CN1231063A - 使用六甲基乙硅氮烷的液体源薄膜的形成 - Google Patents

使用六甲基乙硅氮烷的液体源薄膜的形成 Download PDF

Info

Publication number
CN1231063A
CN1231063A CN97197971A CN97197971A CN1231063A CN 1231063 A CN1231063 A CN 1231063A CN 97197971 A CN97197971 A CN 97197971A CN 97197971 A CN97197971 A CN 97197971A CN 1231063 A CN1231063 A CN 1231063A
Authority
CN
China
Prior art keywords
mentioned
stoste
metal
substrate
integrated circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN97197971A
Other languages
English (en)
Inventor
加里·F·德本威克
拉里·D·麦克米伦
纳拉严·索拉亚攀
迈克尔·C·斯科特
卡洛特·A·帕兹德阿罗
林慎一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Symetrix Corp
Original Assignee
Matsushita Electronics Corp
Symetrix Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp, Symetrix Corp filed Critical Matsushita Electronics Corp
Publication of CN1231063A publication Critical patent/CN1231063A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1225Deposition of multilayers of inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02197Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides the material having a perovskite structure, e.g. BaTiO3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/022Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being a laminate, i.e. composed of sublayers, e.g. stacks of alternating high-k metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02219Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and nitrogen
    • H01L21/02222Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and nitrogen the compound being a silazane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/31691Inorganic layers composed of oxides or glassy oxides or oxide based glass with perovskite structure

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Vapour Deposition (AREA)
  • Semiconductor Memories (AREA)
  • Formation Of Insulating Films (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Silicon Compounds (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

制备一种溶于二甲苯/甲基乙基酮溶剂中的包含几种2-乙基己酸金属,例如2-乙基己酸锶、钽和铋的原液,在一个真空淀积室(2)内放置一个基底(5,858),在原液中添加少量六甲基乙硅氮烷,并予以雾化,以及使云雾流进淀积室内以在基底上淀积一层原液。对该原液进行干燥、焙烤和退火,以在基底上形成一个分层超晶格材料,例如钽酸锶铋的薄膜(506,860)。然后使分层超晶格材料薄膜的至少一部分含在集成电路的一个元件(604,872)中,从而完成一个集成电路(600,850)。

