚丙基酯与庚烷的体积比(后者作为1个单位体积)适宜地为大约0.8∶1到大约1.25∶1。
可以使用其它已知的方法来生产所需的起始原料PTMHQ,事实上,本发明的方法决不限于获得起始PTMHQ的现行方法。
不管生产起始原料的方法如何,在本发明方法中使用的PTMHQ,即“分离、纯化的植基三甲基对苯二酚”应具有至少95%的纯度。一般,PTMHQ越纯,它就越优选用作起始原料。优选起始原料PTMHQ的纯度是至少98%。不论如何,PTMHQ可以是异构纯E或Z异构体,或它可以是任何合乎需要的或所得的比例的E和Z异构体的混合物。如果获得了低纯度的PTMHQ产物,即具有低于95%的测定纯度的产物,那么这种产物可以用本领域那些技术人员已知的纯化方法,如结晶,液-液萃取,超临界流体萃取,模拟移动床色谱法或蒸馏来提纯到该方法所需的纯度。后续闭环反应令人惊奇地是非常完全的和有选择性的,所以PTMHQ的纯度对在本发明的方法中由PTMHQ生产的(全外消旋)-α-生育酚的收率和纯度具有决定性作用。
PTMHQ至(全外消旋)-α-生育酚的转化一般通过让液体形式(PTMHQ原样使用,不添加任何溶剂)或作为溶液的PTMHQ在适合的温度下经受酸催化剂的作用。在除去催化剂之后,可以分离出不含任何所用溶剂的基本纯的粗(全外消旋)-α-生育酚,或视需要就地转化为(全外消旋)-α-生育酚乙酸酯。
溶剂的选择范围包括明确地必须满足以下标准的任何溶剂(含溶剂混合物):不与PTMHQ、所生成的(全外消旋)-α-生育酚或酸催化剂发生破坏性地相互作用,在反应条件下至少部分溶解PTMHQ,以及能够在反应温度下保持为液态,需要或不需要施加高压来保持所述状态。而且,所选择的溶剂或溶剂混合物(尤其两相溶剂体系)的至少一种溶剂优选具有高于9×10-30C-m(或2.7D)的偶极矩。一般,溶剂可以是在室温和常压下的液体,在高压下的液体,液化气体(例如在超临界状态下的气体,即所谓的超临界流体),或两相或多相溶剂体系如乳液或胶束。如上所述,PTMHQ本身可以在不添加溶剂的情况下反应,以及在这种情况下,它一般以液体形式,例如膏状形式存在。优选,使用单一极性溶剂或其中存在至少一种极性溶剂的溶剂混合物作为满足以上标准的溶剂。
在上述类别中的溶剂类型与在各种情况下的它们的一种或多种特定成员(它们各自的偶极矩在括号内给出)的实例如下所示:
在室温和常压下的液体:
脂族和芳族烃类,例如庚烷(0),甲苯(1.0D)和硝基苯(13.3D);
卤化(尤其氯化)脂族和芳族烃类,例如二氯甲烷(5.2D),1,2-二氯乙烷(6.1D)和氯苯(5.4D);
脂族和环醚类,例如二丁基醚(3.9D),二甲氧基乙烷(5.7D),四氢呋喃(5.8D)和二噁烷(1.5D)。
脂族、环状和芳族酯类,例如乙酸乙酯(6.1D),碳酸二乙酯(3.0D),碳酸亚丙基酯(16.5D)和γ-丁内酯(13.7D);
脂族和芳族以及混合脂族/芳族的酮类,例如2-丁酮(9.2D)和4-甲基-2-戊酮(2.7D);
酰胺类,例如二甲基甲酰胺(10.8D)和N-甲基吡咯烷酮(13.6D);
砜类,例如环丁砜(16.0D)。
在高压下的液体:
在其标准沸点以上的温度下使用和通过施加高压保持为液体形式的以上烃类、醚类、酯类、酮类、酰胺类和砜类,尤其在这些条件下的溶剂丁烷和二氯甲烷,以及二硫化碳;
液化气体:
在适当高压下的丙烷,二氧化碳,二氧化硫和一氧化二氮;
两相或多相体系:
脂族烃与脂族、环状或芳族酯,例如庚烷和碳酸亚乙酯或碳酸亚丙基酯。
以上类型的溶剂及其特定成员中的一些以高于9×10-30C-m(或2.7D)的偶极矩为特征,因此它们优选在本发明方法中使用。任何这种溶剂的永久偶极矩可以通过文献中已知的涉及物理有机化学的方法来测定,例如C.Reichardt,Solvents and Solvent Effects in Organic Chemistry (VCH,1990)和Y.Marcus,The Properties of Solvents(Wiley,1999)。其它优选的溶剂类型是以上在类别“在室温和常压下的液体”下列举的除了脂族和芳族烃类、卤化(尤其氯化)脂族烃类和脂族酯类以外的那些溶剂类型。
