CN1246982C - 色散补偿组件 - Google Patents

色散补偿组件 Download PDF

Info

Publication number
CN1246982C
CN1246982C CNB98811917XA CN98811917A CN1246982C CN 1246982 C CN1246982 C CN 1246982C CN B98811917X A CNB98811917X A CN B98811917XA CN 98811917 A CN98811917 A CN 98811917A CN 1246982 C CN1246982 C CN 1246982C
Authority
CN
China
Prior art keywords
mentioned
dispersion compensating
dispersion
wavelength
compensating component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB98811917XA
Other languages
English (en)
Other versions
CN1281604A (zh
Inventor
奥野俊明
石川真二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Publication of CN1281604A publication Critical patent/CN1281604A/zh
Application granted granted Critical
Publication of CN1246982C publication Critical patent/CN1246982C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29371Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating principle based on material dispersion
    • G02B6/29374Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating principle based on material dispersion in an optical light guide
    • G02B6/29376Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating principle based on material dispersion in an optical light guide coupling light guides for controlling wavelength dispersion, e.g. by concatenation of two light guides having different dispersion properties
    • G02B6/29377Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating principle based on material dispersion in an optical light guide coupling light guides for controlling wavelength dispersion, e.g. by concatenation of two light guides having different dispersion properties controlling dispersion around 1550 nm, i.e. S, C, L and U bands from 1460-1675 nm
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29304Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
    • G02B6/29316Light guides comprising a diffractive element, e.g. grating in or on the light guide such that diffracted light is confined in the light guide
    • G02B6/29317Light guides of the optical fibre type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/29392Controlling dispersion
    • G02B6/29394Compensating wavelength dispersion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/2513Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion
    • H04B10/2519Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion using Bragg gratings
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/2513Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion
    • H04B10/2525Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion using dispersion-compensating fibres
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2581Multimode transmission
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29331Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by evanescent wave coupling
    • G02B6/29335Evanescent coupling to a resonator cavity, i.e. between a waveguide mode and a resonant mode of the cavity
    • G02B6/29337Cavities of the linear kind, e.g. formed by reflectors at ends of a light guide

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

一种具有对在光传输线中发生的波长色散进行补偿的功能,同时,具备其传输损耗的波长依赖性小且易于向光传输系统插入的构造的色散补偿组件。该色散补偿组件具备信号光的输入端和输出端的同时,还具备诸如色散补偿光纤等的色散补偿装置和用来至少对该色散补偿装置中的依赖于波长的损耗不均进行补偿的损耗均衡化装置。