Description

使用六甲基乙硅氮烷的液体源薄膜的形成
本发明的背景
1、本发明的领域
本发明涉及一种用液体原形成薄膜的方法,较具体地涉及制作具有适当薄度(thinness)和适用于集成电路的品质的金属氧化物薄膜。
2、存在问题的说明
已经知道,如发布于1995年10月10日的美国专利No.5,456,945所说明的液体源雾化淀积处理和发布于1995年6月13日的美国专利No.5,423,285所说明的旋镀(spin on)处理等液体淀积处理在制作集成电路品质的薄膜中是有用的。还知道雾化淀积处理于集成电路的常规制造具有重要优点。虽然雾化淀积处理可以用来制作良好的具有集成电路品质的钛酸钡锶或其他较简单的金属氧化物薄膜,但当把这种处理用于较复杂的材料,例如分层超晶格材料(layered superlattice material)时,则只有当薄膜层的形状仅涉及到平直的结构,例如电容器中的平坦而均匀的电介质层时才能制作出高质量的薄膜。当薄膜结构涉及到尖锐拐角,例如呈现阶梯状时,分层超晶格材料将趋于充填这些拐角,而不再跟随下面各层的形状。在集成电路技术中,这叫做使用分层超晶格材料时不具有良好的阶梯覆盖性。如果通过调节液体源的粘滞度来得到较好的阶梯覆盖性,则薄膜质量将明显下降,得到缩短的膜层和较差的电子学特性。然而,最新的集成电路却涉及到了十分复杂的结构,包括阶梯和其他尖锐拐角。所以,对分层超晶格材料使用雾化淀积处理至今还是有限的。由于分层超晶格材料在集成电路中具有如此特异的性质,十分希望有一种雾化淀积处理能使这种材料可应用于具有复杂结构的集成电路中。
本发明的概述
本发明通过在用于淀积金属化合物的液休原料(原液)中添加六甲基乙硅氮烷(HMDS)作为溶剂来解决上述问题。已经发现HMDS可以大为改善分层超晶格材料在雾化淀积时的阶梯覆盖性。还发现了,HMDS也能改进用雾化淀积处理或旋镀处理淀积的其他金属氧化物的阶梯覆盖性,虽然这一改进不像对雾化淀积处理中的分层超晶格材料的改进那么大。
本发明提供一种制作含有金属氧化物薄膜的集成电路的方法,该方法包括以下步骤:提供一个集成电路基底;提供一种至少含有一种金属和六甲基乙硅氮烷的原液,其中该金属的份量能有效地形成含有该金属的所希望化合物;把原液施加到基底上;对淀积在基底上的液体层进行处理以形成所希望金属化合物的固体薄膜;以及,通过使至少一部分的金属化合物被含到集成电路的电元件中而完成集成电路的制作。金属化合物最好包括一种分层超晶格材料。分层超晶格材料最好包括从钽酸锶铋、铌酸锶铋和铌酸锶铋钽这组材料中选出的一种材料。施加步骤最好包括;把基底放置到一个封闭的淀积室中;产生原液的云雾;使云雾流过淀积室以在基底上形成一层原液。流过步骤最好在保持淀积室为环境温度的情况下进行。提供原液的步骤最好包括这样的步骤:在产生云雾步骤之前,向原液添加一种其沸点在50℃至100℃之间的引发剂。引发剂最好包括一种从甲基乙基酮、异丙醇(isopropanol)、甲醇和四氢呋喃这组溶剂中选出的一种溶剂。或者,施加步骤也可以包括利用旋镀处理把原液施加到基底上。原液最好包括一种溶剂和一种从烷氧基金属和羧酸金属这组金属化合物中选出的金属化合物。处理步骤最好包括对淀积在基底上的液体层进行干燥、焙烤和退火这组步骤中的一个或几个步骤。原液最好包含一种溶于一种溶剂中的金属化合物,这溶剂最好从二甲苯、n-醋酸丁酯和二甲氧基乙醇这组溶剂中选出的。金属最好包括从锶、钙、钡、铋、镉、铝、钛、钽、铪、钨、铌、锆、钪、钇、镧、锑、铬和铊这组金属中选出的金属。
另一方面,本发明提供一种用来形成金属氧化物的原液,该原液包含多种成份的金属,当把该原液施加到基底上并予以加热时,这些金属的量能有效地形成一种分层超晶格材料;原液中还包含一种包括六甲基乙硅氮烷的熔剂。溶剂最好还包括从甲基乙基酮、异丙醇、甲醇、四氢呋喃、二甲苯、n-醋酸丁酯、正辛烷和二甲氧基乙醇这组液体中选出的一种溶剂。
又一方面,本发明提供一种制作分层超晶格材料薄膜的方法,该方法包括以下步骤:提供一种原液,该原液含有多种其分量能有效形成分层超晶格材料的金属成份和六甲基乙硅氮烷;把基底放置在一个封闭淀积室中;产生原液的云雾;使云雾流过淀积室以在基底上形成一层原液;以及,对淀积在基底上的液体层进行处理以形成分层超晶格材料固体薄膜。流过步骤最好在保持淀积室为环境温度的情况下进行。分层超晶格材料最好形成集成电路中电元件的一部分。该方法还包括通过使分层超晶格材料薄膜至少一部分被含在集成电路电元件中以完成集成电路制作的步骤。分层超晶格材料最好包括从钽酸锶铋、铌酸锶铋和铌酸锶铋钽这组材料中选出的材料。金属最好包括从锶、钙、钡、铋、镉、铝、钛、钽、铪、钨、铌、锆、钪、钇、镧、锑、铬和铊这组金属中选出的金属。
在分层超晶格材料原液中添加六甲基乙硅氮烷首次使得能提供极佳阶梯覆盖性和极佳电子特性的雾化淀积处理可以用来制作带有分层超晶格材料部分的集成电路。与以往技术的差别是,当分层超晶格材料在阶梯上通过时其厚度几乎没有变化。对分层超晶格材料所得到的重大改进已导致HMDS使用于其他材料和其他液体淀积处理的研究。对于各种情况,已得到了有某些的结果。
在参考附图阅读了下面的说明之后,本发明的许多其他特点、目的和优点将变得明显。
附图的简单说明
图1是本发明优选实施例中所用的雾化淀积设备的淀积室的侧视剖面图;
图2是图1设备的进气和排气喷嘴组件的放大平面图;
图3是图1设备中所用的多管组件的放大顶视示意图;
图4是说明制备根据本发明优选实施例的分层超晶格材料的流程图;
图5是用本发明处理制作的集成电路器件的电镜显微图的示意图,其中表明了施加在基底上的钽酸锶铋薄膜的阶梯覆盖性;
图6是用本发明方法制作的集成电路电容器的部分截面图;
图7是用分层超晶格材料做成的DRAM(动态随机访问存储器)存储单元的截面图;
图8是对根据本发明处理制作的钽酸锶铋电容器测得的极化强度与电场的关系曲线图;
图9是对图8钽酸锶铋电容器测得的剩余极化强度与开关循环次数的关系曲线图,即疲劳曲线图;以及
图10是图8钽酸锶铋电容器的泄漏电流与施加电压的关系曲线图。
优选实施例的详细说明
1、总述
根据本发明的一个基本方面,最初先制备一种例如钽酸锶铋这样的分层超晶格材料的液体原料(原液),然后产生该溶液的云雾,使它流入淀积室,并在设置于淀积室内的一个基底上淀积成一层或多层薄膜层。按照本技术领域的习惯,本公开中“基底”一词可按其广义的含义使用,即它含有一层或多层材料5(图6),其上可以淀积分层超晶格材料;也可按其狭义含义使用,这时它指一个硅片622,其上形成有其他材料层。除非另加说明,基底是指其上可用本发明处理和设备淀积分层超晶格材料的任何物体。原液包括:溶胶凝胶原料配方、金属有机物原料配方、两种配方的结合、和其他原料配方;前者通常由溶于乙醇溶剂中的烷氧基金属组成,金属有机物原料配方有时也叫做MOD配方,通常由羧酸金属组成,这羧酸金属是通过使例如n-癸酸或2-乙基己酸这样的羧酸与溶剂中的金属或金属化合物起化学反应而形成的。不论是哪种原料,本发明都包括把六甲基乙硅氮烷作为原料溶剂或合作溶剂。
这里所使用的“云雾”一词被定义为由气体所运载的一些液体细滴。“云雾”一词包含气溶胶(aerosol),后者通常定义为气体中的胶质悬浮固体或液体颗粒。云雾一词还包含蒸汽、雾气和气体中的其他原料液体的雾状悬浮物。由于上述各词是在大众使用中产生的,所以它们的定义并不精确,且有重叠,不同的作者可能会有不同的使用方式。这里,术语气溶胶希望能包括《Aerosol Science andTechnology(气溶胶科学与技术)》(Parker C.Reist,McGraw-Hill,Inc.,New York,1983)一书中所含的所有悬浮物,该书在这里引用作为参考。这里所用的“云雾”一词希望比气溶胶一词有更广泛的含义,它可以包括“气溶胶”、“蒸气”或“雾气”所不能包括的悬浮物。
