CN1235310C - 控制电池充电和放电的方法 - Google Patents

控制电池充电和放电的方法 Download PDF

Info

Publication number
CN1235310C
CN1235310C CNB021226970A CN02122697A CN1235310C CN 1235310 C CN1235310 C CN 1235310C CN B021226970 A CNB021226970 A CN B021226970A CN 02122697 A CN02122697 A CN 02122697A CN 1235310 C CN1235310 C CN 1235310C
Authority
CN
China
Prior art keywords
charging
battery
soc value
discharge
scope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB021226970A
Other languages
English (en)
Other versions
CN1392626A (zh
Inventor
植田利史
森下展安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Panasonic Holdings Corp
Original Assignee
Toyota Motor Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Matsushita Electric Industrial Co Ltd filed Critical Toyota Motor Corp
Publication of CN1392626A publication Critical patent/CN1392626A/zh
Application granted granted Critical
Publication of CN1235310C publication Critical patent/CN1235310C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2045Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for optimising the use of energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/11DC charging controlled by the charging station, e.g. mode 4
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/0071Regulation of charging or discharging current or voltage with a programmable schedule
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

本发明提供一种控制电池充电和放电的方法,其中,当电池的SOC(充电状态)值在预先确定的范围内时,对电池充电和放电以使电池的SOC值增加/降低到预先确定的范围内;在其中执行充电和放电过程的SOC值的范围连续地变化,而且在充电和放电过程之后的SOC值范围也连续地变化。

