CN1261984A - 双极功率晶体管及其制造方法 - Google Patents

双极功率晶体管及其制造方法 Download PDF

Info

Publication number
CN1261984A
CN1261984A CN98806912A CN98806912A CN1261984A CN 1261984 A CN1261984 A CN 1261984A CN 98806912 A CN98806912 A CN 98806912A CN 98806912 A CN98806912 A CN 98806912A CN 1261984 A CN1261984 A CN 1261984A
Authority
CN
China
Prior art keywords
electrically connected
power transistor
base
layer
field shield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN98806912A
Other languages
English (en)
Inventor
T·约翰松
L·C·莱顿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Telefonaktiebolaget LM Ericsson AB
Original Assignee
Telefonaktiebolaget LM Ericsson AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Telefonaktiebolaget LM Ericsson AB filed Critical Telefonaktiebolaget LM Ericsson AB
Publication of CN1261984A publication Critical patent/CN1261984A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66272Silicon vertical transistors
    • H01L29/66295Silicon vertical transistors with main current going through the whole silicon substrate, e.g. power bipolar transistor
    • H01L29/66303Silicon vertical transistors with main current going through the whole silicon substrate, e.g. power bipolar transistor with multi-emitter, e.g. interdigitated, multi-cellular or distributed emitter
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • H01L29/732Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Bipolar Transistors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

本发明涉及纵向双极功率晶体管及制造所说双极功率晶体管的方法,所说功率晶体管主要用于射频应用。该双极功率晶体管包括衬底(13)、衬底上的第一导电类型的集电层(15)、与集电层电连接的第二导电类型的基区(19)、与基区电连接的所说第一导电类型的发射区(21),所说基区和所说发射区都与金属化互连层(31,33)电连接,所说金属化互连层(31,33)通过绝缘氧化物(17)至少局部与集电层(15)隔离。根据本发明,该功率晶体管实际包括设置在与基区电连接的金属化互连层和绝缘氧化物之间的场屏蔽层(25)。