根据本发明的方法在酸催化作用下,即在酸催化剂的存在下进行。原则上,可以使用任何布朗斯台德酸或路易斯酸或这两类的混合物,涉及由TMHQ和IP(或植醇或其衍生物)制备α-生育酚的方法的学术和专利文献公开了用于此目的的许多这种催化剂。在适宜的布朗斯台德酸催化剂中,例如可以提及硫酸;磷酸;诸如以Nafion的商品名购得的聚全氟亚烷基磺酸之类的“超酸”;诸如双(三氟甲磺酰基)胺,(CF3SO)2NH之类的“NH-酸”;和诸如12-钨磷酸之类的杂多酸。在适合的路易斯酸催化剂中,例如可以提及氯化锌,三氟化硼和三氯化铝。这些和其它这种适合的催化剂公开在现有技术,例如诸如EP 782,993,EP 784,042,EP 937,055,EP 949,255,EP 970,953,EP1,000,940和EP1,134,218之类的欧洲专利出版物中,或描述在还未出版的欧洲专利申请0119322.4,01101026.1和01122499.5中。
优选,催化剂是布朗斯台德酸(质子酸)或两种或多种这些酸的混合物,例如硫酸,对甲苯磺酸,NafionNR50,12-钨磷酸或双(三氟甲磺酰基)胺,尤其布朗斯台德酸或两种或多种布朗斯台德酸的混合物,如这些例举物的一种或多种,不存在任何其它类型的酸催化剂。
该方法适宜在大约-20℃到大约+200℃,优选大约0℃到大约150℃,最优选大约90℃到大约130℃的温度下进行。
适宜的是,溶剂的用量(按起始原料PTMHQ基于溶剂重量的重量百分数(wt%)来表示)应使得PTMHQ的wt%为大约0.1-100wt%,该范围包括其中PTMHQ不完全溶解在溶剂中的情况。在该范围的极上部分,理解为使用不添加溶剂的PTMHQ(“100wt%”是指100%纯PTMHQ在完全没有溶剂的情况下进行酸催化的闭环反应)。然而,优选,PTMHQ在(添加)溶剂中的wt%是大约2-20wt%。
任何既定催化剂的适宜用量必须根据经验,适当地考虑所涉及的特定催化剂和其它可变反应参数来决定。相关的信息在如上文给出的有关由TMHQ和IP或植醇(衍生物)制备α-生育酚的文献,尤其专利文献中提供。在该情况下,基准当然是PTMHQ的用量,催化剂的相对量一般是大约0.001-20wt%,优选大约0.1-10wt%。
如在制备α-生育酚中常见的那样,本发明的方法适宜在惰性气体氛围,优选氮气或氩气下进行。
实际反应一般持续大约1到大约30小时,优选大约2到大约24小时,尤其大约3到大约18小时。
一般,反应以熟练化学技术人员和工程师已知的通常方式通过让PTMHQ在适当的混合下在流体相中经受酸催化剂的作用,直到转化完全或基本完全为止来进行。可以使用可有效实施的已知工艺技术选择如标准搅拌式高压釜,级联反应器,环路反应器,固定催化剂床等。催化剂可以用普通方式如过滤、萃取、吸附等去除。溶剂也可以用普通方式如蒸馏来去除,以提供纯(全外消旋)-α-生育酚。另外,除去或未除去催化剂的反应混合物可以直接用乙酰化剂如乙酸酐、乙酸或乙酸酯处理,从而将游离生育酚转化为(全外消旋)-α-生育酚乙酸酯。
以下通过实施例来举例说明根据本发明的方法:
实施例1
起始原料植基三甲基对苯二酚的制备
在装有水分离器、回流冷凝器和氩气气化装置的三颈反应烧瓶内将三甲基对苯二酚(15.5g,100mmol)、碳酸亚丙基酯(100ml)和庚烷(100ml)的混合物加热到140℃(浴温)。然后在回流温度下使用注射器将三氟乙酸(0.5ml,6.52mmol)滴加到双相反应混合物中,随后在140℃(内部温度100℃)下经30分钟的时间将异植醇(35.99ml,100mmol)滴加到所得溶液中。在140℃下搅拌另外10分钟之后,,从反应混合物中蒸馏出水和庚烷。所生成的植基三甲基对苯二酚用三份各50ml的庚烷从碳酸酯相中萃取,再将合并的庚烷相冷却到室温。所得黄色悬浮液用P4玻璃料过滤(需要2-3天),再用100ml的冷碳酸亚丙基酯(4℃)和500ml的冷庚烷(4℃)洗涤,以除去痕量的三甲基对苯二酚和副产物。将白色蜡状残留物在高度真空下干燥3小时。这样制备的植基三甲基对苯二酚测得具有约95%的纯度。
1H-NMR(CDCl3,400.4MHz):δ=0.85-0.95(m,12H,4CH3),0.97-1.57(m,约19个脂族H),1.60-1.64和1.67-1.71(2×m,1个芳族CH3,Z和E),1.88-2.22(m,11H,5个脂族H+2个芳族CH3),3.30(d,CH2-CH=C,J=6.7Hz,E),3.34(“d”,CH2-CH=C,J=6.7Hz,Z),3.71和3.72(2×s,OH,E和Z),4.39和4.40(2×s,OH,E和Z),5.14和5.17ppm(2דt”,CH=C,J=约6.6和6.8Hz,Z和E);E∶Z=70∶30;