Description

色散补偿组件
技术领域
本发明涉及色散补偿组件,该组件配置于适于波分多路复用(WDM)传输等的光通信的光传输通道中,在构成该光传输通道的一部分的同时,还对WDM信号的波长频段中的波长色散进行补偿。
背景技术
现有的光通信系统,其构成通常是作为光传输通路主要使用传输用光纤,且每隔以适当的中继间隔配置光放大器。由于信号光在传输用光纤中传输期间会衰减,故光放大器是一种用来对例如含有多种波长的信号光成分的WDM信号等的信号光功率进行放大的光器件。该光放大器,通常,具备使各个信号光成分的光功率放大的放大部分和降低在各个信号光成分间产生的增益差的均衡部分,不仅起着光放大作用,还起着增益均衡化作用。因此,在进行WDM传输的情况下,大致上以一定的增益对WDM信号的每一个信号成分进行光放大。
另一方面,作为传输用光纤,通常,使用单模光纤。该单模光纤,在波长1.55微米频带(1500nm~1600nm)具有正的波长色散(约+17ps/nm/km),但是如果存在大的色散,则WDM信号的波形常常崩溃,从而会产生接收误差。特别是当发展到数千兆位/秒~数十千兆位/秒这种程度的高速化,即发展到宽频带化后,波长色散的存在就会成为大的问题。于是,为了对该波长色散进行补偿,人们提出了把色散补偿器配置在光传输通道中的光通信系统的方案(例如,参看1997年电子情报通信学会通信分会大会B-10-70和同大会B-10-71)。此外,作为该色散补偿器,例如可以使用在波长1.55μm频带中具有大的负的波长色散(约-90ps/nm/km)的色散补偿光纤。
发明者们对上述现有技术进行研究的结果,发现了以下那样的课题。就是说,在色散补偿器中,由于WDM信号的波长频段中的各个信号光成分间的传输损耗的非均一性,大到不能无视波长依赖性那样的程度,故存在着以下那样的课题。
对例如在图1所示的那种光传输通道中的光放大器1和下一级的光放大器2之间设置有色散补偿器3的一般性的构成进行说明。另外,在该光传输通道中,假定从光放大器1输出出来的WDM信号中的各个信号光成分(波长λ14)的光功率是一定的。
在以上的构成中,当向光放大器1输入图1B所示的那种信号光成分时,就输出图1C所示的那样的放大后的信号光成分。采用把由该光放大器1输出的信号光成分输入到色散补偿器3中去的办法,就可以对传输用光纤的波长色散进行补偿。另一方面,由于色散补偿器3的传输损耗具有波长依赖性,故从色散补偿器3输出出来的信号光成分间的光功率不会变成为一定(参看图1D)。此外,即便是再次把从色散补偿器3输出出来的信号光成分输入到光放大器2中去,从光放大器2输出出来的信号光成分(参看图1E),也将在包含有输入时的各个信号光成分间的光功率差的状态下进行放大。因此,在从发送局到接收局之间设有多个色散补偿器的情况下,到达接收局的信号光成分间的光功率差会因依次累积而变得更大。这样一来,当到达接收局的信号光成分间的光功率差大时,会产生这样的情况:因信号光成分产生S/N的劣化而不能进行接收。因此,在插入色散补偿器的情况下,必须重新设计整个光传输系统以解除上述问题。
发明内容
本发明就是为解决上述课题而作出的,目的是提供色散补偿组件,该组件具有对在光传输通路中产生的波长色散进行补偿的功能,同时,还具备其传输损耗小且易于插入光传输系统中去的构造。
因此,本发明的色散补偿组件,具备入射各自的中心波长含于规定的波段中的1或2个以上的信号光成分(含于WDM信号中)输入端,和出射该WDM信号的输出端,不仅可以设置在发送局和接收局之间,还可以设置在发送局和中继器之间、中继器间、中继器和接收局之间。此外,该色散补偿组件,具备为了降低传输损耗的波长依赖性,配置在输入端和输出端之间的光路中的色散补偿光纤等的色散补偿装置,和用来至少对于该色散补偿装置,对依赖于波长的该色散补偿装置的损耗不均进行补偿的损耗均衡化装置。
另外,上述色散补偿装置,取决于补偿对象,在上述WDM信号的波段(例如,1500nm~1600nm)中具有正或负的任何一方的色散斜率。此外,取决于补偿对象,该色散补偿装置在WDM信号的波段内取正或负的不论哪一方的值。
此外,本发明的色散补偿组件,采用还具备光放大装置的办法,也可以作为中继器起作用。在该构成中,上述损耗均衡化装置,至少对上述色散补偿装置的依赖于各个信号光成分的波长的损耗不均和上述光放大器的依赖于各个信号光成分的波长的增益不均进行补偿(损耗或增益的平坦化)。
此外,本发明的色散补偿装置,还可以具备分别对上述信号光成分进行分波的分波器,和对用分波器分波后的各个信号光成分进行合波的合波器。在该构成中,上述色散补偿装置,在入射端和分波器之间进行波段的色散补偿,同时,对分波后的每一个信号光成分的小的波段的色散进行补偿。上述损耗均衡化装置,调整分波后的各个信号光成分的光功率。此外,该损耗均衡化装置,理想的是配置在该色散补偿组件的入射端和色散补偿装置之间的光路中,就是说,对于各个信号光成分的传播方向来说,配置在上述色散补偿装置的前一级。在这种情况下,由于输入到该色散补偿组件中的信号光成分,在用色散均衡化装置衰减到恰好与各个波长对应的所希望的值后,输入到色散补偿装置中去,故在色散补偿装置中难于产生非线性光学现象,因而可以避免信号光成分的波形劣化。采用该构成,光传输通路中的波长色散,可以用恰当地配置在规定部位上的色散补偿装置进行补偿,而色散补偿装置的依赖于波长的损耗不均,在入射端和色散补偿装置之间,可以用对每一个信号光成分的光功率进行调整的损耗均衡化装置进行补偿。
具体地说,上述损耗均衡化装置,包括具有添加了过渡金属的纤芯区域和设置在该纤芯区域的外围的包层区域的损耗均衡化光纤。这种损耗均衡化光纤,采用适当地选择向整个纤芯区域中添加的Cr元素或Co元素等的过渡金属的种类或量的办法,可以容易地设计成使得对色散补偿装置的依赖于波长的损耗不均进行补偿。
此外,上述色散补偿装置,包括在波长1.3微米频带中具有零色散波长的单模光纤或色散补偿光纤,上述损耗均衡化装置,包括把传播模和辐射模结合起来的长周期光纤光栅制作于其中的光纤。该长周期光纤光栅是明确地区别于仅仅反射规定波长的信号光成分的短周期光纤光栅的光学部件。作为损耗均衡化装置的长周期光纤光栅,可以使各个信号光成分之间的损耗不均平坦化而不会使该色散补偿组件全体的传输损耗劣化得大,此外,在宽的波段中,还可以容易地得到所希望的损耗特性。特别是在上述那样的在作为色散补偿装置的光纤中直接形成了作为损耗均衡化装置的长周期等级光纤的构成,不再需要设置在该色散补偿装置中产生损耗的连接部分,此外,由于不需要考虑在该连接部分中的损耗的影响,故可以容易地调整依赖于波长的损耗特性。
此外,上述损耗均衡化装置,包括光纤融接型的耦合器(光纤耦合器)。特别是该光纤耦合器理想的是具有0.2dB以下的偏振波依赖损耗(PDL)。这是因为若使用具有超过0.2dB的的PDL的光纤耦合器,则不可能严格地控制该PDL的补偿的缘故。
另一方面,上述损耗均衡化装置也可以包括采用熔融连接一对光纤的各个端部的办法得到的融接部分。在这种情况下,在融接部分中的该一对光纤,也可以在各自的光轴相互偏离开的状态下被熔融连接,此外,也可以在各自的纤芯区域弯曲的状态下被熔融连接。
再有,进行熔融连接的一对光纤的每一条光纤,也可以具有这样的构成:具备直径向着该融接部分进行扩大的纤芯区域。不论在哪一种情况下,都可以满意地得到所希望的特性(波长依赖性小的特性)。
另外,具有本发明的色散补偿组件的光传送系统,在从上述色散补偿组件的出射端出射的信号光成分之内,理想的是在波长范围1530nm~1565nm内具有其中心波长的信号光成分间的光功率的偏差在0.5dB以下。这是因为在通常的添加进铒的光纤放大器(EDFA)的使用波段中,采用把信号光成分间的光功率的偏差抑制到这样的值以下的办法,在数百km的范围内可以期待良好的传输特性的缘故。
此外,在1580nm频带的WDM传输中,理想的是在从上述色散补偿组件的出射端出射出来的信号光成分之内,在波长范围1560nm~1600nm内具有其中心波长的信号光成分间的光功率的偏差,要在0.5dB以下。因为采用满足该条件的办法,在数百km的范围内可以期待良好的传输特性。
特别是在超过1000km的长距离光传输中,在从上述色散补偿组件的出射端出射出来的信号光成分之内,在波长范围1535nm~1560nm内具有其中心波长的信号光成分间的光功率的偏差,理想的是要在0.5dB以下,此外在从上述出射端出射出来的信号光成分之内,在波长范围1575nm~1595nm内具有其中心波长的信号光成分间的光功率的偏差,理想的是要在0.5dB以下。