Description

双极功率晶体管及其制造方法
本发明涉及纵向双极功率晶体管及制造双极功率晶体管的方法,所说功率晶体管主要用于高频应用,特别是射频应用。
对于给定的电源电压和工作频率,用于高频功率放大的双极晶体管必领满足涉及功率放大系数、强度、击穿电压、噪声、失真、电容、输入和输出阻抗等数个具体要求。现代电信设备的工作频率在无线电波和微波区内变化。对输出功率的要求从几瓦变到几百瓦,在后一种情况下,可以使用并联于一个外壳内的几种元件。功率晶体管在高信号电平和高电流密度下工作。目前采用的计算设备不能够详细地模拟实际应用的特性或性能。
目前用于至少在3GHz以下频率的功率晶体管的半导体材料主要是硅。另外,由于电子迁移率比空穴高,主要采用npn型功率晶体管。晶体管结构一般是纵向的,集电极接触在硅衬底的背面。集电层外延地淀积于衬底上,然后,场氧化物可形成于集电层顶上有源区外。基区和发射区通过从上向下扩散或离子注入形成于外延层的有源区中。金属化互连层在该结构中较高处形成。
通过改变集电区、基区和/或发射区的掺杂度,可以得到不同种类的频率和击穿特性。不同的横向几何形状赋予晶体管不同的电流容量。
晶体管中场氧化物一般有两个作用:隔离元件和减小到衬底的寄生电容。对于双极功率晶体管,在集电极由衬底构成时,一般不需要元件隔离。场氧化物的作用就变成隔离衬底与金属层,以便减小它们之间的寄生电容。
很高频功率晶体管的一种最重要参数是信号放大系数。信号放大系数可表示为(例如见R.Allison的Silicon bipolar microwavepower transistors,IEEE Trans.Microwave Theory andTechniques,Vol.MTT-27,No.5,s415,1979): G ( f ) ≈ G 0 1 + G 2 0 ( f f max ) 4
其中G0是所谓的β值,即零频率放大系数,f是频率,fmax是最大振荡频率(对于功率放大来说)。
在β值和频率很高时,即,在G0(f/fmax)4>>1时,放大系数G(f)可以写成:
G0≈(f/fmax)2=fT/8πRbCbc·1/f2
其中fT是最大边界频率(关于电流放大来说),Rb是基区电阻,Cbc是基极集电极电容。
所以,实现大功率放大的三个关键因素是最大边界频率、最小基极电阻、和最小基极集电极电容。例如参见H.F.Cooke,Microwavetransistors:theory and design,Proc IEEE,Vol. 59,p.1163,1971。
发射极使用多晶硅,可以实现高截止频率,同时与只进行了离子注入的发射区相比,基区电阻不会变得太高。
通过减小功率晶体管的纵向尺寸可以减小基区电阻。
基极-集电极电容由结电容和金属-衬底电容构成。结电容由最小掺杂侧即集电极侧上的掺杂程度决定,并且由于集电区掺杂和基极-集电极击穿电压间的关系,不能作很大调整。
按所属领域的公知方式,通过如上所述增大场氧化物的厚度和减小金属面积,都可以减小金属-衬底电容。
最大实际场氧化物厚度一般约为2.5-3微米,取决于热预算、机械应力造成的结漏电及工艺集成方面的限制。通过利用例如HIPOX(高压氧化),可以在短时间内得到厚约3微米的厚氧化物,所说厚氧化物满足热预算的要求。为了避免所得表面形貌的大高度差和便于进一步处理,可通过在基区和发射区外,深腐蚀外延集电层约所需场氧化物厚度的一半,制造具有厚场氧化物的晶体管,然后,热氧化所说深腐蚀的表面,从而得到基本上为平面的形貌。然而,在场氧化物和硅边界间仍形成升高区,这种升高区必须腐蚀掉。
本发明的目有是得到高性能尤其是放大系数提高的纵向双极功率晶体管,所说功率晶体管包括衬底、所说衬底上的外延集电极层、形成于外延层上的基区和发射区。
这可以通过减小寄生基极金属-集电极衬底电容实现,根据本发明这种减小是通过在与基区相连的互连层与场氧化物间引入场屏蔽层实现的,所说场屏蔽层与发射区电连接。
场屏蔽层位于功率晶体管的无源区内,即,元件区之外。
这种晶体管优选还可以包括外延集电极层和位于其上的金属化互连层间的厚场氧化物。
通过在常规工艺中加入淀积步骤、两步掩蔽步骤、两步腐蚀步骤,容易制造本发明的双极功率晶体管。通过淀积导电层然后进行掩蔽和腐蚀制造这种场屏蔽层。通过在位于场屏蔽层上的隔离层中掩蔽和腐蚀接触孔,然后用与发射区连接的互连层填充所说接触孔,可以实现与发射区的电连接。
本发明的优点在于,在引入本发明的场屏蔽层后,功率放大器的放大特性显著提高。在牺牲基极-发射极和发射极-集电极电容的情况下,场屏蔽层减小了基极-集电极电容。相对功率晶体管的放大特性,基极-发射极和发射极-集电极电容显得较不重要。
在厚场氧化物与场屏蔽层结合使用时,可以进一步提高功率放大器的性能。
下面结合附图详细介绍本发明,这些附图只例示了本发明,而非对本发明范围的限制。
图1a是用于高频应用的本发明双极功率晶体管的细节的剖面图。