IR(膜,cm-1):3350s,2925s,1460s,1380w,1335m,1245s,1175m,1085s,1055m,945w,840m;
M/S(EI):m/e=430(76%,M+),205(19,[M-C16H33]+),165(100,C10H13O2 +),164(98);
元素分析:C29H50O2(430.717):计算值C80.87%,H 11.70%;实测值C80.75%,H 11.77%。
产物植基三甲基对苯二酚还作为其乙酸盐(无色膏状物)来表征,具有以下结果:
1H-NMR(CDCl3,250.1MHz):δ=0.80-0.92(m,12H,4CH3),0.94-1.60(m,约19个脂族H),1.65和1.71(2×mc,1个芳族CH3,Z和E),1.86-2.18(m,11H,5个脂族H+2个芳族CH3),2.31(s,Ac-CH3),2.34(s,Ac-CH3),3.20(mc,CH2-CH=C),4.95ppm(“t”,CH=C,J=约6Hz),E∶Z=70∶30;
IR(膜,cm-1):2953s,1783s,1462s,1367s,1195s,1080m,1053w,1010w,909w,888w,840w;
M/S(EI):m/e=514(7%,M+),471(37,[M-COCH3]+),430(100,[M-2COCH2]+),207(34),165(52,C10H13O2 +),164(38);
元素分析:C33H54O4(514.791):计算值C 77.00%,H 10.57%;实测值C 77.44%,H 10.48%。
植基三甲基对苯二酚进一步通过在-20℃下用甲醇洗涤来纯化。所述洗涤在P4玻璃料上进行(每20g产物用300ml),以及通过气相色谱法(GC)分析所得较纯物料。获得了97.1%(面积%)的纯度。纯化方法的结果在下表中提供:
表1:植基三甲基对苯二酚的纯化
纯化产物的组成 | 相对于整个产物的成分的量 |
TMHQ | 0.5 |
植二烯 | 0.3 |
(全外消旋)-α-生育酚 | 0.2 |
植基三甲基对苯二酚 | 97.1 |
收率(基于粗植基三甲基对苯二酚) | <50% |
实施例2
纯化的植基三甲基对苯二酚的闭环反应:选择性的测定
将1.03g(2.39mmol)的经纯化的植基三甲基对苯二酚转移到Schlenk管中并溶解在碳酸亚丙基酯(10ml;偶极矩16.5D)和庚烷(10ml;0偶极矩)的混合物中。将反应混合物加热到100℃(内部温度),再通过添加催化剂溶液(10mol%的催化剂)来引发闭环反应。在1小时的过程中,在140℃的浴温下,通过蒸馏出庚烷将内部温度升高到120-125℃。然后将反应混合物冷却到室温,分离的碳酸酯相用庚烷萃取三次。蒸发合并的庚烷相,以及通过GC分析无色残留物,它们的结果在下表中提供:
表2:闭环反应的选择性
起始原料: | |
纯度: | 97.7%E/Z植基三甲基对苯二酚 |
杂质: | 0.4%TMHQ,0.3%植二烯,0.2%(全外消旋)-α-生育酚 |
使用杂多酸作为催化剂: | |
选择性 | 99.9% |
杂质 | 植基三甲基对苯二酚0.15%植二烯0.3% |
使用硫酸作为催化剂: | |
选择性 | 99.9% |
杂质 | 植基三甲基对苯二酚0.1%植二烯0.3% |
使用对甲苯磺酸作为催化剂: | |
选择性 | 99.9% |
杂质 | 植基三甲基对苯二酚0.2%植二烯0.9% |
实施例3
植基三甲基对苯二酚用各种催化剂环化为(全外消旋)-α-生育酚
在氩气氛围下制备植基三甲基对苯二酚(23.76g,63.5mmol)在蒸馏的碳酸亚丙基酯(543ml;偶极矩16.5D)中的储备溶液。
在氩气下将20ml的储备溶液和20ml的庚烷(0偶极矩)转移到装有回流冷凝器和氩气气化装置的三颈烧瓶内。然后将该反应混合物加热到100℃/120℃(内部温度T℃),再加入催化剂。在1小时之后(在此期间,反应5、10、20、30和60分钟之后进行GC分析),将反应混合物冷却到室温,分离的碳酸酯相用庚烷萃取三次。蒸发合并的庚烷相,再通过GC分析黄褐色残留物。
使用的催化剂:1ml的1M硫酸(H2SO4),1ml的1M磷酸(H3PO4),在10ml庚烷中的19mg对甲苯磺酸(p-TsOH),93mg的NafionNR50,66mg的磷钨酸(HPA),或0.1ml的50mg双(三氟甲磺酰基)胺(TFMS)在7.66ml碳酸亚丙基酯中的溶液。