另一方面,在既是超过1000km的长距离光传输又是10千兆位/秒以上的高速传输的情况下,为了得到BER(Bit Error Ratio,位错误率)在10-15以下的良好的传输特性,在从上述色散补偿组件的出射端出射出来的信号光成分之内,在波长范围1550nm~1560nm内具有其中心波长的信号光成分间的光功率的偏差,理想的是要在0.2dB以下,此外在从上述色散补偿组件的出射端出射出来的信号光成分之内,在波长范围1575nm~1585nm内具有其中心波长的信号光成分间的光功率的偏差,理想的是要在0.2dB以下。
附图说明
图1A示出了现有的色散补偿器的构成,图1B示出了在图1A中用箭头A1表示的部位中的WDM信号(λ1~λ4),图1C示出了在图1A中用箭头B1表示的部位中的WDM信号,图1D示出了在图1A中用箭头C1表示的部位中的WDM信号,图1E示出了在图1A中用箭头D1表示的部位中的WDM信号。
图2A示出了本发明的色散补偿组件的实施例1的概略构成,图2B示出了在图2A中用箭头A2表示的部位中的WDM信号(λ1~λ4),图2C示出了在图2A中用箭头B2表示的部位中的WDM信号,图2D示出了在图2A中用箭头C2表示的部位中的WDM信号,图2E示出了在图2A中用箭头D2表示的部位中的WDM信号,图2F示出了在图2A中用箭头E2表示的部位中的WDM信号。
图3A示出了可以在色散补偿装置或损耗均衡化装置中使用的光纤的一般性的剖面构造,图3B和图3C分别示出了作为色散补偿装置的色散补偿光纤的折射率分布的一个例子。
图4A~图4C的曲线图示出了图2A~图2F所示的实施例1的色散补偿组件的传输损耗的波长依赖性,图4A示出了色散补偿装置中的传输损耗与波长之间的关系,图4B示出了损耗均衡化装置中的传输损耗与波长之间的关系,图4C示出了该色散补偿组件全体中的传输损耗与波长之间的关系。
图5示出了本发明的色散补偿组件的实施例2的概略构成。
图6示出了本发明的色散补偿组件的实施例3的概略构成。
图7示出了本发明的色散补偿组件的实施例4的概略构成。
图8示出了本发明的色散补偿组件的实施例5的概略构成。
图9示出了本发明的色散补偿组件的实施例6的概略构成。
图10的曲线图示出了实施例6的色散补偿组件中的传输损耗与波长之间的关系。
图11示出了本发明的色散补偿组件的实施例7的概略构成。
图12的曲线图示出了图11所示的实施例7的色散补偿组件中的传输损耗与波长之间的关系。
图13示出了本发明的色散补偿组件的实施例8的概略构成。
图14的曲线图示出了图13所示的实施例8的色散补偿组件中的传输损耗与波长之间的关系。
图15A~图15D的示出了本发明的色散补偿组件的实施例9及其具体例,图15A示出了实施例9的概略构成,图15B示出了实施例9的第1具体例,图15C示出了实施例9的第2具体例,图15D示出了实施例9的第3具体例。
图16和图17的曲线图示出了图15A~图15D所示的实施例9的色散补偿组件中的传输损耗与波长之间的关系。
图18示出了本发明的色散补偿组件的实施例10的概略构成。
图19的曲线图示出了图18所示的实施例10的色散补偿组件中的传输损耗与波长之间的关系。
图20A~图20F示出了使用本发明的色散补偿组件的光传输系统全体,图20A示出了该光传输系统的概略构成,图20B示出了在图20A中用箭头A3表示的部位中的WDM信号(λ1~λ4),图20C示出了在图20A中用箭头B3表示的部位中的WDM信号,图20D示出了在图20A中用箭头C3表示的部位中的WDM信号,图20E示出了在图20A中用箭头D3表示的部位中的WDM信号,图20F示出了在图20A中用箭头E3表示的部位中的WDM信号。
具体实施方式
以下,用图2A~图4C、图5~图14、图15A~图15D、图16~图19和图20A~图20F,说明本发明的色散补偿组件的各个实施例。另外,在附图的说明中,对于同一要素赋予同一标号,省略重复说明。
实施例1
首先对本发明的色散补偿组件的实施例1进行说明。图2A示出了本发明的色散补偿组件的实施例1的概略构成,另外,图2B示出了在图2A中用箭头A2表示的部位中的WDM信号(λ1~λ4),图2C示出了在图2A中用箭头B2表示的部位中的WDM信号,图2D示出了在图2A中用箭头C2表示的部位中的WDM信号,图2E示出了在图2A中用箭头D2表示的部位中的WDM信号,图2F示出了在图2A中用箭头E2表示的部位中的WDM信号。
在图2A中,示出了适合于WDM传输的光传输系统,该系统具备发送局15,对从该发送局出射,并在规定的传输通道中传输的信号光成分进行光放大的前级光放大器1,具有与光放大器1的输出端进行光学性地连接的输入端10a的色散补偿组件10,光学性地连接该色散补偿组件10的输出端10b及其输入端的后级光放大器2,和接收从该光放大器2出射的信号光成分的接收局16。
该实施例1的色散补偿组件10具备作为色散补偿装置的色散补偿光纤11和作为损耗均衡化装置的损耗均衡器12,这些色散补偿光纤11和损耗均衡器12,分别配置在该色散补偿组件10的输入端10a和输出端10b间的光路中,光学性地相互连接。
色散补偿光纤11是对插入有该色散补偿组件10的光传输通路的WDM信号的波段中的波长色散进行补偿的光学器件。一般地说,作为光传输通路使用的单模光纤,由于具有正的波长色散斜率,故作为该色散补偿光纤来说,可以使用具有负的波长色散斜率的光纤。具体地说,该实施例1的色散补偿光纤11具备与图3A所示的光纤300同样的构造。就是说,光纤300具备外径为a的纤芯区域310和在该纤芯区域310的外周设置的外径为b的包层区域320。特别是在该实施例1中,色散补偿光纤11,如图3B所示,具有W型的折射率分布(具有用折射率不同的2层构成包层区域320的下凹包层构造的折射率分布)。另外,色散斜率可以用示出规定的波段中的色散特性的曲线的斜率来定义。
另一方面,损耗均衡化器12,在WDM信号的波段中至少对依赖于色散补偿光纤11的损耗不均进行补偿。作为该损耗均衡化器12,例如多层膜滤色片、长周期光纤光栅、法布里·珀罗(Fabry-Perot)标准具等是合适的。
图4A~图4C的曲线图示出了图2A~图2F所示的实施例1的色散补偿组件的传输损耗的波长依赖性,特别是,图4A示出了色散补偿装置中的传输损耗与波长之间的关系,图4B示出了损耗均衡化装置中的传输损耗与波长之间的关系,图4C示出了该色散补偿组件全体中的传输损耗与波长之间的关系。由图4A可知,色散补偿光纤11的传输损耗在波长1.55微米频带中一般说波长越长损耗就越小。对此,设计成使得损耗均衡化器12的传输损耗,由图4B可知,波长越长损耗就越大,以能够对色散补偿光纤11的损耗波长特性进行补偿。因此,实施例1的色散补偿组件10全体的损耗,是把色散补偿光纤11和损耗均衡化器12各自的传输损耗总合后的损耗,就象由图4C可知的那样,作为全体,波长依赖性减小了(波长间的损耗不均减小了)。
实施例2
其次,对本发明的色散补偿组件的实施例2进行说明。图5示出了本发明的色散补偿组件的实施例2的概略构成。
本实施例2的色散补偿组件20,也和实施例1一样,在光学性地连接的状态下把色散补偿装置和损耗均衡化装置配置在输入端20a和输出端20b之间的光路中。具体地说,本实施例2与实施例1有一点不同:作为色散补偿装置,具备由3端子循环器21和线性调频光栅22构成的波长色散器23。
3端子循环器21,是一种将入射到端子21A的光输出到端子21B,此外,向端子21C输出入射到端子21B上的光的光学器件。另一方面,线性调频光栅22是一种在光学性地连接到3端子循环器21的端子21B上的光纤的光导波区域上形成的光栅,具有对传输通道中的波长色散进行补偿的功能。
从由该3端子循环器21和线性调频光栅22构成的色散补偿器23的输入端20a入射进来的WDM信号,首先入射到3端子循环器21的端子21A上并从端子21B出射。然后,在线性调频光栅22中各个信号光成分,与波长相对应地在满足布拉格条件的位置处被反射(布拉格反射)。在线性调频光栅22的规定位置处反射的各个信号光成分,再次入射到3端子循环器21的端子21B上并从端子21C出射。就是说,通过入射端20a入射进来的WDM信号,正常入射到3端子循环器21的端子21A上到从端子21C出射,传播时间相应于各个信号光成分的波长而不同。因此,该色散补偿器23对插入有该实施例2的色散补偿组件20的光传输通道的WDM信号的波段中的波长色散进行补偿。