图1b展示了根据本发明的功率晶体管的金属化互连层和场屏蔽层的主要掩模布局。
图1a中,参考数字11表示用于高频应用的本发明纵向双极功率晶体管的细节。该功率晶体管包括衬底13,其上淀积有外延层15。优选为n掺杂的层15构成功率晶体管的整个或部分集电极。衬底13可以n掺杂,还可以构成集电极的一部分,集电极接触形成于衬底的下侧。
或者,衬底可以p掺杂,或由半绝缘材料构成,在衬底13和外延层15间构成子集电极,集电极接触位于外延层的上侧。图中未示出这种“埋层”实施例。
在外延层15中,邻接外延层的上表面,形成第一p掺杂区19,构成功率晶体管的基区。另外,在第一区19中,邻接外延层的上表面,形成n掺杂的第二区21。第二区21构成功率晶体管的发射区。
基区19和发射区21分别与第一和第二金属化互连层31和33电连接。在图1a的剖面图中,只示出了发射区与互连层33的连接。该功率晶体管横向为所谓的梳型,例如,公开于美国专利US5488252,或所谓的网型,或所谓的交叠型。例如在上述H.F.Cooke的文献中提到了上述所有类型。
金属化互连层31、33通过绝缘氧化物17至少局部与外延层15隔离,氧化物17的边缘17a可以构成晶体管的有源区即有源元件所在区与晶体管的无源区即绝缘氧化物17所在区之间的边界,无源区中形成有基区的互连层27的主要部分和基极焊盘(未示出图1a中)。自然,在发射极侧也有无源区,具有发射区的互连金属的主要部分和发射极焊盘(图1a中未示出)。功率晶体管还可以包括绝缘氧化物17上的局部绝缘层27。
根据本发明,场屏蔽层25位于第一金属化互连层31和绝缘氧化物17之间。该场屏蔽层25应是导电的,例如由n掺杂的多晶硅或金属构成,并与功率晶体管的发射极19相连。通过在绝缘层27中至少腐蚀一个接触孔29,可以实现这种连接,所说接触孔29中填充有发射区的互连金属33。
以此方式,基极-集电极电容转变成基极-发射极电容和发射极-集电极电容。这些电容对于功率晶体管的放大特性来说较不重要。
根据本发明的场屏蔽层横向位于上述第一无源区中。图1a中,示出了场蔽层25具有面对有源区清楚地位于无源区中的边缘25a,即,图1a中,到绝缘氧化物的边缘17a的左边。
图1b中,示出了功率晶体管的金属化互连层31、33的主要掩模布局,其中根据本发明的场屏蔽层的横向延伸由25表示。这里,还示出了第一无源区41,其中包括基极的焊盘45和带有有源元件的区域43,例如发射区21和p+掺杂的基极接触区47,图1b中只示出了其一部分。这些区21、47上叠有金属化互连层31、33。
图1a中所示的细节11是沿图1b所示的一个金属化发射臂33的剖面图。
另外,绝缘氧化物的边缘17a显示为具有三个接触孔29,这些接触孔是在绝缘层27中腐蚀形成的,并填有三个金属化发射臂的金属,进而构成发射极的金属化互连层33的一部分。接触孔的数量优选与发射区21和金属化发射臂的数量相同。图1b还示出了金属化基区互连层31的大部分。所以应理解,基区金属-集电极衬底电容大部分可被与根据本发明的场屏蔽层25相连的发射极消除。
根据本发明用于减小电容的进一步作用利用了优选厚至少约2-3微米的厚绝缘氧化物17。以此方式,可进一步骤提高功率晶体管的性能。
通过在常规工艺中附加一步淀积步骤、两步掩蔽步骤和两步腐蚀步骤,容易制造本发明的双极功率晶体管。
在掺杂的外延淀积集电层15上,一般是淀积一薄层氧化物,然后是一薄层氮化物(图1a或1b中未示出)。通过这些薄层进行基区19的离子注入,然后,根据本发明,淀积厚较好约200-500nm的硅层。该硅层较重掺杂,然后掩蔽和深腐蚀,得到本发明的场屏蔽层25。既可以在与掺杂该结构的背面的同时的常规工艺一起进行这种掺杂,也可以在单独的离子注入中进行这种掺杂。或者,由金属制造场屏蔽层25,这情况下不必掺杂。掩蔽和腐蚀必须使场屏蔽层位于功率晶体管的无源区中,如图1a和1b所示。
然后,淀积将被掩蔽和腐蚀的绝缘层尤其是TEOS,以得到图1a所示的绝缘层27。然而,由于本发明的接触孔29的腐蚀将停止于硅,而发射极开口和基极开口的常规腐蚀停止于氮化硅,所以这必须在两个单独的步骤中进行。较好是,首先掩蔽和腐蚀该绝缘层,得到接触孔29,然后,进行掩蔽和腐蚀,以得到发射极开口和基极接触开口。然后该制造工艺按常规方式进行。
根据本发明的纵向双极功率晶体管将主要用于射频应用,尤其是用于无线电基站的放大级,但也可用于例如有线TV和卫星技术。
通过引入本发明的场屏蔽层,在牺牲基极-发射极和发射-集电极电容的情况下,减小基极-集电极电容,可以显著提高功率晶体管的放大特性。
自然,本发明不限以上介绍和附图中展示的实施例,在所附权利要求书的范围内可以进行改进。具体说,本发明不受材料、几何形状或尺寸的限制。例如本发明可在硅及例如镓砷等III-V族半导体等化合物半导体中实施。另外,本发明的双极功率晶体管当然可以是pnp型。