结果在下表中提供:
表3:催化剂筛选
催化剂 | 植二烯(%) | PTMHQ(%) | (全外消旋)-α-生育酚(%) | T(℃) |
H2SO4 | 0.4 | - | 98.1 | 100 |
H2SO4 | 0.7 | - | 95.3 | 120 |
H3PO4 | 0.5 | 60.4 | 26.0 | 100 |
H3PO4 | 0.8 | 74.1 | 18.1 | 120 |
p-TsOH | 0.6 | 41.0 | 48.6 | 100 |
p-TsOH | - | 6.5 | 88.3 | 120 |
NafionNR50 | 0.6 | 64.8 | 29.2 | 100 |
NafionNR50 | - | 0.6 | 96.7 | 120 |
HPA | 0.9 | - | 97.5 | 100 |
HPA | 0.7 | - | 97.1 | 120 |
TFMS | 0.8 | 3.6 | 92.4 | 100 |
TFMS | 0.5 | - | 95.4 | 120 |
储备溶液:0.6%TMHQ、0.3%植二烯、0.4%(全外消旋)-α-生育酚、95.6%PTMHQ。所有量按GC面积%计,反应时间60分钟。
实施例4
植基三甲基对苯二酚用各种浓度的对甲苯磺酸环化为(全外消旋)-α-生
育酚
在氩气氛围下将10ml的储备溶液和10ml的庚烷(0偶极矩)的混合物加热到100℃(内部温度,庚烷回流)。在10分钟之后,在100℃下,用注射器添加溶解在碳酸亚丙基酯(偶极矩16.5D)中的催化剂对甲苯磺酸(p-TsOH)。反应的转化率和选择性在添加完催化剂之后的10、20、40、60和180分钟之后通过GC来检测。在3小时之后,添加100ml的庚烷,再分离庚烷相。碳酸酯相用20ml的庚烷萃取三次,合并的庚烷相在真空下浓缩。所得褐色残留物通过GC分析。GC分析的结果在下表中提供。
表4:各种催化剂浓度
16mol%p-TsOH | 8mol%p-TsOH | 4mol%p-TsOH | 2mol%p-TsOH | |||||
时间(分钟) | α-生育酚 | 植基三甲基对苯二酚 | α-生育酚 | 植基三甲基对苯二酚 | α-生育酚 | 植基三甲基对苯二酚 | α-生育酚 | 植基三甲基对苯二酚 |
10 | 89.5 | 1.8 | 85.2 | 3.4 | 83.8 | 6.5 | 51.8 | 33.3 |
20 | 90.1 | 2.6 | 85.6 | 1.3 | 90.7 | 1.8 | 73.7 | 11.5 |
40 | 89.5 | 1.1 | 88.9 | 0.5 | 93.5 | 0.4 | 79.6 | 8.9 |
60 | 87.3 | 0.6 | 88.4 | 0 | 94.7 | 0.1 | 90.6 | 1.9 |
180 | 85.2 | 0 | 87.7 | 0 | 95.8 | 0 | 93.9 | 0.1 |
实施例5
植基三甲基对苯二酚用各种溶剂环化为(全外消旋)-α-生育酚-半反应
时间的测定
在氩气下将植基三甲基对苯二酚(0.82g,1.9mmol)转移到装有尤其回流冷凝器和氩气气化装置的四颈烧瓶中,并溶解在20ml的所研究的溶剂中[庚烷(0偶极矩),γ-丁内酯(偶极矩13.7D),体积比1∶1的庚烷/碳酸亚丙基酯(偶极矩16.5D)溶剂体系]。将反应混合物加热到120℃(浴温),再用注射器添加1mol%的催化剂对甲苯磺酸(p-TsOH)(1.9ml,0.1mmol,在10ml二氯甲烷中)。在10、20、30、40、60和120分钟之后抽取反应混合物的样品,以检测转化率。从所得分析数据计算各溶剂的半反应时间,并将它与所研究的溶剂的偶极矩关联。对于庚烷,反应是零级。该情况在转化率小的情况下是适合的。对于γ-丁内酯和庚烷/碳酸亚丙基酯,观测到了一级反应。在Y轴的对数计算之后,取50%的值。
表5:溶剂对植基三甲基对苯二酚的转化率的效应
碳酸亚丙基酯/庚烷 | γ-丁内酯 | 庚烷 | ||||||
时间(分钟) | α-生育酚 | 植基三甲基对苯二酚 | 时间(分钟) | α-生育酚 | 植基三甲基对苯二酚 | 时间(分钟) | α-生育酚 | 植基三甲基对苯二酚 |
8 | 3.7 | 88.8 | 6 | 3.1 | 88.8 | 10 | 1.3 | 91.9 |
18 | 5.9 | 84.2 | 16 | 5.4 | 85.8 | 20 | 1.4 | 90.9 |