损耗均衡化装置24,是一种在WDM信号的波段中,至少对依赖于色散补偿器23的波长的损耗不均进行补偿的光学器件。作为该损耗均衡化装置24,例如多层膜滤色片、长周期光纤光栅、发布里·珀罗标准等是合适的。另外,在本实施例2中色散补偿组件20全体的总合损耗也是把色散补偿器23、损耗均衡化装置24各自的传输损耗总合起来的总和,作为全体,波长依赖性小。
实施例3
其次,对本发明的色散补偿组件的实施例3进行说明。图6示出了本发明的色散补偿组件的实施例的概略构成。
本实施例3的色散补偿组件30,也在光学性地连接的状态下把色散补偿装置和损耗均衡化装置配置在输入端30a和输出端30b之间的光路中。具体地说,在本实施例3中,分别在光学性地进行连接的状态下配置作为色散补偿装置的色散补偿光纤31、作为损耗均衡化装置的损耗均衡化器32和光放大器33。
色散补偿光纤31是一种对插入有该色散补偿组件30的光传输通路的WDM信号的波段中的波长色散进行补偿的光学器件。光放大器33是一种对含于通过入射端30a入射进来的WDM信号中的各个信号光成分的光功率进行放大输出的光学器件,其增益特性对于波长不一定非是平坦的不可。作为该光放大器33,使用例如添加进Er元素(铒)的光纤(EDF:Erbium-Doped Fiber)的光纤放大器(EDFA:Erbium-Doped Fiber amplifier)是合适的。另一方面,损耗均衡化器32,在WDM信号的波段中,同时对色散补偿光纤31所具有的依赖于波长的损耗不均和光放大器33所具有的依赖于波长的增益不均进行补偿(平坦化)。该损耗均衡化器32,例如多层膜滤色片、长周期光纤光栅、法布里·珀罗标准具等也是合适的。
本实施例3的色散补偿组件30全体的总合损耗,与分别在色散补偿光纤31和损耗均衡化器32中的损耗不均的波长依赖性或光放大器33中的增益不均的波长依赖性比较,波长依赖性减小。
实施例4
其次,对本发明的色散补偿组件的实施例4进行说明。图7示出了本发明的色散补偿组件的实施例7的概略构成。另外,在该图中,为了使说明简单起见,对WDM信号由3波长的信号光成分构成的情况进行说明,设该3波长分别为λ1、λ2、λ31<λ2<λ3)。
本实施例4的色散补偿组件40,也具有输入端40a和输出端40b,在光学性地连接的状态下,分别把色散补偿装置和损耗均衡化装置配置在输入端40a和输出端40b之间的光路中。特别是该色散补偿组件40,具备把WDM信号分波为每一个信号光成分的分波器42和对被该分波器分波后的各个信号光成分进行合波后输出的合波器48。此外,色散补偿组件40,在作为色散补偿装置具备色散补偿光纤41、43和44的同时,作为损耗均衡化装置还具备光衰减器45~47。
色散补偿光纤41被配置在分波器42的输入一侧(输入端40a和分波器42之间)。在本实施例4中,作为色散补偿光纤41,可以使用图3C所示的那种匹配(matched)型的折射率分布(在中心的高折射率的纤芯区域的周围,具备低折射率的包层区域的折射率分布)的色散补偿光纤。在这种情况下,一般地说,由于作为光传输通路使用的色散补偿光纤41也具有正的波长色散斜率,故可以主要地对3波长的信号光成分之内的一个波长(在这里,假定中心的波长为λ2)的信号光成分进行补偿。但是,色散补偿光纤41对于其它的每一波长λ1、λ3的信号光成分,则不能完全地补偿波长色散。
另一方面,从色散补偿光纤41输出出来的WDM信号,被分波器42分波成每一个信号光成分。波长λ1的信号光成分依次在光衰减器45和色散补偿光纤43中传播并到达合波器48。波长λ2的信号光成分通过光衰减器46到达合波器48。波长λ3的信号光成分则依次在光衰减器47和色散补偿光纤44中传播并到达合波器48。
色散补偿光纤43是一种对波长λ1的信号光成分的残留波长色散进行补偿的光学器件,色散补偿光纤44是一种对波长λ3的信号光成分的残留波长色散进行补偿的光学器件。就是说,色散补偿光纤43和44,对在色散补偿光纤41中波长λ1和λ3的信号光成分的每一种不能补偿净尽的残留波长色散进行补偿。另外,该色散补偿光纤43和44中的每一者也都可以使用具有匹配(matched)型的折射率分布(参看图3C)的色散补偿光纤。光衰减器45~47对波长λ1~λ3的信号光成分中的每一种成分的光功率进行调整,由此使由合波器48合波后的3波长的信号光成分的光功率平坦化。
如上所述,本实施例4的色散补偿组件40,对于波长λ1的信号光成分用色散补偿光纤41和43进行补偿,对于波长λ2的信号光成分用色散补偿光纤41进行补偿,对于波长λ3的信号光成分则用色散补偿光纤41和44进行补偿。此外,色散补偿组件40,借助于光衰减器45~47,对于波长λ1~λ3的信号光成分的每一种成分调整光功率,作为全体可以使各个信号成分间的增益不均和/或损耗不均变成为平坦。此外,该色散补偿组件40,与具有图3B所示的W型的折射率分布的色散补偿光纤比较,由于可以把能够廉价地制造的具有匹配型的折射率分布的色散补偿光纤,应用于含于色散补偿装置中的色散补偿光纤41、43和44中去,故从造价的观点来看是理想的。
另外,在本实施例4中,各个光纤间的连接形态可以有种种的形态。例如,色散补偿光纤41也可以连接到合波器48的输出一侧(输出端40b与合波器48之间)。此外,光衰减器45~47,也可以把具有规定的衰减波长特性的一个光衰减器设置在合波器42的输入一侧(入射端40a与分波器42之间)或合波器48的输出一侧,而不是对每一信号光成分都准备光衰减器。
实施例5
其次,图8示出了本发明的色散补偿组件的实施例5的概略构成。本实施例5的色散补偿组件50,与先前的实施例1~实施例4一样,也具有输入端50a和输出端50b,在光学性地连接的状态下,分别把色散补偿装置和损耗均衡化装置配置在输入端50a和输出端50b之间的光路中。特别是该色散补偿组件50,与实施例1比较,不同之处是:作为损耗均衡化装置的损耗均衡器51被设置在作为色散补偿装置的色散补偿光纤52的前级(输入端50a和色散补偿光纤52之间)。
在本实施例5中,和实施例1一样,色散补偿光纤52也是一种对插入有该色散补偿组件50的光传输通路的WDM信号的波段中的波长色散进行补偿的光学器件。此外,损耗均衡化器51被设计为对在色散补偿光纤52中依赖于波长的传输损耗的不均进行补偿。因此,该色散补偿组件50全体的总合损耗,与损耗均衡化器51和色散补偿光纤52各自的传输损耗的波长依赖性比较,波长依赖性减小。
再有,在本实施例5中,由于损耗均衡化器51设置在色散补偿光纤52的前级,故还具有如下的效果。就是说,当要输入到色散补偿光纤52中的WDM信号的光功率超过最大允许值时,由于在色散补偿光纤52中将产生非线性光学现象,使各个信号光成分劣化,故希望输入到色散补偿光纤52中的WDM信号的光功率在最大允许值以下。在本实施例5中,采用把损耗均衡化器51设置在色散补偿光纤52的前级的办法,结果就变成为通过该色散补偿组件50的入射端50a入射的WDM信号的光功率,可以允许到上述最大允许值加上损耗均衡化器51中的损耗值这么大的值。因此,在本实施例的情况下,与上边所说的实施例1比较,增加了通过色散补偿组件50的入射端入射的WDM信号的功率允许范围,在色散补偿光纤52中难以产生非线性光学现象,且可以避免WDM信号的劣化。
实施例6
其次,对本发明的色散补偿组件的实施例6进行说明。图9示出了本发明的色散补偿组件的实施例6的概略构成。
本实施例6的色散补偿组件60,与先前的实施例1~实施例5一样,也具有输入端60a和输出端60b,在光学性地连接的状态下,分别把色散补偿装置和损耗均衡化装置配置在输入端60a和输出端60b之间的光路中。特别要指出的是,色散补偿组件60的构成特征是:在连接部分63中把作为色散补偿装置的色散补偿光纤61和作为损耗均衡化装置的损耗均衡化光纤62熔融连接起来。
色散补偿光纤61,是一种对插入有该色散补偿组件60的光传输通道的WDM信号的波段中的波长色散进行补偿的光学器件。另一方面,损耗均衡化光纤62,基本上与图3A所示的光纤300一样,具备纤芯区域310和设置在纤芯区域310的外周的包层区域320,是一种至少向整个纤芯区域中添加进Cr元素或Co元素等的过渡元素的光纤。采用对添加到该纤芯区域310中的过渡金属的种类或量妥当地进行选择的办法,损耗均衡化光纤62,使得对色散补偿光纤61的依赖于波长的损耗不均进行补偿那样地调节依赖于该波长的损耗不均。因此,若使用该色散补偿组件60,则全体的总合损耗,与损耗均衡化器51和色散补偿光纤52各自的传输损耗的波长依赖性比较,波长依赖性变小。