Claims (12)

1.一种纵向双极功率晶体管,包括衬底、衬底上的第一导电类型的集电极层、与集电极层电连接的第二导电类型的基区、与基区电连接的所说第一导电类型的发射区,所说基区和所说发射区都与金属化互连层电连接,所说金属化互连层通过绝缘氧化物至少局部与集电极层隔离,其特征在于,设置在与基区(19)电连接的金属化互连层(31)和绝缘氧化物(17)之间,且与发射区(21)电连接的场屏蔽层(25)。
2.根据权利要求1的纵向双极功率晶体管,其特征在于,场屏蔽层(25)位于功率晶体管的无源区(41)中,尤其是与基区(19)电连接的互连层(31)和与基区电连接的焊盘所在的区域中。
3.根据权利要求1或2的纵向双极功率晶体管,其特征在于,其主要由硅构成。
4.根据权利要求1或2的纵向双极功率晶体管,其特征在于,其主要由化合物半导体材料构成,较好是砷化镓。
5.根据权利要求1-4中任一项的纵向双极功率晶体管,其特征在于,场屏蔽层(25)掺杂成所说第一导电类型。
6.根据权利要求1-4中任一项的纵向双极功率晶体管,其特征在于,场屏蔽层(25)由金属构成。
7.根据权利要求1-6中任一项的纵向双极功率晶体管,其特征在于,其是所谓的梳型。
8.一种制造纵向双极功率晶体管的方法,其中在衬底上淀积集电极层,并掺杂成第一导电类型,按与集电极层电连接的方式设置第二导电类型的基区,按与基区电连接的方式设置所说第一导电类型的发射区,按分别与基区和发射区电连接的方式设置金属化互连层,设置绝缘氧化物,其至少局部隔离金属化互连层与集电极层,其特征在于,在与基区(19)电连接的金属化互连层(31)和绝缘氧化物(17)之间设置场屏蔽层(25),并电连接所说场屏蔽层(25)与发射区(21)。
9.根据权利要求8的方法,其特征在于,通过淀积导电层、并掩蔽和腐蚀设置场屏蔽层(25)的步骤。
10.根据权利要求8或9的方法,其特征在于,在功率晶体管的无源区(41)中,尤其是在设置与基区(19)电连接的互连层(31)的区域中,设置场屏蔽层(25)。
11.根据权利要求8-10中任一项的方法,其特征在于,场蔽层(25)由硅构成。
12.根据权利要求8-11中任一项的方法,其特征在于,通过在场屏蔽层(25)上设置绝缘层(27),并掩蔽和深腐蚀所说绝缘层(27),在场屏蔽层(25)上形成接触孔(29),用与发射区(21)电连接的金属化互连层(33)填充所说接触孔(29),从而电连接场屏蔽层(25)与发射区。
CN98806912A 1997-07-04 1998-05-25 双极功率晶体管及其制造方法 Pending CN1261984A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE9702598A SE509780C2 (sv) 1997-07-04 1997-07-04 Bipolär effekttransistor och framställningsförfarande
SE97025985 1997-07-04