如在前面所引述的专利中所讨论的,使用原液能得到高质量薄膜的原因在于,原液能被精确地和高度一致性地制备,所以淀积后的所希望化合物是均匀的并在化学配比上是正确的;还因为本发明的淀积方法不涉及到会严重地使化合物的预定分子配方不稳定,或者会造成化合物的淀积不均匀和出现裂缝等的剧烈的化学或物理反应。由于雾化淀积处理能高度一致性地再制作和/或对大量的晶片重复,并能调节到制作大量晶片的尺寸,所以它适用于大规模的集成电路制作。如下面将详细地讨论的,使用六甲基乙硅氮烷作为溶剂或合作溶剂将可对例如分层超晶格材料这样的复杂材料得到极佳的阶梯覆盖性和极佳的电子特性。
分层超晶格材料在1995年6月13日发布的美国专利No.5,423,285和1996年5月21日发布的美国专利No.5,519,234中有详细的说明。一般地说,分层超晶格材料被定义为这样一种材料,它能被单个化学表达式描述,并且它能自发地使自己变成为一些交替排列的具有明显不同晶体结构的层。例如,钽酸锶铋(SrBi2Ta2O9)可以认为由具有类似于Bi2O3的晶体结构与类似于SrTa2O6的晶体结构的层交替排列构成,虽然应该记住,SrTa2O6自身具有钨铜结构,而在分层材料内部却具有钙钛矿(Perovskite)结构。所以实际上分层结构是一种超晶格,其中各个钙钛矿层和非钙钛矿层的次晶格结构是互相依赖的。与组合超晶格等被制造成或强迫成超晶格的其他超晶格相比,分层材料是天然的超晶格。所以选用“分层超晶格材料”一词来把这类超晶格材料与合金型超晶格和超晶格异质结构区别开来,其中合金型超晶格是不分层的,而超晶格异质结构则是组合超晶格,即它固有地并非一种“材料”,而是至少由两种具有不同化学表达式的不同材料所组成的分层结构。
用本发明处理所制作的分层超晶格材料是多晶。在多晶状态下,材料的结构将具有颗粒边界、点状缺陷、位错环、和其他的微结构缺陷。然而,在每一个颗粒的内部,其结构绝大部分是重复性的单元,这种单元含有一层或多层铁电层和一层或多层以互相依赖的方式自发地连接的中间非铁电层。于是本发明的铁电分层超晶格材料可定义如下:(A)一种具有局域性结构的材料,这种局域性结构位在一个颗粒或其他较大或较小的单元内,其局域性结构绝大部分由这样一些重复性单元组成,每个单元含有一层或多层铁电层和一层或多层以互相依赖的方式自发地连接的中间非铁电层。本发明还包括非铁电的材料,还可以包括如下定义的含有类钙钛矿层的材料:(B)一种具有局域性结构的材料,这种局域结构位于一个颗粒或其他较大或较小的单元内,其局域结构绝大部分由这样一些重复性单元组成,每个单元含有一层或多层类钙钛矿层和一层或多层以互相依赖的方式自发地连接的中间非类钙钛矿层。
分层超晶格材料包括被Smolensku(史摩棱斯基)等人在G.A.Smolenstii所编的《Ferroelctrics and Related Materials(铁电材料和相关材料)》(ISSN 0275-9608,“铁电现象和相关现象”丛书的第三卷,1984)一书中的§15.3-§15.7节中所分类的“分层类钙钛矿材料”,并包括:
(ⅰ)表达式为Am-1Bi2MmO3m+3的化合物,其中A=Bi3+、Ba2+、Sr2+、Ca2+、Pb2+、K+、Na+和其他大小相近的离子,M=Ti4+、Nb5+、Ta5+、Mo6+、W6+、Fe3+和其他占据氧八面体的离子;这一组化合物中包括钛酸铋Bi4Ti3O12
(ⅱ)表达式为Am+1MmO3m+1的化合物,包括例如钛酸锶Sr2TiO4、Sr3Ti2O7和Sr4Ti3O10等化合物;
(ⅲ)表达式为AmMmO3m+2的化合物,包括例如Sr2Nb2O7、La2Ti2O7、Sr5TiNb4O17和Sr6Ti2Nb4O20等化合物。注意,对于Sr2Nb2O7和La2Ti2O7,其表达式必须加一倍才能符合一般的表达式。分层超晶格材料包括上列所有材料以及这些材料的组合和固态溶液。
分层超晶格材料可以更一般地归结为下列表达式:
(1)A1+a1 w1A2+a2 w2…Aj+aj wjS1+s1 ×1S2+s2 ×2…Sk+sk ×kB1+b1 y1B2+b2 y2…B1+b1 y1Q-2 z,其中A1、A2…Aj代表类钙钛矿结构中的A-址元素,它们可以例如是锶、钙、钡、铋、镉、铝等元素;S1、S2…Sk代表超晶格生成元素,它们通常是铋,但也可以是例如钇、钪、镧、锑、铬、铊和其他+3价的元素;B1、B2…B1代表类钙钛矿结构中的B-址元素,它们例如可以是钛、钽、铪、钨、铌、锆等元素;Q代表一种负离子,通常是氧,但也可以例如是氟、氯和这些元素的混合物,如氟氧和氯氧等。表达式(1)中的上角标指明相应元素的价数,下角标指一克分子量的化合物中该物质的克分子数,或者用单位晶胞表示是指单位晶胞中元素的平均数。下角标可以是整数或分数。也即,表达式(1)包括了单元晶胞在整个材料中可能有变化的情况,例如对于Sr0.75Ba0.25Bi2Ta2O9,平均来说75%的情形是Sr为A-址原子,而25%的情形是Ba为A-址原子。如果化合物中只有一种A-址元素,则该元素由“A1”元素代表,而W2…Wj全都为零。如果化事物中只有一种B-址元素,则该元素由“B1”元素代表,而y2…y1全都为零,对于超晶体生成元素也类似。通常情况是化合物中有一种A-址元素、一种超晶格生成元素、以及一或两种B-址元素,虽然由于本发明为了希望涵括任一址位处的元素和超晶格生成元素都可以是多种元素的情况,而把表达式(1)写成了更一般的形式。Z的值可以由下式求得:
(2)(a1w1+a2w2+…+ajwj)+(s1x1+s2x2+…+skxk)+(b1y1+b2y2+…+bjyj)=2z。
表达式(1)包括了所有三种Smolenskii类型的化合物:对于(ⅰ)型材料,w1=m-1、x1=2、y1=m、z=3m+3,并且其他下角标均为零;对于(ⅱ)型材料,w1=m+1、y1=m、z=3m+1,并且其他下角标均为零;对于(ⅲ)型材料,w1=m、y1=m、z=3m+2,并且其他下角标均为零。注意Smolenskii(ⅰ)型表达式不适用于M=Ti和m=2的情况,但表达式(1)却适用。这是因为smolenskii表达式没有考虑价数。根据本发明的材料并不包括能用表达式(1)表示的所有材料,只包括了其中能自发地形成分层超晶格结构的材料。总之,本发明的材料包括所有能用上述定义(A)和(B)、Smolenskii表达式和表达式(1)来描述的材料加上所有这材料的固态溶液。对于这些结构曾使用过的术语包括:分层类钙钛矿材料、循环互生长(recurrent intergrowth)层、Aurivilius(奥利维留斯)材料、自取向自发互生长层。即使如此也没有一个单一的术语可以足以描述整类的分层超晶格材料。本申请人选用术语“分层超晶格材料”来描述整类材料是因为晶格包括一短距离规律性和长距离规律性,前者例如由一个类钙钛矿氧八面体晶格所形成的亚层,后者包括例如类钙钛矿亚层这样的一个亚层和一个超晶格生成元素金属氧化物层的相继周期性重复。此外,与其他超晶格材料相同,周期长度是可控制的。例如,如在这些材料的技术中所知的,通过调节化学配比,上述Smolenskii表达式(ⅰ)(ⅱ)(ⅲ)中的“m”值可被改变,从而改变类钙钛矿层的厚度。见G.A.Smolenskii所编的《Ferroelectric and Related Materials(铁电和相关材料)》P.694(ISSN0275-9608,“铁电和相关现象”丛书的第三卷)。这些周期性重复结构的双重规律性和周期距离的可控制性满足了超晶格的定义。如前所述,不要把术语“分层超晶格材料”与“强迫异质晶格结构”相混淆,后者是通过用溅射法相继淀积一些薄层来制作的。分层超晶格材料在退火中自发地形成对准的互生长层,不需要强迫淀积相继的薄层。