28 | 9 | 80.1 | 26 | 8.8 | 82.2 | 30 | 1.6 | 89.3 |
38 | 11.6 | 77.3 | 36 | 11.8 | 77.6 | 40 | 1.7 | 87.6 |
52 | 25.3 | 70.8 | 52 | 18.6 | 62.1 | 60 | 2.2 | 89.6 |
120 | 39.3 | 46.1 | 114 | 29.8 | 58.2 | 120 | 4.3 | 84.2 |
1101 | 84.46 | 2.4 | 1099 | 70.2 | 13.4 | 1103 | 25.3 | 47.7 |
环化反应的半反应时间(开放式-Toco)
Claims (19)
1、一种制备全外消旋-α-生育酚的方法,特征在于让经过分离、纯化的纯度为至少95%的植基三甲基对苯二酚经受酸催化作用,从而促进闭环,形成全外消旋-α-生育酚。
2、根据权利要求1的方法,其中经过分离、纯化的植基三甲基对苯二酚具有至少98%的纯度。
3、根据权利要求1或权利要求2的方法,其中经过分离、纯化的植基三甲基对苯二酚在不添加溶剂的情况下经受酸催化作用。
4、根据权利要求1或权利要求2的方法,其中经过分离、纯化的植基三甲基对苯二酚在溶剂或溶剂混合物中经受酸催化作用。
5、根据权利要求4的方法,其中溶剂或溶剂混合物的至少一种溶剂组分是具有高于9×10-30C-m的偶极矩的溶剂。
6、根据权利要求4的方法,其中溶剂或溶剂混合物的任何溶剂组分是脂族或芳族烃;卤化脂族或芳族烃;脂族醚或环醚;脂族、环状或芳族酯;脂族酮、芳族酮或混合脂族/芳族酮;酰胺;砜;或在适当高压下的液化二氧化碳、二氧化硫或一氧化二氮。
7、根据权利要求6的方法,其中溶剂或溶剂混合物的任何溶剂组分是在适当高压下的液化丙烷,或者脂族烃与脂族、环状或芳族酯的两相或多相体系。
8、根据权利要求6的方法,其中溶剂或溶剂混合物的任何溶剂组分是卤化芳族烃;脂族醚或环醚;环状酯或芳族酯;脂族酮、芳族酮或混合脂族/芳族酮;酰胺;或砜。
9、根据权利要求1或2的方法,其中酸催化剂是硫酸,磷酸,聚全氟亚烷基磺酸,“NH-酸”,杂多酸,氯化锌,三氟化硼,三氯化铝,或任意上述布朗斯台德酸与任意上述路易斯酸的混合物。
10、根据权利要求1或2的方法,其中酸催化剂是在不存在任何其它类型的酸催化剂情况下的布朗斯台德酸或两种或多种布朗斯台德酸的混合物。
11、根据权利要求1或2的方法,其中该方法在-20℃到+200℃的温度下进行。
12、根据权利要求11的方法,其中该方法在0℃到150℃的温度下进行。
13、根据权利要求12的方法,其中该方法在90℃到130℃的温度下进行。
14、根据权利要求1或2的方法,其中溶剂的用量,按起始原料植基三甲基对苯二酚相对于溶剂重量而言的重量百分数来表示,应使得植基三甲基对苯二酚的重量百分数为0.1到100重量%,该范围包括其中植基三甲基对苯二酚不完全溶解在溶剂中的情况。
15、根据权利要求14的方法,其中溶剂的用量,按起始原料植基三甲基对苯二酚相对于溶剂重量而言的重量百分数来表示,应使得植基三甲基对苯二酚的重量百分数为2到20重量%,该范围包括其中植基三甲基对苯二酚不完全溶解在溶剂中的情况。
16、根据权利要求1或2的方法,其中催化剂的量是0.001-20重量%,基于植基三甲基对苯二酚的用量计。
17、根据权利要求16的方法,其中催化剂的量是0.1-10重量%,基于植基三甲基对苯二酚的用量计。
18、根据权利要求1或2的方法,其中在促进闭环成全外消旋-α-生育酚的酸催化完成之后,在除去或不除去催化剂的情况下,用乙酰化剂直接处理反应混合物以将游离生育酚转化为全外消旋-α-生育酚乙酸酯。
19、根据权利要求18的方法,其中所述乙酰化剂包括乙酸酐、乙酸和乙酸酯。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP01125966.0 | 2001-10-31 | ||
EP01125966 | 2001-10-31 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1578777A CN1578777A (zh) | 2005-02-09 |
CN1271065C true CN1271065C (zh) | 2006-08-23 |
Family
ID=8179127