Publications (1)

Publication Number Publication Date
CN1261984A true CN1261984A (zh) 2000-08-02

Family

ID=20407650

Family Applications (1)

Application Number Title Priority Date Filing Date
CN98806912A Pending CN1261984A (zh) 1997-07-04 1998-05-25 双极功率晶体管及其制造方法

Country Status (10)

Country Link
US (2) US6077753A (zh)
EP (1) EP1027733A1 (zh)
JP (1) JP2002508889A (zh)
KR (1) KR20010014103A (zh)
CN (1) CN1261984A (zh)
AU (1) AU7682098A (zh)
CA (1) CA2294806A1 (zh)
SE (1) SE509780C2 (zh)
TW (1) TW420849B (zh)
WO (1) WO1999001900A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0215185D0 (en) 2002-07-01 2002-08-07 Genovision As Binding a target substance
JP4626935B2 (ja) * 2002-10-01 2011-02-09 ルネサスエレクトロニクス株式会社 半導体装置及びその製造方法
US6841795B2 (en) * 2002-10-25 2005-01-11 The University Of Connecticut Semiconductor devices employing at least one modulation doped quantum well structure and one or more etch stop layers for accurate contact formation
US6974969B2 (en) 2003-01-13 2005-12-13 The University Of Connecticut P-type quantum-well-base bipolar transistor device employing interdigitated base and emitter formed with a capping layer
US7109589B2 (en) * 2004-08-26 2006-09-19 Agere Systems Inc. Integrated circuit with substantially perpendicular wire bonds
US8429577B2 (en) * 2008-06-26 2013-04-23 Qualcomm Incorporated Predictive modeling of interconnect modules for advanced on-chip interconnect technology
US8483997B2 (en) 2008-06-26 2013-07-09 Qualcomm Incorporated Predictive modeling of contact and via modules for advanced on-chip interconnect technology
CN102403223B (zh) * 2011-10-25 2013-04-17 丹东安顺微电子有限公司 改善贮存时间Ts一致性的功率晶体管制造方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3302076A (en) * 1963-06-06 1967-01-31 Motorola Inc Semiconductor device with passivated junction
JPS51123562A (en) * 1975-04-21 1976-10-28 Sony Corp Production method of semiconductor device
US4573064A (en) * 1981-11-02 1986-02-25 Texas Instruments Incorporated GaAs/GaAlAs Heterojunction bipolar integrated circuit devices
JPS59188970A (ja) * 1983-04-12 1984-10-26 Nec Corp 半導体装置
JP2518886B2 (ja) * 1988-02-25 1996-07-31 富士通株式会社 バイポ―ラ型半導体装置の製造方法
US5204735A (en) * 1988-04-21 1993-04-20 Kabushiki Kaisha Toshiba High-frequency semiconductor device having emitter stabilizing resistor and method of manufacturing the same
JP2607616B2 (ja) * 1988-04-25 1997-05-07 富士通株式会社 半導体装置の製造方法
US4864379A (en) * 1988-05-20 1989-09-05 General Electric Company Bipolar transistor with field shields
JP2504547B2 (ja) * 1988-12-13 1996-06-05 日産自動車株式会社 バイポ―ラ形薄膜半導体装置
US5034337A (en) * 1989-02-10 1991-07-23 Texas Instruments Incorporated Method of making an integrated circuit that combines multi-epitaxial power transistors with logic/analog devices
US4918026A (en) * 1989-03-17 1990-04-17 Delco Electronics Corporation Process for forming vertical bipolar transistors and high voltage CMOS in a single integrated circuit chip
JP2808882B2 (ja) * 1990-05-07 1998-10-08 富士電機株式会社 絶縁ゲート型バイポーラトランジスタ
JP2650519B2 (ja) * 1991-07-25 1997-09-03 株式会社日立製作所 横型絶縁ゲートトランジスタ
JPH05343413A (ja) * 1992-06-11 1993-12-24 Fujitsu Ltd バイポーラトランジスタとその製造方法
EP0590804B1 (en) * 1992-09-03 1997-02-05 STMicroelectronics, Inc. Vertically isolated monolithic bipolar high-power transistor with top collector
DE69431609T2 (de) * 1993-04-08 2003-06-26 Koninkl Philips Electronics Nv Verfahren zur Herstellung einer Halbleiteranordnung mit einem Bipolartransistor
US5373183A (en) * 1993-04-28 1994-12-13 Harris Corporation Integrated circuit with improved reverse bias breakdown
US5488252A (en) * 1994-08-16 1996-01-30 Telefonaktiebolaget L M Erricsson Layout for radio frequency power transistors
US5606195A (en) * 1995-12-26 1997-02-25 Hughes Electronics High-voltage bipolar transistor utilizing field-terminated bond-pad electrodes