根据本发明一个优选实施例,原液的云雾被基本上以环境温度均匀地流经基底和流到基底上。也就是说,与以往技术不同,基底是不被加热的。在本公开中,“环境温度”是指周围的温度,它最好是室温,通常在15℃至40℃之间。不过由于在淀积过程中可能要进行各种处理,例如抽真空、电极化、和/或施加紫外辐射,所以淀积室2内的实际温度可能与进行淀积的房间温度不同。所以使用了“基本上以环境温度”这样的字眼。基本上的环境温度通常是指从-50℃至100℃的温度范围。如下面将进一步讨论的,云雾的流动处理的关键特征是,云雾通过多个输入口流经基底,并通过多个排气口离开基底上方的区域,其中各输入、排气口分布得十分靠近基底并在基底周边,以产生基底处基本均匀分布的云雾流。
此淀积处理的另一个特征是,相对于以往技术的淀积处理来说有较低的能量过程。人们相信,淀积是由液体粒子之间的比较弱的能量动力学相互作用以及粒子与面对着基底的阻挡板之间的比较弱的能量动力学互相作用所造成的。已经发现,在淀积过程中加热淀积室或基底将导致较低质量的薄膜。淀积时、淀积后、或淀积时及淀积后,原液都被处理得在基底上形成一个固体分层超晶格材料薄膜。这里,“处理”是指在淀积过程中对原液进行的下述这些任选处理之一或它们的结合:暴露于真空、紫外辐射、电极化、干燥、加热、和退火。在本优选实施例中,紫外辐射和电极化是淀积过程中对原液的任选处理。紫外辐射最好还在淀积后进行。淀积后,最好对淀积在基底上的材料(在本实施例中它是液体)先在真空中暴露一段时间,然后加热,然后退火。本发明的这一优选处理是雾化的原料溶液被直接淀积在基底上时的处理,以分解原料中没有形成所希望材料的有机物和除去溶剂、有机物或溶液落到基底上后最初出现的其他碎片。不过,在本发明的另一个方面中也考虑进行这样一种处理,其中在淀积过程中把最后希望的化合物或中间化合物从溶剂和有机物中分离出来,并使最后希望的化合物或中间化合物淀积在基底上。不论是哪一种处理,原料的一个或多个键能被保留到最后的薄膜中。
许多用于集成电路的复杂薄膜,例如铁电薄膜的一个重要特性是,通常它们需要十分地薄,例如在200至5000A范围内。这样的薄膜厚度可以用根据本发明的处理和设备容易地得到。如果需要,本发明也可以用来产生厚得多的膜层。
图5是一个利用本发明设备按本发明处理制作的实际器件的电镜显微图的示意图。该图说明了镀设在基底5上的一个钽酸锶铋薄膜506的阶梯覆盖性。由于钽酸锶铋层506比较薄,在照相显微图中不可能示出基底5的全部细节。所以在图6中示出了代表电路截面的示意图,使所有各层都可在一个图中示出。图6中各层的相对厚度不是按同样的比例画出的。如图6所示,基底5包括一个硅晶片622,一个约5000A厚的SiO2层624、一个约200A厚的钛层626、以及一个约2000A厚的铂层628。在实际的电容器中,在淀积了分层超晶格材料层506之后再淀积另一个厚度约为2000A的铂层632,然后使电容器成形成图案,以完成该器件。
如图5所示,在基底5中形成了一个阶梯508,其上用本发明方法淀积了钽酸锶铋层506。注意,所淀积的分层超晶格材料层506在阶梯508的顶面512和底面514上部是非常顺应的。虽然在靠近阶梯508底面的硬拐角处有小量的充填,但这样的充填要比不用六甲基乙硅氮烷作为溶剂进行淀积的分层超晶格材料充填小得多,从而比集成电路制作中通常使用的最先进集成电路淀积技术所能达到的顺应性好。所以,添加六甲基乙硅氮烷作为溶剂解决了目前不可能在先进集成电路复杂结构中得到极佳的分层超晶格材料电子特性的问题。
图7示出一个采用了分层超晶格材料的动态随机访问存储器(DRAM)单元870。众所周知,DRAM由几十万或几百万个这样的单元构成。电路结构部分850,特别是薄层860,可以用本发明设备和处理形成。当薄层860是例如钽酸锶铋等铁电分层超晶格材料时,该存储器单元是一个非消失性铁电(FERAM)开关存储器单元;当薄层860是例如铌酸铅铋等电介质分层超晶格材料时,单元870将是一个易消失性DRAM存储器单元。结构850包括一个硅基底851、氧化场区域854、以及两个互相电连接的电元件:一个晶体管871和一个电容器872。晶体管871含有一个门极873、一个源极874和一个漏极875。电容器872含有第一电极858、分层超晶格材料860、和第二电极877。绝缘层,例如856,在除了晶体管871的漏极875与电容器872的第一电极858相连接的地方之外,使这两个元件871与872分离。电触点,例如847和878,使元件871和872与集成电路850的其他部分发生电连接。发布于1995年11月14日的美国专利No.5,466,629给出了图7所示集成电路存储器单元的全部制作过程的详细例子。下面将给出制作薄层860的详细优选处理过程。这里所讨论的本发明处理也可用于制作结构850的其他各层,例如绝缘层856。
图1示出根据本发明后个示范性实施例的薄膜淀积设备1。设备1包括一个淀积室2,其中含有一个基底支座4、一个阻挡板6、一个输入喷嘴组件8、一个排气喷嘴组件10、和一个紫外辐射源16。淀积室2包括一个主体12和一个盖子14,后者可固紧在主体12上面,以确定淀积室2内的一个封闭空间。淀积室2与多个外部真空源相连,这里不准备详细说明这些真空源。盖子14用一个由15所代表的绞链以可转动方式与主体12相连。工作时,从多管组件40(图3)通过管道45沿方向43馈送云雾和惰性载体气体,使之通到输入喷嘴组件8,并由此使云雾淀积到基底5上。多余的云雾和载体气体通过排气喷嘴10被排出淀积室2。
基底支座4由两块用导电材料,例如不锈钢所做成的圆形板3和3’组成,上板3与下板(场板)3’被电绝缘材料,例如聚甲醛树脂绝缘。在一个示范性实施例中采用直径为4英寸的基底,这里基底支座4的额定直径为6英寸,它由一个连接在电机18上的转轴20支持,使支座4和基底5可在淀积过程中旋转。一个绝缘轴22使其上所支持的基底支座4和基底5与施加在淀积室主体12上的直流电压相绝缘,从而可以在基底支座4与阻挡板6(通过淀积室主体12)之间产生直流偏压。这样的直流偏压例如可以用来在基底5上淀积薄膜的同时使薄膜被电场极化。绝缘轴22用连接器21与轴20和20’连接。电源102分别通过导线106连接到淀积室2的主体12的接线端108和通过导线104和馈送孔23连接到黄铜滑套25上,以产生场板3’与阻挡板6之间的直流偏压。
阻挡板6用不锈钢等导体材料做成,其大小足以平行地位在基底5的上方并基本上覆盖基底5,使得通过输入管道26和喷嘴组件8注入的蒸汽化原液或云雾被迫在位于阻挡板6与基底支座4之间的基底5的上方流过。阻挡板6最好用一些杆柱24连接在盖子14上,使得每当打开盖子时阻挡板6就会移离基底5。阻挡板6上还有一个紫外透射窗(图1中未示出)。
图2更具体地示出了输出喷嘴组件8和排气喷嘴组件10。输入喷嘴组件8有一个输入管道26,如下面将参考图3进行讨论的,后者从多管道组件40接收雾化液体。输入管道26与一个弧形管28相连,后者含有多个小孔或输入口31,这些输入口沿着弧形管28的内周按中心距间隔1/4英寸排列,并可接纳可取走的螺钉30。排气喷嘴组件10包括一个弧形排气管29,其上也有多个小孔或排气口31’和可取走的螺钉30。除了其管道34通向一个真空/排气源(未示出)之外,排气喷嘴组件10的结构基本与输入喷嘴组件8的相同。弧形管28和29的端帽是可取走的,以便清洗。输入喷嘴组件8的弧形管28和排气喷嘴组件10的相应弧形管29分别相对地围绕着基底支座4的周边部分4-1和4-2设置。