图10的曲线图示出了图9所示的实施例6的色散补偿组件的传输损耗与波长之间的关系。另外,在图中,用A100表示的曲线示出了色散补偿光纤61中的传输损耗与波长之间的关系,用B100表示的曲线示出了色散补偿光纤62中的传输损耗与波长之间的关系,用C100表示的曲线则示出了包括色散补偿光纤61和损耗均衡化光纤62在内的该色散补偿组件60中的传输损耗与波长之间的关系。
由该图可知,色散补偿光纤(DCF)61的传输损耗,在波长1.55微米频带中一般说波长越长则损耗越小。对此,损耗均衡化光纤62是一种向纤芯区域中添加进浓度100ppm的Co元素的单模光纤,被设计为波长越长则损耗越大,且使得可以补偿色散补偿光纤61的依赖于波长的损耗不均。这样一来,本实施例6的色散补偿组件60全体的总合损耗,就是色散补偿光纤61和损耗均衡化光纤62的各自的传输损耗的总和,在波长1520nm~1570nm的范围内损耗的偏差变成为0.1dB以下(与各个构成要素比较,波长依赖性变小)。
实施例7
其次,对本发明的色散补偿组件的实施例7进行说明。图11示出了本发明的色散补偿组件的实施例7的概略构成。
本实施例7的色散补偿组件70,与先前的实施例1~实施例6一样,也具有输入端70a和输出端70b,在光学性地连接的状态下,分别把色散补偿装置和损耗均衡化装置配置在这些输入端70a和输出端70b之间的光路中。特别要指出的是,色散补偿组件70的构成特征是:在连接部分74中把作为色散补偿装置的色散补偿光纤71和形成了作为损耗均衡化装置的长周期光纤光栅72的光纤73熔融连接起来。另外,作为光纤73,理想的是在波长1.3微米频带中具有零色散波长的单模光纤或色散补偿光纤。
色散补偿光纤71是一种对插入有该色散补偿组件70的光传输通路的WDM信号的波段中的波长色散进行补偿的光学器件。长周期光纤光栅72是这样一种器件:可以采用使光纤73的至少纤芯区域中产生一定周期的折射率变化的办法得到,且其折射率变化的周期为数百微米左右的长周期,并把作为光在纤芯区域中传播的模式的传播模和作为光向包层区域辐射的模式的辐射模结合起来。因此,采用适当地选择其折射率变化的周期或长度的办法,可以把长周期光纤光栅72设计为使得例如在波长1520nm的传输损耗变成为最小,同时使波长1570nm的传输损耗变成为最大,以便对色散补偿光纤71的依赖于波长的损耗不均进行补偿。
因此,本实施例7的色散补偿组件70全体的总合损耗,与色散补偿光纤71和长周期光纤光栅72各自的损耗不均比较,波长依赖性也将变得更小。如上所述,作为损耗均衡化装置采用使用长周期光纤光栅72的办法,就可以使各个信号光成分间的损耗不均平坦化,而不会使色散补偿组件70全体的传输损耗大大地降低。此外,还可以在宽的波段中得到所希望的传输特性。另外,该长周期光纤光栅72是一种与仅仅反射规定波长的信号光成分的短周期光纤光栅有着明确的区别的光学部件。
图12的曲线图示出了图11所示的实施例7的色散补偿组件70中的传输损耗与波长之间的关系。在图中,用A200表示的曲线示出了色散补偿光纤71中的传输损耗与波长之间的关系,用B200表示的曲线示出了长周期光纤光栅72中的传输损耗与波长之间的关系,用C200表示的曲线则示出了包括色散补偿光纤71和长周期光纤光栅72在内的该色散补偿组件70中的传输损耗与波长之间的关系。
由该图可知,色散补偿光纤(DLF)71,在波长1.55微米频带中一般说波长越长其传输损耗就越小。对此,长周期光纤光栅(长周期FG)72则被设计为波长越长其传输损耗越大,且可以有效地对色散补偿光纤71的依赖于波长的损耗不均进行补偿。此外,该色散补偿组件70全体的总合损耗也是色散补偿光纤71和长周期光纤光栅72各自的传输损耗的总和,在波长1520nm~1570nm的范围内,传输损耗的偏差变成为0.1dB以下。
实施例8
其次,对本发明的色散补偿组件的实施例8进行说明。图13示出了本发明的色散补偿组件的实施例8的概略构成。
本实施例8的色散补偿组件80,与先前的实施例1~实施例7一样,也具有输入端80a和输出端80b,在光学性地连接的状态下,分别把色散补偿装置和损耗均衡化装置配置在这些输入端80a和输出端80b之间的光路中。特别要指出的是,色散补偿组件80的构成特征是:具备作为色散补偿装置的色散补偿光纤81的同时,在该色散补偿光纤81中,还直接形成有作为损耗均衡化装置的长周期光纤光栅82。
色散补偿光纤81是一种对插入有该色散补偿组件80的光传输通路的WDM信号的波段中的波长色散进行补偿的光学器件。长周期光纤光栅82是这样一种器件:可以采用使该色散补偿光纤81的至少纤芯区域中产生一定周期的折射率变化的办法得到,且其折射率变化的周期为数百微米左右的长周期,并把作为光在纤芯区域中传播的模式的传播模和作为光向包层区域辐射的模式的辐射模结合起来。因此,采用适当地选择其折射率变化的周期或长度的办法,可以把长周期光纤光栅82设计为使得例如在波长1520nm的传输损耗变成为最小,同时使波长1570nm的传输损耗变成为最大,以便对色散补偿光纤81的依赖于波长的损耗不均进行补偿。
因此,本实施例8的色散补偿组件80全体的总合损耗,也是色散补偿光纤81的传输损耗和起因于一体制作的长周期光纤光栅82的传输损耗的总和,作为全体,波长依赖性变小。如上所述,作为损耗均衡化装置采用使用长周期光纤光栅82的办法,可以使各个信号光成分间的损耗不均平坦化而不会大大地降低该色散补偿组件80全体的传输损耗。此外,在宽的波段中可以容易地得到所希望的损耗特性。此外,在本实施例中,由于采用在色散补偿光纤81中直接形成作为损耗均衡化装置的长周期光纤光栅82,没有产生损耗的连接部分,故没必要考虑该连接部分中的损耗的影响。
另一方面,图14的曲线图示出了图13所示的实施例8的色散补偿组件80中的传输损耗与波长之间的关系。在图中,用A300表示的曲线示出了形成长周期光纤光栅82之前的色散补偿光纤81中的传输损耗与波长之间的关系,用C300表示的曲线示出了形成了长周期光纤光栅82后的色散补偿光纤81中的传输损耗与波长之间的关系。
该图可知,形成长周期光纤光栅82之前的色散补偿光纤81本来的传输损耗,在波长1.55微米频带中一般说波长越长其传输损耗就越小。对此,长周期光纤光栅82则被设计为波长越长其传输损耗越大,且可以对色散补偿光纤81本来的各个信号光成分间的损耗不均进行补偿。形成了长周期光纤光栅82的色散补偿光纤81,就是说,色散补偿组件80全体的总合损耗,是色散补偿光纤81的本来的传输损耗和长周期光纤光栅82的传输损耗的总和,在波长1520nm~1570nm的范围内,各个信号光成分间的传输损耗的偏差变成为0.1dB以下。
实施例9
其次,对本发明的色散补偿组件的实施例9进行说明。图15A~图15D示出了本发明的色散补偿组件的实施例9及其具体例,图15A示出了实施例9的概略构成,图15B示出了实施例9的具体例1,图15C示出了实施例9的具体例2,图15D示出了实施例9的具体例3。
本实施例9的色散补偿组件90的构成特征是:在融接部分93处熔融连接作为色散补偿装置的色散补偿光纤91和单模光纤92。
在该构成中,色散补偿光纤91是一种对插入有该色散补偿组件90的光传输通路中的波长色散进行补偿的光学器件。融接部分93虽然产生损耗,但由于其波长特性因进行熔融连接时的加热温度或光纤的压入量等的条件而异,故采用恰当地设定其融接条件的办法,就可以调整该融接部分93中的传输损耗的波长依赖性。
作为融接部分93的具体的构造,例如如图15B所示,可以采用使色散补偿光纤91的纤芯区域91a和单模光纤92的纤芯区域92a,在使相互的光轴AX1、AX2仅仅错开规定的间隔D的状态下进行融接的办法实现。此外,如图15C所示,在分别使色散补偿光纤91的纤芯区域91b和单模光纤92的纤芯区域92b微小弯曲的状态下,使色散补偿光纤91和单模光纤92进行熔融连接也可以实现。再有,如图15D所示,也可以构成为使色散补偿光纤91的纤芯区域91c和单模光纤92的纤芯区域92c,朝向相互融接部分93其直径进行扩大。另外,上述具体例还可以分别进行组合,例如,在融接部分93中,还可以使纤芯区域的弯曲直径扩大,或使弯曲的构造进行组合。在这些不论哪一种的情况下,作为色散补偿组件90全体,在波长1520nm~1570nm的范围内总合损耗的偏差将小于0.1dB。