Description

控制电池充电和放电的方法
技术领域
本发明涉及关于安装在电动车辆、电力运载车辆或相似车辆中的电池的控制充电和放电过程的方法。
背景技术
自动引导车辆(AGV)是一种用电驱动的车辆,使用电池作为其至少一部分电源。例如,AGV用作电力运载车辆,在装配厂中为各种产品自动运载零部件。安装在AGV上的电池例如是一个高压电池包,包含多个串联起来的可再充电电池单元。
AGV在车间中典型的行进是从作为起始点的站开始,沿着预先确定的路线行进并返回该站,以便对安装在其上的电池充电。这种操作是重复执行的。沿着预先确定的路线行进所消耗的电能通常是电池容量很小的一部分,只有10%。出于安全等方面的原因,不将电池容量充满,这样,对电池进行重复地充电和放电,使得电池的SOC(充电状态),例如在大约50%到60%的范围内。
在被重复充电和放电,以致具有上述相对较窄的SOC范围的电池中,我们知道将会发生充电记忆效应。充电记忆效应是指这样一种现象,如通过在较小SOC范围内对电池重复地充电和放电,在充电过程的最后阶段引起的电压升高。例如,在特定的SOC范围内引起充电记忆效应的情况下,当电池的SOC值增加以致高于特定SOC范围内的值时,电池的电压就会升高,从而将引起充电效率的降低。
在电池的SOC值与电池电压之间的基本关系中,电池电压具有随着SOC值增加而升高的趋势。在SOC值接近0%的较低SOC值范围,以及SOC值接近100%的较高SOC值范围,电池电压均将显著地升高。当在两个范围之间时,随着SOC值增加,电池电压会有略微升高的趋势。
前述的AGV使用这样一种系统,在其中,若检测到充电电压过高,为了安全起见,将迫使AGV的电池放电以便引起SOC值的减少,减少到执行充电和放电过程的SOC值范围内的最低值上。例如,在执行充电和放电过程的SOC值范围为大约50%到大约60%之间,并且将相应于大约70%SOC的电池电压设置为对电池充电的最高电压的情况下,通常执行充电和放电过程,以使电池电压相应处在大约50%的SOC到大约60%的SOC之间。当充电电压升高到预先确定的最高值时,将迫使电池放电,以使它具有50%的SOC值,这是执行充电和放电过程的SOC值范围的最低值。
但是,当在电池中发生充电记忆效应,并且电池的SOC值增加以致高于引起充电记忆效应的SOC值时,电池电压将快速升高,于是将错误地检测出电池电压,好象电池电压值是在对电池充电的最高值上,这样,尽管电池电压值低于最高值,但还是迫使电池放电。结果,SOC值被降低到执行充电和放电过程的SOC值范围内的最低值。采用这种方式,电池的SOC值被迫降低到不足以给电池充电的水平,因而重复这种操作将使AGV的电池不能被充足地充电。
例如,在将相应于大约70%SOC的电池电压设置为对电池充电的最高电压的情况下,当充电记忆效应引起可以由检测器(未表示出)检测出的电池电压,如被升高到最高电压时,而实际电池电压却相应于大约60%的SOC,这时,将迫使电池放电以使它具有50%的SOC值。结果,对于没有被充足充电的电池,执行了充电和放电过程。在这种状态下,当再次引起充电记忆效应时,会迫使电池放电,使得对没有被充足充电的电池执行充电和放电过程。采用这种方式,当由于充电记忆效应使AGV电池在较低SOC值下被强迫放电时,将不会对电池充足地充电,这就可能会导致AGV不能行进。
通过执行一个更新的充电和放电过程,强迫电池放电到具有0%的SOC值,并且完全充电到具有100%的SOC值,这样就可以阻止充电记忆效应。但是,这样的过程通常要求重复几个循环的时间。
图4是表示在更新的充电和放电过程中循环次数与充电记忆效应之间的关系曲线。在图4中,由(a)表示的SOC值与电池电压之间的关系,指执行一次更新的充电和放电过程的循环。在这种情况下,当SOC值在大约50%到60%之间时将引起充电记忆效应。另一个由(b)表示的SOC值与电池电压之间的关系,指执行两次更新的充电和放电过程的循环。在这种情况下,当SOC值在大约60%到80%之间时将引起充电记忆效应。还有另外一个由(c)表示的SOC值与电池电压之间的关系,指执行五次更新的充电和放电过程的循环。在这种情况下,当SOC值在大约80%到100%之间时将引起充电记忆效应。
还有另外一个由(d)表示的SOC值与电池电压之间的关系曲线,指执行六次更新的充电和放电过程的循环。另外一个由(e)表示的SOC值与电池电压之间的关系曲线,指执行七次和八次更新的充电和放电过程的循环。在这些情况下,几乎不会引起充电记忆效应。因此,需要执行六次或更多次的更新的充电和放电过程以阻止充电记忆效应。