在一个淀积分层超晶格材料薄膜的示范性实施例中,弧形管28和29中的小孔31和31’的中心额定地位在基底支座4上方0.375英寸处。不过如图1所示,这个距离可以通过使用不同长度的轴20’来调节,以适合于特定的淀积处理。
弧形管28和29典型地都是用外径1/4英寸、内径的3/16英寸的不锈钢管制作。弧形管28和29的内壁最好经过电抛光。弧形管28和29中的小孔31和31’都按中心距约1/4英寸的间距排列,并被加工成锥状以适配4-40(1/8英寸)的凹头螺钉。
借助于这样的结构和通过有选择地在两个弧形管28、29中插入或取走螺钉30以调节各通孔31和31’的位置,可以很好地对各种溶液控制基底5上方蒸汽化溶液或云雾的流动和流率等参数,以达到薄膜在基底5上的均匀淀积。
参见图1和2,基底支座4、阻挡板6、输入喷嘴组件8和排气喷嘴组件10协同工作,定义了一个环绕着基底5的上表面/暴露表面的比较小的半封闭淀积区域17,在整个淀积过程中该区域内部基本上包含有蒸汽化的溶液。
虽然示出和说明了基底支座4、阻挡板6、输入喷嘴组合件8和排气喷嘴组件10的示范性实施例,但应该理解,在本发明范畴内可以采用它们结构的各种变体。例如,弧形的输入和排气管28和29可以用例如V形、U形或开缝管等其他结构的管子代替,或者简单地用多个分立的喷嘴和分立的排气口代替。
图3示出根据本发明的多管组件40。多管组件40用于向输入喷嘴组件8供应云雾,它通常包括一个混合室42、多个通过各自的阀门49-1、49-2…49-n连接在相应云雾发生器46-1、46-2、…46-n上的进气口44、一个用来调整从混合室42到喷嘴组件8的流量的淀积47、以及一个排气阀门48。使用时,利用一个或几个云雾发生器46-*产生一种或几种云雾,然后这些云雾通过阀门49-*和进气口44流入混合室42。
流入混合室42的各种云雾被混合成一种均匀的雾化溶液,然后该雾化溶液以适当的流率通过阀门47和输入管道26流入淀积室2。混合室42中以及把多管组件40连接到输入喷嘴组件8(图1)的管道54中的整体流向由箭头43表示。阀门47可关断,以便在需要时可抽空淀积室2或者清洗多管系统。类似地,排气阀门48的出气口51连接在一个真空源(未示出)上,使得在必要时可以排空/清洗一个或几个云雾发生器46;通过关断阀门47、打开阀门48和一个或几个阀门49-*,并通过出气口51施加真空或接通标准的负压抽吸型排气装置,便可抽空混合室42来清洗云雾发生器46-*和混合室42。
图1、7、9所示的设备1含有电装置102,用来在淀积处理时施加淀积室2中的直流偏压。图1示出了直流输入线104。施加在滑套25与淀积室主体12之间的直流电压典型地为350V。直流偏压获得提高薄膜质量的铁电薄膜的在线极化。经常希望极化偶极子的取向沿着晶体C轴(主极化轴)方向,这样得到的取向可减小会造成疲劳和记忆问题的位错密度。大于或小于350V的直流偏压也可用来达到上述结果。此外,在进行淀积时,可以在淀积室2内同时地或依次地和重复地施加紫外辐射和直流偏压。
上述细节和设备1应足以使本发明的处理得到理解。进一步的细节可以在发布于1995年10月10目的美国专利No.5,456,945中找到。
2、处理的详细说明
参见图4,该图示出了说明制作根据本发明的分层超晶格材料薄膜的一个示范性流程图。在步骤P1至P6中制备液体原料(原液)。在所示的制作分层超晶格材料的优选处理中,该材料有三种金属元素。在该优选实施例中,在步骤P1至P3中分别制备一种初始原液,其方法是使一种金属或金属化合物与一种羧酸发生反应,形成一种溶解在一种溶剂中的羧酸金属。也即在本实施例中金属成份是羧酸金属。用于反应的优选羧酸是例如2-乙基己酸这样的具有中等长度配合基体的羧酸,虽然也可以用其他羧酸。溶剂的沸点最好在110℃至170℃范围内。优选的溶剂是:例如2-甲氧基乙醇等醇类、例如二甲苯和正辛烷等芳香族碳氢化合物、以及例如n-醋酸丁酯等酯类,虽然也可以使用表A所列的各种溶剂。
所用金属的量通常是成比例的,使得每种金属的等价重量等于所希望分层超晶格材料的化学表达式中金属的分子重量。铅是一个例外。由于氧化铅比其他金属有较高
表A
溶剂                          沸点
二甲苯                       138℃-143℃
n-醋酸丁酯                   126.5℃
正辛烷
N,N-二甲基甲酰胺             153℃
2-甲氧基醋酸酯               145℃
甲基异丁酯酮                 116℃
甲基异戌酯酮                 144℃
戌基醇                       132℃
环己酮                       156℃
2-乙氧基乙醇                 135℃
2-乙氧基乙基醚               162℃
甲基丁酯酮                   127℃
己基醇                       157℃
2-戊醇                       119℃
丁酸乙酯                     121℃
硝基乙烷                     114℃
间二氮苯                     123℃
1,3,5三氧烷                  115℃
异丁酸异丁酯                 147℃
丙酸异丁酯                   137℃
丙酸丙醋               122℃
乳酸乙酯               154℃
n-丁醇                 117℃
n-戊醇                 138℃
3-戊醇                 116℃的蒸汽压,并且大量的铅在焙烤和退火时蒸发成氧化铅,所以通常要含有比等价的化学表达式量多1%至100%的铅,最好多3%至10%。对于在处理中会蒸发或发生其他损失的材料,例如铋、铊和锑,也可以采用多余量。对于铋,在约2%至70%的多余量下得到了极化的结果,其中最好的结果是在10%于40%的多余量情况下得到的,不过这一比例系数强烈地依赖于加热步骤P11和P12的细节。
如果希望在材料中添加掺杂剂,则可在步骤P5中以与步骤P1-P3中类似的方法制备掺杂元素的初始原液。或者,掺杂剂也可以在混合步骤P6中加入。
步骤P1、P2、P3和P4最好这样进行:把金属或例如烷氧基金属等其他金属化合物与羧酸和溶剂相混合并加以搅拌。可以逐渐加热到70℃至90℃的范围以帮助反应和溶解,但通常不需要这样做。图中的实线箭头表示,化学师将在同一个容器内进行P1、P2、P3这三个步骤,也即,把第一种金属或金属化合物、第一种份量的羧酸、和第一种溶剂放入容器,然后该金属或金属化合物与羧酸发生反应,反应产物被溶解;然后把第二种金属或金属化合物放入同一容器中,加上另外的羧酸和溶剂并加以搅拌,使第二种金属或烷氧基金属发生反应并使反应产物溶解;然后加入第三种金属或金属化合物、第三种羧酸和第三种溶剂,使金属或金属化合物发生反应,并且溶解反应产物。在该处理中,最好首先加入反应最强的金属或金属化合物,然后加入反应次强的金属或金属化合物,最后加入反应最弱的金属或金属化合物。也有可能会希望在每次或几次金属和/或金属化合物的反应和溶解之后进行蒸馏步骤。或者,也可以在各个分开的容器中进行各个金属和/或金属化合物与羧酸和溶剂的混合、反应和溶解,以及需要时对产物的蒸馏,然后再在步骤P6中使三种不同溶液混合。根据所用溶剂不同和金属元素容易获得的形态的不同,可以把分别制作各个金属原液或在同一容器中制作原液以及进行或不进行蒸馏做不同的选择和组合。此外,应该理解,如果所希望的超晶格材料只含两种金属元素,则只需让两种金属或金属化合物反应和溶解;如果所希望的超晶格材料含有4种或更多种金属元素,则需要让4种或更多种金属或金属化合物反应和溶解。还应该理解,P1、P2、P3中任一个步骤都可以用已制备好的羧酸金属来取代。另外,也可以采用许多其他制备原液的处理,例如发布于1995年11月21日的美国专利No5,468,679中所讨论的各种处理变体。