Also Published As

Publication number Publication date
WO1999001900A1 (en) 1999-01-14
CA2294806A1 (en) 1999-01-14
US6077753A (en) 2000-06-20
SE9702598D0 (sv) 1997-07-04
SE9702598L (sv) 1999-01-05
KR20010014103A (ko) 2001-02-26
JP2002508889A (ja) 2002-03-19
TW420849B (en) 2001-02-01
AU7682098A (en) 1999-01-25
US6239475B1 (en) 2001-05-29
SE509780C2 (sv) 1999-03-08
EP1027733A1 (en) 2000-08-16

Similar Documents

Publication Publication Date Title
US4546536A (en) Fabrication methods for high performance lateral bipolar transistors
US4583106A (en) Fabrication methods for high performance lateral bipolar transistors
CN1172377C (zh) 具有分级基区的横向晶体管,半导体集成电路及制造方法
US4521952A (en) Method of making integrated circuits using metal silicide contacts
US4492008A (en) Methods for making high performance lateral bipolar transistors
US4939562A (en) Heterojunction bipolar transistors and method of manufacture
US7285470B2 (en) Method for the production of a bipolar semiconductor component, especially a bipolar transistor, and corresponding bipolar semiconductor component
US6180442B1 (en) Bipolar transistor with an inhomogeneous emitter in a BICMOS integrated circuit method
US7001806B2 (en) Semiconductor structure with increased breakdown voltage and method for producing the semiconductor structure
CN1261984A (zh) 双极功率晶体管及其制造方法
CN101467237B (zh) 制造双极型晶体管的方法
CN1160786C (zh) 具有深衬底接触的半导体器件
US5177582A (en) CMOS-compatible bipolar transistor with reduced collector/substrate capacitance and process for producing the same
KR100188085B1 (ko) 초고속 쌍극성 트랜지스터의 제조방법
US6043553A (en) Multi-emitter bipolar transistor of a self-align type
KR100208977B1 (ko) 초고속 쌍극성 트랜지스터의 제조방법
CN1738048A (zh) 共射共基放大器,其电路以及制造这种放大器布置的方法
US6274921B1 (en) Semiconductor integrated circuit including protective transistor protecting another transistor during processing
EP0673072B1 (en) Semiconductor device comprising a lateral bipolar transistor
KR940010553B1 (ko) 양극성 트랜지스터 구조
US6150225A (en) Method for fabricating a semiconductor device having vertical and lateral type bipolar transistors
US7534685B2 (en) Method for fabrication of a capacitor, and a monolithically integrated circuit comprising such a capacitor
US5460982A (en) Method for manufacturing lateral bipolar transistors
JP2001515278A (ja) バイポーラ電力用トランジスタとその製造法
EP1061572A1 (en) Intergrated stucture for radio frequency applications

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
AD01 Patent right deemed abandoned
C20 Patent right or utility model deemed to be abandoned or is abandoned
REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1029655

Country of ref document: HK