对于安装在混合电动车辆(HEV)上的电池也会引起一个相似的问题。用于HEV(以下称为“HEV电池”)的电池不仅存储用于驱动电动机的电能,而且还存储在再生循环中产生的电能。通过安装在HEV电池上的热力发动机为其充电。因此,如上述AGV(以下称为“AGV电池”)电池中的情况,为了阻止HEV电池快速充电,对HEV电池充电和放电到具有预先确定的SOC值上。因此,这里还存在一种可能性,即当引起充电记忆效应时,HEV电池的充电效率将降低。
发明内容
根据本发明的一个方面,提供一种控制电池充电和放电的方法,其中,对电池充电和放电以使当电池的SOC(充电状态)值在预先确定的范围内时,电池的SOC值增加/降低到预先确定的范围;并且,SOC值的范围(在其中执行充电和放电过程)是顺序地变化的,并且在执行充电和放电过程之后,SOC值的范围也顺序地变化。
在本发明的一个实施例中,执行充电和放电过程的SOC值的范围以及在充电和放电过程之后的SOC值的范围均在10%到100%之间变化。
在本发明的另一个实施例中,执行充电和放电过程的SOC值的范围以及在充电和放电过程之后的SOC值的范围均在从较低SOC值变化到较高SOC值以阶段变化。
在本发明的再一个实施例中,执行充电和放电过程以使SOC值在当充电和放电过程之后,SOC值范围在40%到100%之间以阶段降低。
于是,这里所述的发明将带来这样的优点,即提供控制电池充电和放电方法,这种方法能阻止由于充电记忆效应使电池充电效率降低的问题。
本领域的普通技术人员在参考附图阅读和理解了下述本发明的详细说明之后,本发明的这些和其它优点将变得更加清析。
附图说明
图1是表示使用根据本发明控制电池充电和放电方法的自动引导车辆(AGV)以及AGV充电器的方框图。
图2是表示图1所示AGV电池的充电特性变化的曲线,其中AGV电池在充电器的控制下充电,以执行更新的充电和放电过程。
图3是表示图1所示AGV电池的充电特性变化的曲线,其中AGV电池在充电器的控制下充电,以便在不同于图2中更新的充电和放电过程条件下,执行一个更新的充电和放电过程。
图4是表示电池充电特性变化的曲线,其中,电池采用控制电池充电和放电的传统方法,在传统充电器的控制下对电池充电和放电。
具体实施方式
以下将参考附图对本发明的实施例进行说明。
图1是表示使用根据本发明控制电池充电和放电方法的自动引导车辆(AGV)10以及AGV 10充电器的方框图。
希望AGV 10在工厂、仓库等中沿着预先确定的路线行进。AGV10包括作为电源的电池11以及用于控制例如关于电池11放电过程的电池控制部件12。电池11是一个电池包,包括多个串联起来的电池单元。电池11中采用的电池单元是密封的镍-金属氢化物电池。电池控制部件12存储关于电池11的输入信息,诸如SOC值、温度等等。
AGV 10在车间中从作为起始点的站开始,沿着预先确定的路线行进并返回该站,以利用该站提供的充电器20对电池11进行充电。
当电池11被充电器20充电时,电池11连接在充电电线31上,而充电电线31连接在该站所提供的充电器20上。当电池11被充电器20充电时,电池控制部件12连接在充电控制信号线32上,并通过该信号线将信息向/从充电器20输入/输出。
充电器20包括对电池11充电的充电部件21和控制充电部件21的充电控制部件22。充电部件21连接在整流滤波器23上,并通过整流滤波器23接收从输入端24输入的三相交流电流(AC 200V)。
充电部件21包括充电端子25,充电端子25连接到对电池11充电时使用的充电线上。充电控制部件22包括控制信号端子26,控制信号端子26连接到对电池11充电时使用的充电控制信号线32上。充电端子25连接到伏特表27上,伏特表27用于检测当对电池11充电时施加到电池11上的电压。安培表28连接在充电部件21与充电端子25之间,用于检测当对电池11充电时施加到电池11上的电流。
AGV 10是按上述方式构成的,安装在其上的电池11按照下述的方式由该站提供的充电器20充电。
安装在AGV 10中的电池11,在沿指定路线的每一次行程中,通常消耗(放电)实质上固定大小的电量。在每次AGV 10沿指定路线行进之后,AGV 10的充电电线31和充电控制信号线32将分别连接到充电器20的充电端子25和控制信号端子26上。充电部件21接收来自输入端子24输入的、并由整流滤波器23整流的三相交流电流。充电部件21由充电控制部件22控制,以便通过充电电线31将接收的电流施加到电池11上。充电控制部件22根据电池控制部件12输出的信号通过充电控制信号线32来控制充电部件21。