制备了经过反应和溶解的羧酸金属溶液后,在步骤P6中通过对溶液的加热和搅拌使原液混合和蒸馏,以让各成份进一步反应并把溶液减少到希望的体积和粘滞度(这取决于该溶液是准备存放起来还是立即使用),并且/或者除去某些液体,如水。一般,如果希望除去某些液体,可把溶液加热到待去除液体的沸点之上,但低于待保留液体的沸点。蒸馏该溶液直到所有希望除去的溶剂都已被蒸发并达到所需的体积和粘度。为了除去所有不希望的溶剂并得到希望的体积和粘度,可能会有必要在蒸馏过程中多次添加所希望的溶剂。最好尽可能地把水蒸馏掉,使得到的初始原液基本上是无水的。
或者,也可以选择进行一个独立于步骤P6或与步骤P6相结合的溶剂交换步骤。在该步骤中,加入一种溶剂,例如二甲苯,并蒸馏掉其他的溶剂。这一溶剂交换步骤可以作为制备准备存储的原液的最后一个步骤执行,也可作为雾化步骤P9前面的一个步骤执行;前者使溶剂改变成可良好存储的溶剂,后者使溶剂改变成可良好淀积的溶剂,或者为这两个目的而执行。如果已经知道某种溶剂,例如二甲苯是较好的溶剂,则可以在步骤P1、P2、P3、P4和/或P5中加入这种溶剂,然后在蒸馏步骤P6中把其他溶剂蒸馏掉。
在紧接着雾化之前的步骤P8中,可以在原液中加入一种引发剂。引发剂是一种能帮助引发雾化的高蒸汽压、低沸点的溶剂。原液中的金属组份最好也能溶解于引发剂,也即引发剂最好是金属组分的一种溶剂。最好用沸点在约50℃至100℃之间的液体作为引发剂。可用作引发剂的液体的例子在表B中给出。
表B
引发剂                       沸点
甲基乙基酮(2-丁酮)            80℃
异丙醇                        82℃
甲醇                          64.7℃
四氢呋喃                      67℃
发布于1995年6月13目的美国专利No.5,423,285给出了制备分层超晶格原液的一些例子。现在可以从Kujundo ChemicalLaboratory Co.Ltd(KJC)(Kujundo化学实验室有限公司,KJC)(地址:No.1-28 5Chome,Chiyoda,Sakado-shi,Saitama pref.,Japan(日本))购买到用上述处理方法制备的分层超晶格材料原液。
例1
在本优选处理方法中,在6.5ml的含有溶于二甲苯的2-乙基己酸铋、锶和钽的KJC-锶铋钽-34611F溶液中,混入5.5ml的甲基乙基酮(MEK),再加入2ml的六甲基乙硅氮烷。这最后的原液被置入云雾发生器46-1。把淀积室12抽空到10-6Torr(乇)。接通旋转电机18使基底支座4以每分40转的转速旋转。然后接通紫外源16 30分钟,以排去淀积室内和基底上的湿气。缓慢地给淀积室回充惰性的氮气,直到压力约为595Torr。接着打开处理真空管路以使淀积室压力稳定在595Torr左右。在步骤P9中,打开淀积阀门49-1和47,让氩气通过紫外云雾发生器46,然后接通云雾发生器产生云雾。在步骤P10中,让云雾流进淀积室129分钟,并淀积在一个由淀积了二氧化硅层624、钛层626和铂层628的硅片622所组成的基底5上。在这整个过程中紫外源16一直是接通的。在步骤P11中把晶片600取出淀积室12并放置在一个电热板上于150℃温度下干燥1分钟,然后在步骤P12中在氧气中于725℃快速热退火(RTA)30秒钟。第一层的厚度是900A。然后把晶片600放回淀积室12,再次由步骤P9和P10形成云雾和淀积另一层6分钟。然后取出晶片,于260℃下焙烤4分钟,并再次在氧气中进行725℃的RTA处理30秒钟,接着在步骤P13中在氧气中退火1个小时。得到的膜层506约为1400A厚。
在这两次镀膜处理的末尾都要断开云雾发生器46-1、紫外源16和基底旋转电机18,关闭淀积阀47、断开云雾发生器46-1,并对多管组件40通风直到云雾发生器46-1达到环境温度。在整个淀积处理的最后,用氩气通过排气口705清洗多管系统42。
在退火步骤P13之后,在步骤P14中完成集成电路器件600,也即,溅射上第二铂电极632,然后用众知的光致抗蚀技术对晶片蚀刻,产生多个电容器604。
利用10000HZ和1、3、4、5、6、7、8、9和10V下的非补偿Sawyer-Tower(索耶-托威)电路,对用上述处理方法制作的钽酸锶铋电容器进行了迟滞特性测量。图8示出了室温下的结果。纵坐标是极化强度,单位是微库仑每平方厘米,横坐标是施加的电场强度,单位是千伏特每厘米。这些迟滞曲线表明这种电容器用于存储器将有良好性能。除了1V的那些曲线之外,所有曲线几乎互相重叠,表明在集成电路的常用电压范围中电学性质是十分恒定的。对于5V的曲线,极化率2pr大于19微库仑/厘米2,对于3至10V范围内的所有电压这一数据基本相同。对于5V的曲线,矫顽电场2Ec约为85V,对于3至10V范围内的所有电压这一数据基本相同。
图9示出用上述处理方法制作的样品在室温下的剩余极化强度+Pr和-Pr(单位:微库仑/平方厘米)与开关循环次数的开关曲线。测量条件是10000Hz和1MHz的振幅为5V的三角形波。一直到109次循环之前,两条曲线都基本上平坦。在本技术领域内这种曲线通常叫做疲劳曲线,因为这种曲线的下降表明铁电特性随开关循环次数的增加而降低,也即所谓的铁电材料疲劳。在本申请的部分发明人发现了分层超晶格材料的一些异常特性之前,在该图的循环次数范围内所有已知的铁电材料都有50%或更多的疲劳。该图表明,用本发明处理方法制备的钽酸锶铋在具有良好的阶梯覆盖性的同时还保持了抗疲劳特性。
图10示出对同一样品测得的室温下的漏电流(单位:安培每平方厘米)与施加电压(单位:伏特)的关系曲线。对于所有的测量电压,漏电流都小于10-6安培每平方厘米。
如前所述,图5是例1中一个淀积在铂基底上的实际钽酸锶铋层的电子显微图的示意图。
所有上述结果都是极佳的,并可以与平面型电容器中的钽酸锶铋所得到的最好结果相比较。所以,采用六甲基乙硅氮烷在保持特别的电特性的同时还提供了极佳的阶梯覆盖性。
例2
为了检验上述结果,除了不使用六甲基乙硅氮烷之外,用上述同样的处理方法制备了第二组样品,所有样品都出现了蓝色斑点,经放大后证明它们是厚度变化。虽然少量样品的极化率2Pr具有前面给出的值,但典型的值约为14微库仑每平方厘米,表明超晶格材料对基底的覆盖有变化。显微照片确认了不良的阶梯覆盖性。虽然有可能找到能产生良好电特性的对于本发明原液和处理方法其余部分的各种变体,但除了用六甲基乙硅氮烷之外,却找不到能得到均匀厚度和良好阶梯覆盖性的变体。
例3
除了采用铌酸锶铋钽溶液之外,用上述例1同样的处理方法制备了第三组样品。阶梯覆盖性基本上与例1的锶铋钽电容器样品的相同。由于其极佳的外貌,可以期望其电子特性也同样会是极佳的,虽然目前还没有对之进行测量。
虽然已经说明了目前被认为是本发明的优选实施例的一些例子,但应该理解,可以在不偏离本发明精神或基本特征的情况下以其他一些具体形式来实施本发明。既然已公开了在上述液体原料淀积处理中采用六甲基乙硅氧烷的优点,可能会发现这种溶剂对于其他液体淀积处理也是有用的。因此应该认为这里的各实施例是说明性的而不是限制性的。本发明的范畴由所附权利要求指明。