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN02821423.4A Expired - Fee Related CN1271065C (zh) | 2001-10-31 | 2002-10-23 | α-生育酚的制备方法 |
Country Status (8)
Country | Link |
---|---|
US (1) | US7626046B2 (zh) |
EP (1) | EP1446398B1 (zh) |
JP (1) | JP2005507422A (zh) |
CN (1) | CN1271065C (zh) |
AT (1) | ATE293108T1 (zh) |
DE (1) | DE60203734T2 (zh) |
ES (1) | ES2239260T3 (zh) |
WO (1) | WO2003037883A1 (zh) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE60317553T2 (de) * | 2002-11-21 | 2008-10-23 | Dsm Ip Assets B.V. | Herstellung von tocoferylazetaten |
ES2347552T3 (es) * | 2003-01-13 | 2010-11-02 | Dsm Ip Assets B.V. | Proceso para la fabricacion de acetato de alfa-tocoferilo. |
US20060235234A1 (en) * | 2003-09-15 | 2006-10-19 | Werner Bonrath | New route to alpha-tocopherol, alpha-tocopheryl alkanoates and precursors thereof |
EP1663937A2 (en) * | 2003-09-15 | 2006-06-07 | DSM IP Assets B.V. | Synthesis of alpha-tocopheryl alkanoates and precursors thereof |
WO2019012000A1 (en) * | 2017-07-12 | 2019-01-17 | Dsm Ip Assets B.V. | NEW SYNTHESIS OF INTERMEDIATES FOR THE PREPARATION OF ALPHA-TOCOPHEROL |
CN113640395B (zh) * | 2020-04-27 | 2024-10-01 | 深圳波顿香料有限公司 | 电子烟油中的生育酚乙酸酯的合相色谱分析方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4208334A (en) | 1978-12-22 | 1980-06-17 | Hoffmann-La Roches Inc. | Process for preparation of α-tocopherol |
US6369242B2 (en) | 2000-03-17 | 2002-04-09 | Roche Vitamins Inc. | Tocopherol manufacture by tris(perfluorohydrocarbylsulphonyl) methane or metal methides thereof |
-
2002
- 2002-10-23 AT AT02785282T patent/ATE293108T1/de not_active IP Right Cessation
- 2002-10-23 EP EP02785282A patent/EP1446398B1/en not_active Expired - Lifetime
- 2002-10-23 WO PCT/EP2002/011819 patent/WO2003037883A1/en active Application Filing
- 2002-10-23 ES ES02785282T patent/ES2239260T3/es not_active Expired - Lifetime