在此情况下,对沿指定路线的每一次行程中,希望电池11接收比放电电量更多的充电电量,因此给电池11的SOC值增加实质上固定的量。例如,对于AGV 10的每一次行程,当电池11放电的电量相应于10%的SOC值时,施加到电池11的充电电量就相应于20%的SOC值。因此,对于AGV 10的每一次行程,通过充电器20执行充电过程,电池11的SOC值就增加10%。
如上所述,每当充电器20对电池11充电时,电池11的SOC值都增加。当电池11的SOC值增加到大约40%到100%的范围时,充电控制部件22就控制充电部件21,以使施加到电池11的充电电量为零,并因此停止充电器20对电池11的充电操作。因此,电池11在AGV 10的行程中放电,并且电池11的SOC值顺序地减小,直到SOC值变为10%。
可选择地,将施加到电池11的充电电量设置为相应于10%的SOC值,并将电池11的放电电量设置为相应于20%的SOC值。这样做的结果是,例如,每当由充电部件21对电池11充电时,电池11的SOC值被迫减小10%,以使SOC值变为10%。
如上所述,当SOC值减小到10%时,由充电器20施加到电池11的充电电量就相应于20%的SOC值,因此对电池11进行充电。
由于SOC值的范围(在其中地执行充电和放电过程)是顺序地变化的,并且在执行充电和放电过程之后,SOC值的范围也顺序地变化,这就使得阻止在特定SOC范围由重复充电和放电过程引起的充电记忆效应成为可能。结果就抑制了由于充电记忆效应引起的电池电压的升高,因此,实质上不存在这种可能,即当发生电池11被迫放电时,错误地检测到最高充电电压。
还有,当按照这种方式重复充电和放电时,而SOC值在10%到100%的范围内,通过执行一次或两次更新的充电和放电过程,可以达到显著的更新效应,因此能保证阻止充电记忆效应。
图2是表示使用根据本发明的充电和放电方法,关于AVG 10的SOC值与电池电压之间的关系曲线。在图2中,由(a)表示的SOC值与电池电压之间的关系,指的是执行一次更新的充电和放电过程循环的情况,即控制电池11的充电和放电以便在大约10%到大约100%之间的范围顺序地改变SOC值,当SOC值增加到大约90%时,强迫从电池11中对剩余的电能放电,并对电池11进行完全充电。由(b)表示的SOC值与电池电压之间的另一种关系,指的是按照与(a)中相同的方式,执行两次更新的充电和放电过程循环。一次或两次更新的充电和放电过程循环提供显著的更新效果,以阻止发生充电记忆效应。
图3是表示使用根据本发明的充电和放电方法,关于AGV 10的SOC值与电池电压之间的关系曲线。在图3中,由(a)表示的SOC值与电池电压之间的关系,指的是执行一次更新的充电和放电过程循环的情况,即控制电池11的充电和放电以便在大约10%到大约100%之间的范围顺序地改变SOC值,当SOC值降低到大约10%时,强迫从电池11中对剩余的电能放电,并对电池11进行完全充电。由(b)表示的SOC值与电池电压之间的另一种关系,指的是按照与(a)中相同的方式,执行两次更新的充电和放电过程循环。一次或两次更新的充电和放电过程循环提供显著的更新效果,以阻止发生充电记忆效应。
根据本发明,执行充电和放电过程的SOC值的范围,以及施加到电池11上的充电电源的SOC值的范围最好均在10%到100%之间,更好是20%到80%之间。
应注意到本发明并不局限于上述的结构,其中对电池11过多充电,直到电池11的SOC值增加到预先确定的最高值上,并且,执行充电和放电过程以使施加到电池11上的充电电能为零,或从电池11上过多放电,放电电能大于施加到其上的充电电能,直到SOC值降低到预先确定的最低值上。例如,本发明可以这样组成,使得电池11过多充电,直到指定的参数,如最高电压、最高温度以及电池11单位时间内温升(dT/dt)或电流-电压(1-V)达到它的最高值,然后过多放电,以使从电池11放电的电能比施加到其上的充电电能大,直到指定的参数达到它的最低值。在任何情况下,将通过电池控制部件12,适当地向充电控制部件22提供关于电池11的必需信息。
尽管以上已经对本发明关于安装在AGV 10上的电池11充电和放电控制的实施例进行了说明,本发明并不局限于这样的情况,可以应用于HEV电池,其充电和放电的SOC范围比100%低。
如上所述,在根据本发明的控制电池充电和放电的方法中,执行充电和放电过程的SOC值范围以及充电和放电过程之后的SOC值范围,均被顺序地变化,因此就不可能在电池中出现充电记忆效应。因而也就可以阻止当发生充电记忆效应时,由于充电电压升高而错误地检测最高充电电压的问题。还有是可能减少阻止充电记忆效应所要求的重新充电和放电过程的循环次数。
本领域的普通技术人员在不离开本发明的精神和范围内可做出各种的修改。因此,不想把本发明附加的权利要求的范围局限于前面说明之内,而宁愿权利要求有更广的解释。