Claims (10)

1、一种制作含有固体金属化合物薄膜(506,860)的集成电路(600,850)的方法,上述这种类型的方法包括提供集成电路基底(5,858)、在上述基底上形成上述固体薄膜、和把上述固体薄膜的至少一部分包含到上述集成电路的一个电元件(604,872)中以完成(P14)上述集成电路的制作等步骤,上述方法的特征在于上述形成步骤,该步骤包括以下步骤:
提供(P8)一种原液,该原液含有:至少一种金属,其分量能有效地形成含有上述金属的所希望的材料;以及六甲基乙硅氮烷;把上述含有上述六甲基乙硅氮烷的原液施加(P10)到上述基底上,以在上述基底上形成一个含有上述金属的液体层;以及处理(P11、P12、P13)上述基底上的上述液体层,以在上述基底上形成上述固体薄膜(506,860)。
2、根据权利要求1的制作集成电路的方法,其中上述材料包括分层超晶格材料。
3、根据权利要求1的制作集成电路的方法,其中上述施加步骤包括:
(b)把上述基底(5)放入一个封闭的淀积室(2)内;
(c)产生上述原液的云雾;以及
(d)使上述云雾流经上述淀积室以在上述基底上形成一层原液。
4、根据权利要求3的方法,其中上述提供原液的步骤的进一步特征在于下述步骤:在上述产生云雾步骤之前,向上述原液添加一种其沸点在50℃至100℃之间的引发剂。
5、根据权利要求4的方法,其中上述引发剂包括从下述这组溶剂中选出的一种溶剂:甲基乙基酮、异丙醇、甲醇和四氢呋喃。
6、根据权利要求1的制作集成电路的方法,其中上述施加步骤包括利用旋镀法把上述原液施加到上述基底上。
7、根据权利要求1的方法,其中上述原液包括一种溶剂和一种金属化合物,上述金属化合物从烷氧基金属和羧酸金属这组金属化合物中选出。
8、根据权利要求1的方法,其中上述金属包含从下述这组金属中选出的金属:锶、钙、钡、铋、镉、铅、钛、钽、铪、钨、铌、锆、钪、钇、镧、锑、铬和铊。
9、一种用来形成金属氧化物的原液,上述原液的特征在于它包括:多种金属组分,它们的分量使得当把上述原液施加到基底上并予以加热时能有效地形成一种分层超晶格材料;以及一种包括六甲基乙硅氮烷的溶剂。
10、根据权利要求9原液,其中上述溶剂还包含从下述这组液体中选出的一种液体:甲基乙基酮、异丙醇、甲醇、四氢呋喃、二甲苯、n-醋酸丁酯、正辛烷和2-甲氧基乙醇。
CN97197971A 1996-09-16 1997-08-18 使用六甲基乙硅氮烷的液体源薄膜的形成 Pending CN1231063A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/714,774 1996-09-16
US08/714,774 US5843516A (en) 1996-09-16 1996-09-16 Liquid source formation of thin films using hexamethyl-disilazane