图16的曲线图示出了实施例9的色散补偿组件中的传输损耗与波长之间的关系。由该图可知,色散补偿光纤(DCF)91的传输损耗,在波长1.55微米频带中一般说波长越长则损耗越小。对此,融接部分93的传输损耗,由于波长越长则损耗越大,故被设计为使得可以对色散补偿光纤91的依赖于波长的损耗不均进行补偿。这样一来,色散补偿组件90全体的总合损耗,就是色散补偿光纤91、单模光纤92和融接部分93各自的传输损耗的总和,在波长1520nm~1570nm的范围内损耗的偏差将变成为0.1dB以下。
此外,融接部分93中的损耗不均,也依赖于该融接部分93中的色散补偿光纤91和单模光纤92彼此间的光轴错开量,如图15B所示,在进行熔融连接时也可以采用适当地设定光轴错开量的办法进行调整。另外,在图16中,用箭头A400表示的曲线示出了色散补偿光纤91中的波长与传输损耗之间的关系,用箭头B400表示的曲线示出了色散补偿光纤91和单模光纤92之间的融接部分93中的波长与传输损耗之间的关系,用箭头C400表示的曲线则示出了本实施例9的色散补偿组件90全体中的波长与传输损耗之间的关系。
图17的曲线图示出了色散补偿光纤91和单模光纤92各自的光轴相互错开进行熔融连接的情况下(参看图15B)的该色散补偿组件90中的波长与传输损耗之间的关系。图中,用箭头A500表示的曲线示出了色散补偿光纤91中的波长与传输损耗之间的关系,用箭头B500表示的曲线示出了光轴的错开量D为第1值的融接部分A中的波长与传输损耗之间的关系,用箭头C500表示的曲线则示出了具有融接部分A的色散补偿组件90全体中的波长与传输损耗之间的关系,用箭头C550表示的曲线示出了具有该融接部分B的色散补偿组件90全体中的波长与传输损耗之间的关系。
由图17可知,在色散补偿光纤91的纤芯区域91a和单模光纤91b的纤芯部分91b的熔融连接中,采用分别改变光轴AX1、AX2的错开量的办法,该色散补偿组件90全体中的波长与传输损耗之间的关系也将变动得很大。如上所述,采用恰当地设定融接部分93中的光轴错开量D的办法,作为色散补偿组件90全体,在波长1520nm~1570nm的范围内,损耗的偏差将变成为0.1dB以下。
另外,在本实施例9中,虽然说明的是色散补偿光纤91和单模光纤92的熔融连接,但是融接部分93的构成却不限于这些。例如,既可以用单模光纤取代色散补偿光纤91,也可以用色散补偿光纤或其它的光纤取代单模光纤92。不论在哪一种情况下,都可以采用调整两者间的融接部分中的传输损耗的波长依赖性的办法,来减小色散补偿组件全体中的总合损耗的波长依赖性。
实施例10
其次,对本发明的色散补偿组件的实施例10进行说明。图18示出了本发明的色散补偿组件的实施例10的概略构成。
本实施例10的色散补偿组件100,和实施例5(图8)一样,也是在光学性地连接的状态下,分别把色散补偿装置和损耗均衡化装置配置在这些输入端100a和输出端100b之间的光路中。具体地说,本实施例10,作为色散补偿装置具备色散补偿光纤101,作为损耗均衡化装置具备光纤融接型的耦合器(WDM耦合器)102。该WDM耦合器102的特征是具有0.2dB以下的偏振波依赖损耗(PDL)。
色散补偿光纤101,如图19的箭头A600所示的曲线那样,具有波长变得越长则损耗越增加的波长依赖性。另一方面,如图19中的箭头B600所示的曲线那样,WDN耦合器102中的损耗,波长变得越短则越增加。因此,由色散补偿光纤101和WDM耦合器102构成的实施例10的色散补偿组件100的总合损耗是这些构件101和102的传输损耗的总和,由图19中的箭头C600所示的曲线可知,作为全体,波长依赖性将减小。
另外,图20A示出了使用本发明的色散补偿组件的光传输系统全体。在该光传输系统中,在发送局15和接收局16之间的传输通道中,至少配置作为中继器的光放大器510、构成传输通道的一部分的单模光纤520和本发明的色散补偿组件500。在该光传输系统中使用的色散组件500,至少具备用来构成传输通道的一部分的、WDM信号的输入端500a和输出端500b,在该输入端500a和输出端500b之间的光路中,分别配置光学性地进行了连接的色散补偿光纤501和损耗均衡化器502。另外,在具有这样的构成的光传输通道中,也可以使用上边所说的实施例1~实施例10的不论哪一种的色散补偿组件10~100,来取代色散补偿组件500。此外,在这样的构成中,色散补偿光纤501的补偿对象,也可以是该光传输通道全体(例如包括光放大器510等)而不仅仅是构成光传输通道的一部分的单模光纤520。此外,损耗均衡化器502的补偿对象,虽然至少是色散补偿光纤501,但是,并不受限于此,例如,也可以把该损耗均衡化器502设计为使得一起补偿例如光放大器510的依赖于波长的损耗不均。
另外,在图20A所示的那种光传输系统中,图20B示出了用箭头A3表示的部位处的WDM信号(波长λ1~λ4)。此外,图20C示出了箭头B3处的WDM信号,图20D示出了箭头C3处的WDM信号,图20E示出了用箭头D3表示的部位处的WDM信号,图20F示出了用箭头E3表示的部位处的WDM信号。由这些图可知,由于光放大器510中的传输损耗的光依赖性和色散补偿光纤501中的传输损耗的光依赖性的特性相反,故作为该光传输系统全体,可以减少波长依赖性。
此外,在本发明的色散补偿组件中,在从上述出射端射出的信号光成分之内,至少在波长范围1530nm~1560nm内具有其中心波长的光信号成分间的光功率的偏差,理想的是在0.5dB以下。因为在通常的添加铒的光纤放大器(EDFA)的使用波段中,采用把信号光成分间的光功率的偏差抑制到该值以下的的办法,就可以在数百km的范围内期待良好的传输特性。
此外,如果是1580nm频带的WDM传输,则在从上述出射端射出的信号光成分之内,至少在1560nm~1600nm内具有其中心波长的信号光成分间的光功率的偏差,理想的是在0.5dB以下。这是因为采用满足该条件的办法,在数百km的范围内可以期待良好的传输特性的缘故。
特别是在超过1000km的长距离光传输中,在从上述出射端射出的信号光成分之内,至少在1535nm~1560nm内具有其中心波长的信号光成分间的光功率的偏差,理想的是在0.5dB以下,此外,在从上述出射端射出的信号光成分之内,至少在1575nm~1595m内具有其中心波长的信号光成分间的光功率的偏差,理想的是在0.5dB以下。
另一方面,在既是超过1000km的长距离光传输又是10千兆bit/sec以上的高速传输的情况下,要想得到BER(Bit Error Ratio)在10-15以上的良好的传输特性,在从上述出射端射出的信号光成分之内,至少在1550nm~1560nm内具有其中心波长的信号光成分间的光功率的偏差,理想的是在0.2dB以下,此外,在从上述出射端射出的信号光成分之内,至少在1575nm~1585m内具有其中心波长的信号光成分间的光功率的偏差,理想的是在0.2dB以下。
此外,本发明并不受限于上边所说的实施例,还可以有种种的变形。例如,在各个实施例中,色散补偿装置和损耗均衡化装置的连接的顺序是任意的。但是,就如在实施例5中所说明的那样,在损耗均衡化装置设置在色散补偿装置的前级的情况下,在可以增加色散补偿组件中的入射光功率的允许值这一点上是很合适的。
如以上所详细地说明的那样,倘采用本发明的色散补偿组件,则在光传输通道中发生的规定波长的频带的波长色散,可以用色散补偿装置进行补偿,至少依赖于色散补偿装置中的波长的损耗不均,可以用该色散补偿装置中连接到光学系统上的损耗均衡化装置进行补偿。就是说,倘采用本发明,由于不仅可以补偿光传输通道的波长色散,还可以减小色散补偿组件全体的损耗不均的波长依赖性,故在在光传输通道中传播的WDM信号中所含有的信号光成分间的光功率的波动将减小,此外,由于各个信号光成分将以充分的光功率且以良好的S/N比到达接收局,故不会发生在该接收局处的接收误差。此外,在把本发明的色散补偿组件插入光传输通道中之际,还具有如下效果:不需要重新设计光传输通道全体,也不需要调整已经设置在光传输通道中的光放大器或损耗均衡化器等的特性。