Claims (4)

1、一种控制电池充电和放电的方法,其中:
当电池的SOC(充电状态)值在预先确定的范围内时,对电池充电和放电,以使电池的SOC值增加/降低到预先确定的范围内;以及
在其中执行充电和放电过程的SOC值的范围顺序地变化,并且在充电和放电过程之后SOC值的范围也顺序地变化。
2、根据权利要求1所述的控制电池充电和放电的方法,其中,执行充电和放电过程的SOC值的范围以及在充电和放电过程之后的SOC值范围均在10%到100%之间变化。
3、根据权利要求1所述的控制电池充电和放电的方法,其中,执行充电和放电过程的SOC值范围以及在充电和放电过程之后的SOC值范围是在从较低SOC值到较高SOC值以阶段变化的。
4、根据权利要求1所述的控制电池充电和放电的方法,其中,执行充电和放电过程以使SOC值在当充电和放电过程之后SOC值的范围在40%到100%之间以阶段降低。
CNB021226970A 2001-06-20 2002-06-20 控制电池充电和放电的方法 Expired - Fee Related CN1235310C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001187143A JP3934365B2 (ja) 2001-06-20 2001-06-20 バッテリの充放電制御方法
JP187143/2001 2001-06-20

Publications (2)

Publication Number Publication Date
CN1392626A CN1392626A (zh) 2003-01-22
CN1235310C true CN1235310C (zh) 2006-01-04

Family

ID=19026479

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB021226970A Expired - Fee Related CN1235310C (zh) 2001-06-20 2002-06-20 控制电池充电和放电的方法

Country Status (7)

Country Link
US (1) US6661201B2 (zh)
EP (1) EP1271685B1 (zh)
JP (1) JP3934365B2 (zh)
KR (1) KR100472802B1 (zh)
CN (1) CN1235310C (zh)
DE (1) DE60235676D1 (zh)
TW (1) TW548863B (zh)