- 2002-10-23 US US10/494,005 patent/US7626046B2/en not_active Expired - Fee Related
- 2002-10-23 CN CN02821423.4A patent/CN1271065C/zh not_active Expired - Fee Related
- 2002-10-23 JP JP2003540164A patent/JP2005507422A/ja active Pending
- 2002-10-23 DE DE60203734T patent/DE60203734T2/de not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
ATE293108T1 (de) | 2005-04-15 |
WO2003037883A1 (en) | 2003-05-08 |
EP1446398B1 (en) | 2005-04-13 |
ES2239260T3 (es) | 2005-09-16 |
DE60203734D1 (de) | 2005-05-19 |
US20050187393A1 (en) | 2005-08-25 |
DE60203734T2 (de) | 2006-02-09 |
EP1446398A1 (en) | 2004-08-18 |
JP2005507422A (ja) | 2005-03-17 |
CN1578777A (zh) | 2005-02-09 |
US7626046B2 (en) | 2009-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0840974A (ja) | アクリル酸精製法 | |
US10633359B2 (en) | Preparation of macrocyclic lactones | |
ZA200205200B (en) | Process for the epoxidation of olefins. | |
KR20100016452A (ko) | 다이클로로하이드린 회수를 위한 다단계 방법 및 장치 | |
JP2001504111A (ja) | d,1―α―トコフェロールの製造方法 | |
CN1271065C (zh) | α-生育酚的制备方法 | |
KR100835476B1 (ko) | 1,4-부탄디올로부터 테트라하이드로퓨란의 제조방법 | |
JPH07224054A (ja) | α−トコフェロール誘導体の製造法 | |
CN1024188C (zh) | 2.3.5-三甲基苯醌的制备方法 | |
KR20000005874A (ko) | 원액비닐아세테이트의후처리방법 | |
JPH09227419A (ja) | アルキルハロゲン化物の連続的な製法 | |
CN113754539A (zh) | 一种草酸二甲酯的纯化脱色方法 | |
CN105693455B (zh) | 一种1,5,9-环十二碳三烯的合成方法 | |
TW201341374A (zh) | 環氧丙烷的製造過程 | |
CN1090626C (zh) | 生育酚的羟甲基化 | |
CN106103401B (zh) | 用于分离高沸点羧酸乙烯酯/羧酸混合物的方法 | |
JP2013060429A (ja) | 1,4−ブタンジオールの精製方法及びテトラヒドロフランの製造方法 | |
KR20050016815A (ko) | 고효율의 아크릴산 제조 방법 | |
JPWO2004106314A1 (ja) | オキセタン環含有ビフェニル化合物の製造方法 | |
JPH09227420A (ja) | アルキルハロゲン化物の製法 | |
CN105944676B (zh) | 一种呋喃二甲酸庚酯纯化用吸附剂的制备方法 | |
JP6579825B2 (ja) | ジエン化合物の製造方法 | |
JP4154897B2 (ja) | ガンマブチロラクトンの精製方法 | |
CN117986270A (zh) | 反应精馏纯化二氧化双环戊二烯的方法及其应用 | |
JP2023108361A (ja) | 1,3-ブタンジオールの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20060823 Termination date: 20201023 |