Claims (22)

1.一种色散补偿组件,具备可以入射各自的中心波长含于规定的波段内的1个或2个以上的信号光成分的入射端和可以出射该信号光成分的出射端,且构成传播该信号光成分的光传输通道的一部分,其特征是:
具备:
配置在上述入射端和上述出射端之间的光路中,且具有正的色散斜率的色散补偿装置;
配置在上述入射端和上述出射端之间的光路中,同时,与上述色散补偿装置光学性地连接,且至少对于上述色散补偿装置补偿依赖于波长的该色散补偿装置的损耗不均的损耗均衡化装置。
2.一种色散补偿组件,具备可以入射各自的中心波长含于规定的波段内的1个或2个以上的信号光成分的入射端和可以出射该信号光成分的出射端,且构成传播该信号光成分的光传输通道的一部分,其特征是:
具备:
配置在上述入射端和上述出射端之间的光路中,且具有负的色散斜率的色散补偿装置;
配置在上述入射端和上述出射端之间的光路中,同时,与上述色散补偿装置光学性地连接,且至少对于上述色散补偿装置补偿依赖于波长的该色散补偿装置的损耗不均的损耗均衡化装置。
3.根据权利要求1或2所述的色散补偿组件,其特征是:上述色散补偿装置在上述规定的波段中具有正的色散值。
4.根据权利要求1或2所述的色散补偿组件,其特征是:上述色散补偿装置在上述规定的波段中具有负的色散值。
5.根据权利要求1或2所述的色散补偿组件,其特征是:还具备光放大装置,配置在上述入射端和上述出射端之间的光路中,用来放大通过该入射端入射进来的上述信号光成分,
上述损耗均衡化装置,对依赖于波长的上述色散补偿装置的损耗不均和上述光放大装置的增益不均进行补偿。
6.根据权利要求1或2所述的色散补偿组件,其特征是:还具备分别对上述信号光成分进行分波的分波器和对用该分波器分波后的各个信号光成分进行合波的合波器,
上述色散补偿装置至少配置在上述入射端和上述分波器之间的光路中,上述分波器和上述合波器之间的光路中,和上述合波器与上述出射端之间的光路中的任何一个中,
上述损耗均衡化装置,配置在上述入射端与上述色散补偿装置之间的各个光路中,调整上述分波后的信号光成分的光功率。
7.根据权利要求1或2所述的色散补偿组件,其特征是:上述损耗均衡化装置配置在上述入射端与上述色散补偿装置之间的光路中。
8.根据权利要求1或2所述的色散补偿组件,其特征是:上述损耗均衡化装置包括具有添加了过渡金属的纤芯区域和在该纤芯区域的外周设置的包层区域的损耗均衡化光纤。
9.根据权利要求1或2所述的色散补偿组件,其特征是:上述损耗均衡化装置包括把使传播模和辐射模进行结合的长周期光纤光栅制作于其中的光纤。
10.根据权利要求1或2所述的色散补偿组件,其特征是:上述色散补偿装置至少含有在波长1.3μm频带中具有零色散波长的单模光纤和色散补偿光纤中的任何一者,
在上述色散补偿装置中,作为上述损耗均衡化装置,把使传播模和辐射模进行结合的长周期光纤光栅制作于其中。
11.根据权利要求1或2所述的色散补偿组件,其特征是:上述损耗均衡化装置包含光纤耦合器。
12.根据权利要求11所述的色散补偿组件,其特征是:上述光纤耦合器具有0.2dB以下的偏振波依赖损耗。
13.根据权利要求1或2所述的色散补偿组件,其特征是:上述损耗均衡化装置含有采用使一对光纤的各个端部进行熔融连接的办法得到的融接部分。
14.根据权利要求13所述的色散补偿组件,其特征是:在上述融接部分中,上述一对光纤在各自的光轴相互错开的状态下被熔融连接。
15.根据权利要求13所述的色散补偿组件,其特征是:在上述融接部分中,上述一对光纤在各自的纤芯区域弯曲的状态下被熔融连接。
16.根据权利要求13所述的色散补偿组件,其特征是:上述熔融连接的一对光纤的每条光纤,都具备直径朝向该融接部分扩大的纤芯区域。
17.一种具有权利要求1或2所述的色散补偿组件的光传送系统,其特征是:在从上述色散补偿组件的出射端出射的信号光成分之内,在波长范围1530nm~1565nm内具有其中心波长的信号光成分间的光功率的偏差,在0.5dB以下。
18.一种具有权利要求1或2所述的色散补偿组件的光传送系统,其特征是:在从上述色散补偿组件的出射端出射的信号光成分之内,在波长范围1560nm~1600nm内具有其中心波长的信号光成分间的光功率的偏差,在0.5dB以下。
19.一种具有权利要求1或2所述的色散补偿组件的光传送系统,其特征是:在从上述色散补偿组件的出射端出射的信号光成分之内,在波长范围1535nm~1560nm内具有其中心波长的信号光成分间的光功率的偏差,在0.5dB以下。
20.一种具有权利要求1或2所述的色散补偿组件的光传送系统,其特征是:在从上述色散补偿组件的出射端出射的信号光成分之内,在波长范围1575nm~1595nm内具有其中心波长的信号光成分间的光功率的偏差,在0.5dB以下。
21.一种具有权利要求1或2所述的色散补偿组件的光传送系统,其特征是:在从上述色散补偿组件的出射端出射的信号光成分之内,在波长范围1550nm~1560nm内具有其中心波长的信号光成分间的光功率的偏差,在0.2dB以下。
22.一种具有权利要求1或2所述的色散补偿组件的光传送系统,其特征是:在从上述色散补偿组件的出射端出射的信号光成分之内,在波长范围1575nm~1585nm内具有其中心波长的信号光成分间的光功率的偏差,在0.2dB以下。
CNB98811917XA 1997-12-08 1998-10-09 色散补偿组件 Expired - Fee Related CN1246982C (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP337169/1997 1997-12-08
JP33716997 1997-12-08
JP337169/97 1997-12-08
JP086296/1998 1998-03-31
JP8629698 1998-03-31
JP086296/98 1998-03-31