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10256545A1 (de) * 2002-12-04 2004-06-24 Hilti Ag Ladeverfahren für Akkumulatorenpacks
EP1673680A2 (en) * 2003-05-19 2006-06-28 Intellectual Property Development/ Jack J'Maev Method and apparatus for receiving a product notice for a subordinate component
JP2005006461A (ja) * 2003-06-13 2005-01-06 Panasonic Ev Energy Co Ltd 無人搬送車用二次電池の充放電制御方法
US7321220B2 (en) * 2003-11-20 2008-01-22 Lg Chem, Ltd. Method for calculating power capability of battery packs using advanced cell model predictive techniques
US7301304B2 (en) * 2004-02-14 2007-11-27 General Motors Corporation Energy storage system state of charge diagnostic
US8103485B2 (en) * 2004-11-11 2012-01-24 Lg Chem, Ltd. State and parameter estimation for an electrochemical cell
CA2588334C (en) * 2004-11-29 2011-09-06 Lg Chem, Ltd. Method and system for joint battery state and parameter estimation
WO2006057468A1 (en) * 2004-11-29 2006-06-01 Lg Chem, Ltd. Method and system for battery state and parameter estimation
KR100916510B1 (ko) 2004-11-29 2009-09-08 주식회사 엘지화학 조인트 배터리 상태와 파라미터 추정 시스템 및 방법
KR100863888B1 (ko) * 2005-03-04 2008-10-15 주식회사 엘지화학 하이브리드 전기 자동차용 배터리의 최대 출력 추정 방법
US7723957B2 (en) * 2005-11-30 2010-05-25 Lg Chem, Ltd. System, method, and article of manufacture for determining an estimated battery parameter vector
KR100878123B1 (ko) * 2007-05-14 2009-01-12 주식회사 엘지화학 배터리 상태 및 파라미터 추정 시스템 및 방법
JP5036416B2 (ja) * 2007-06-15 2012-09-26 トヨタ自動車株式会社 電源システムおよびそれを備えた車両、ならびに充放電制御方法
US7994755B2 (en) 2008-01-30 2011-08-09 Lg Chem, Ltd. System, method, and article of manufacture for determining an estimated battery cell module state
JP5018681B2 (ja) 2008-08-01 2012-09-05 トヨタ自動車株式会社 リチウムイオン二次電池の制御方法、及び、リチウムイオン二次電池システム
US7890228B2 (en) * 2008-12-01 2011-02-15 Savant Automation, Inc. Power source monitoring system for AGVs and method
JP5243971B2 (ja) * 2009-01-05 2013-07-24 株式会社アルファ ケーブルの配線構造
US8629657B2 (en) * 2009-12-31 2014-01-14 Tesla Motors, Inc. State of charge range
US8341449B2 (en) 2010-04-16 2012-12-25 Lg Chem, Ltd. Battery management system and method for transferring data within the battery management system
JP5732766B2 (ja) 2010-07-23 2015-06-10 トヨタ自動車株式会社 車両の制御装置および制御方法
CN102570792B (zh) * 2010-12-23 2015-07-15 上海汽车集团股份有限公司 直流高低压转换器的电压设定点的控制方法
DE102011003518B4 (de) 2011-02-02 2013-01-03 Siemens Aktiengesellschaft Verfahren zum Schutz eines Ladekabels und Ladeeinrichtung
US8449998B2 (en) 2011-04-25 2013-05-28 Lg Chem, Ltd. Battery system and method for increasing an operational life of a battery cell
US8471522B2 (en) * 2011-05-06 2013-06-25 Toyota Motor Engineering & Manufacturing North America, Inc. System for charging electrically powered automated guided vehicles
JP5767873B2 (ja) * 2011-06-28 2015-08-26 株式会社東芝 蓄電装置および蓄電システム
US8993136B2 (en) 2011-06-30 2015-03-31 Lg Chem, Ltd. Heating system for a battery module and method of heating the battery module
US8974929B2 (en) 2011-06-30 2015-03-10 Lg Chem, Ltd. Heating system for a battery module and method of heating the battery module
US8859119B2 (en) 2011-06-30 2014-10-14 Lg Chem, Ltd. Heating system for a battery module and method of heating the battery module
US8974928B2 (en) 2011-06-30 2015-03-10 Lg Chem, Ltd. Heating system for a battery module and method of heating the battery module
US9285432B2 (en) * 2011-07-26 2016-03-15 GM Global Technology Operations LLC Method and system for controlling a vehicle battery
JP5928683B2 (ja) * 2011-09-08 2016-06-01 スズキ株式会社 電気自動車の電力供給制御装置
DE102011087496A1 (de) * 2011-11-30 2013-06-27 H-Tech Ag Verfahren und Vorrichtung zum Laden von wiederaufladbaren Zellen
CN103158570B (zh) * 2011-12-16 2016-07-13 北汽福田汽车股份有限公司 纯电动汽车的高压附件能量管理方法
KR101301760B1 (ko) * 2012-01-31 2013-08-29 조선대학교산학협력단 전기차량의 회생제동 제어장치
CN104137451B (zh) * 2012-02-28 2017-10-17 住友电气工业株式会社 通信系统、通信装置、供电装置、和车辆
US20140244193A1 (en) * 2013-02-24 2014-08-28 Fairchild Semiconductor Corporation Battery state of charge tracking, equivalent circuit selection and benchmarking
CN105196887B (zh) * 2015-10-13 2019-02-22 北京新能源汽车股份有限公司 电动汽车的充电控制方法和充电控制系统
JP6257846B1 (ja) * 2016-02-15 2018-01-10 株式会社 ゴーダ水処理技研 電気分解水生成装置
JP6455497B2 (ja) * 2016-11-16 2019-01-23 トヨタ自動車株式会社 車両の電池システム及びその制御方法
FR3087057B1 (fr) * 2018-10-09 2022-11-11 Renault Sas Procede et dispositif de regulation du niveau de charge d'une batterie de traction d'un vehicule electrique
US11661029B2 (en) * 2020-06-24 2023-05-30 TWS Technology(Guangzhou) Limited Authentication between battery management system (BMS) and battery host platform
CN113581008B (zh) * 2021-09-28 2021-12-28 深圳万甲荣实业有限公司 一种新能源汽车用阶段式功率调配的电源系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4912416A (en) * 1988-06-06 1990-03-27 Champlin Keith S Electronic battery testing device with state-of-charge compensation
US4876513A (en) * 1988-12-05 1989-10-24 Globe-Union Inc. Dynamic state-of-charge indicator for a battery and method thereof
JP3304777B2 (ja) * 1996-08-22 2002-07-22 トヨタ自動車株式会社 電動車両
US5998968A (en) * 1997-01-07 1999-12-07 Ion Control Solutions, Llc Method and apparatus for rapidly charging and reconditioning a battery
JP3545597B2 (ja) 1998-04-30 2004-07-21 松下電器産業株式会社 二次電池充電装置
JP3716619B2 (ja) * 1998-05-14 2005-11-16 日産自動車株式会社 電池の残容量計
JP4567109B2 (ja) * 1998-11-24 2010-10-20 パナソニック株式会社 二次電池の充放電制御方法
JP3374802B2 (ja) * 1999-09-24 2003-02-10 株式会社日立製作所 ハイブリッド車両