Publications (2)

Publication Number Publication Date
CN1281604A CN1281604A (zh) 2001-01-24
CN1246982C true CN1246982C (zh) 2006-03-22

Family

ID=26427446

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB98811917XA Expired - Fee Related CN1246982C (zh) 1997-12-08 1998-10-09 色散补偿组件

Country Status (8)

Country Link
US (1) US6611637B1 (zh)
EP (1) EP1049275B1 (zh)
JP (1) JP4284866B2 (zh)
KR (1) KR20010032853A (zh)
CN (1) CN1246982C (zh)
AU (1) AU757249B2 (zh)
CA (1) CA2313051A1 (zh)
WO (1) WO1999030445A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6304691B1 (en) * 1998-09-24 2001-10-16 Lucent Technologies,Inc Wavelength division multiplexed optical communication system having reduced short wavelength loss
JP4240612B2 (ja) 1998-12-02 2009-03-18 住友電気工業株式会社 分散補償モジュール
US6853766B2 (en) 1998-12-02 2005-02-08 Sumitomo Electric Industries, Ltd. Dispersion-compensating module
AU783864B2 (en) 1999-07-19 2005-12-15 Sumitomo Electric Industries, Ltd. Dispersion compensation system
JP2001197003A (ja) 2000-01-11 2001-07-19 Fujitsu Ltd 分散補償装置および方法
JP2001296444A (ja) * 2000-04-11 2001-10-26 Sumitomo Electric Ind Ltd 分散補償光ファイバ、光伝送路および分散補償モジュール
JP4592887B2 (ja) * 2000-08-07 2010-12-08 富士通株式会社 波長分散を補償する方法及びシステム
WO2002054631A2 (en) * 2000-12-30 2002-07-11 University Of Rochester Device and method for compensating for chromatic dispersion
JP2002341157A (ja) * 2001-03-15 2002-11-27 Fujikura Ltd 波長多重伝送路およびこれに用いる分散補償光ファイバ
JP2003232952A (ja) * 2002-02-13 2003-08-22 Furukawa Electric Co Ltd:The 光ファイバおよびその光ファイバを用いた光通信システム
US20030175032A1 (en) * 2002-03-15 2003-09-18 Ranalli Eliseo R. Planar device having an IIR tapped delay line for multiple channel dispersion and slope compensation
US20040000635A1 (en) * 2002-06-27 2004-01-01 Stephan Wielandy Arrangement for automatically adjusting for accumulated chromatic dispersion in a fiber optic transmission system
US7133619B2 (en) * 2002-07-10 2006-11-07 Hon Hai Precision Ind. Co., Ltd. Polarization mode dispersion compensation module
JP4161808B2 (ja) * 2002-08-21 2008-10-08 住友電気工業株式会社 光伝送システム
US8064771B2 (en) * 2005-06-30 2011-11-22 Infinera Corporation Active control loop for power control of optical channel groups

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS542143A (en) 1977-06-07 1979-01-09 Nippon Telegr & Teleph Corp <Ntt> Variable light attenuator
JPH0537472A (ja) * 1991-07-31 1993-02-12 Fujitsu Ltd 光増幅装置
JPH05152645A (ja) * 1991-11-29 1993-06-18 Hitachi Ltd 光等化増幅器及びそれを用いた光フアイバ伝送システム
JPH08122531A (ja) 1994-10-25 1996-05-17 Sumitomo Electric Ind Ltd 光固定減衰器
JPH08220370A (ja) * 1995-02-13 1996-08-30 Fujikura Ltd 光ファイバカプラ
US5550940A (en) 1995-02-24 1996-08-27 Lucent Technologies Inc. Optical tapping filters employing long period gratings
JPH08237222A (ja) * 1995-02-27 1996-09-13 Nippon Telegr & Teleph Corp <Ntt> 光伝送方式
JPH08271738A (ja) 1995-03-31 1996-10-18 Japan Energy Corp 光固定減衰器
WO1996031024A1 (en) * 1995-03-31 1996-10-03 Pirelli Cavi E Sistemi Spa Optical pre-amplifier
JPH08278523A (ja) * 1995-04-05 1996-10-22 Hitachi Ltd 光増幅装置
JP3327081B2 (ja) * 1995-12-04 2002-09-24 ケイディーディーアイ株式会社 光伝送システム
US6137604A (en) * 1996-12-04 2000-10-24 Tyco Submarine Systems, Ltd. Chromatic dispersion compensation in wavelength division multiplexed optical transmission systems
JPH10276172A (ja) * 1997-03-28 1998-10-13 Kokusai Denshin Denwa Co Ltd <Kdd> 波長分割光処理装置およびこの波長分割光処理装置を用いた光通信伝送路
JP3969807B2 (ja) * 1997-10-20 2007-09-05 富士通株式会社 分散補償装置
KR100424772B1 (ko) * 1997-11-14 2004-05-17 삼성전자주식회사 광증폭기시스템
US6304691B1 (en) * 1998-09-24 2001-10-16 Lucent Technologies,Inc Wavelength division multiplexed optical communication system having reduced short wavelength loss
JP4240612B2 (ja) 1998-12-02 2009-03-18 住友電気工業株式会社 分散補償モジュール

Also Published As

Publication number Publication date
EP1049275A4 (en) 2003-07-16
WO1999030445A1 (fr) 1999-06-17
EP1049275A1 (en) 2000-11-02
CA2313051A1 (en) 1999-06-17
CN1281604A (zh) 2001-01-24
AU757249B2 (en) 2003-02-13
AU9459098A (en) 1999-06-28
JP4284866B2 (ja) 2009-06-24
EP1049275B1 (en) 2004-06-23
KR20010032853A (ko) 2001-04-25
US6611637B1 (en) 2003-08-26

Similar Documents

Publication Publication Date Title
CN1246982C (zh) 色散补偿组件
US6344922B1 (en) Optical signal varying devices
Giles Lightwave applications of fiber Bragg gratings
US5187760A (en) Wavelength selective coupler for high power optical communications
US6335820B1 (en) Multi-stage optical amplifier and broadband communication system
US5598294A (en) Optical fiber amplifier and optical fiber communication system
US6317239B1 (en) Optical repeaters for single- and multi-wavelength operation with dispersion equalization
EP1441454B1 (en) Optical amplifier having polarization mode dispersion compensation function
US5978131A (en) In-fiber two-stage amplifier providing WDM signal conditioning
JP2007086776A (ja) 累積波長分散および累積波長分散勾配のための補償ファイバ
Rosa et al. Characterisation of random DFB Raman laser amplifier for WDM transmission
JP3327081B2 (ja) 光伝送システム
CN1220348C (zh) 光传输系统中增益均衡的系统和方法
Mikhailov et al. Amplified transmission beyond C-and L-bands: Bismuth doped fiber amplifier for O-band transmission
EP1598961B1 (en) Optical broadband tellurite fibre amplifier using multi-wavelength pump
CN1651944A (zh) 用于城域网的光纤
EP1345343A2 (en) Raman amplified dispersion compensating modules
JP3382394B2 (ja) ブラッググレーティング使用波長多重光回路
US20020067537A1 (en) Dispersion compensating nonlinear polarization amplifiers
EP1162768A1 (en) System and method for amplifying a WDM signal including a Raman amplified Dispersion-compensating fibre
US6778748B2 (en) Optical fiber, dispersion compensator using the same, and optical transmission system
CA2392647A1 (en) Optical fiber and optical signal transmission system using this optical fiber
FR2843844A1 (fr) Systeme de transmission optique
CN1628401A (zh) 用于光学系统中的喇曼放大的级联喇曼泵
Diaz et al. Comparison of wavelength-division-multiplexed distributed fiber Raman amplifier networks for sensors

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20060322

Termination date: 20131009