Also Published As

Publication number Publication date
US20030001541A1 (en) 2003-01-02
EP1271685B1 (en) 2010-03-17
JP2003009415A (ja) 2003-01-10
US6661201B2 (en) 2003-12-09
DE60235676D1 (de) 2010-04-29
EP1271685A2 (en) 2003-01-02
JP3934365B2 (ja) 2007-06-20
EP1271685A3 (en) 2007-07-04
KR20020097022A (ko) 2002-12-31
KR100472802B1 (ko) 2005-03-10
CN1392626A (zh) 2003-01-22
TW548863B (en) 2003-08-21

Similar Documents

Publication Publication Date Title
CN1235310C (zh) 控制电池充电和放电的方法
CN1229275C (zh) 电梯控制装置
CN101878577B (zh) 车辆用电源装置
JP3706565B2 (ja) ハイブリッドカー用の電源装置
CN102574470B (zh) 车辆的充电系统及包含该车辆的充电系统的电动车辆
CN1185158C (zh) 电梯控制装置
WO2011004250A2 (en) Secondary battery temperature-increasing control apparatus and vehicle including the same, and secondary battery temperature-increasing control method
JP6982787B2 (ja) 燃料電池制御装置およびその制御方法、燃料電池自動車
CN1217832A (zh) 电源装置
CN1436395A (zh) 动力输出装置及装有该装置的车辆、动力输出装置的控制方法和存储媒体及程序、驱动装置及装有该装置的车辆、驱动装置的控制方法和存储媒体及程序
CN105667330A (zh) 一种dcdc的控制方法及系统
US6310464B1 (en) Electric car battery charging device and method
EP2173017A1 (en) Control device and control method for electric system
CN1441527A (zh) 用于电动汽车的电源装置
KR101660009B1 (ko) 전기 자동차 전원장치의 제어방법
CN1319915A (zh) 控制二次电池充电的装置及方法
CN1193214A (zh) 二次电池的充电方法及充电装置
CN103475045A (zh) 一种车用太阳能动力系统及其控制方法
CN107482274B (zh) 燃料电池系统
KR101187449B1 (ko) 비접촉 자기 유도 충전 방식을 갖는 전기자동차의 양방향 회생제동 제어 방법
CN1349274A (zh) 综合充电模式
KR100534719B1 (ko) 전기자동차의 충전 제어장치 및 방법
Babar et al. Hybrid Energy Control for an Electric Vehicle Using Super Capacitor and Battery
CN211930313U (zh) 一种电动汽车电源控制系统及电动汽车
KR101104781B1 (ko) 비접촉 자기 유도 충전 방식을 갖는 전기자동차의 단방향 회생제동 제어 방법

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20060104

Termination date: 20150620

EXPY Termination of patent right or utility model