Publications (1)

Publication Number Publication Date
CN1231063A true CN1231063A (zh) 1999-10-06

Family

ID=24871400

Family Applications (1)

Application Number Title Priority Date Filing Date
CN97197971A Pending CN1231063A (zh) 1996-09-16 1997-08-18 使用六甲基乙硅氮烷的液体源薄膜的形成

Country Status (7)

Country Link
US (3) US5843516A (zh)
EP (1) EP0925606A1 (zh)
JP (2) JP3788628B2 (zh)
KR (1) KR100300655B1 (zh)
CN (1) CN1231063A (zh)
TW (1) TW365683B (zh)
WO (1) WO1998011603A1 (zh)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6143063A (en) * 1996-03-04 2000-11-07 Symetrix Corporation Misted precursor deposition apparatus and method with improved mist and mist flow
US5972428A (en) * 1996-03-05 1999-10-26 Symetrix Corporation Methods and apparatus for material deposition using primer
KR100524204B1 (ko) * 1998-01-07 2006-01-27 동경 엘렉트론 주식회사 가스 처리장치
US6461675B2 (en) 1998-07-10 2002-10-08 Cvc Products, Inc. Method for forming a copper film on a substrate
US6190732B1 (en) 1998-09-03 2001-02-20 Cvc Products, Inc. Method and system for dispensing process gas for fabricating a device on a substrate
TW391895B (en) * 1998-10-02 2000-06-01 Ultra Clean Technology Asia Pt Method and apparatus for washing and drying semi-conductor devices
US6294836B1 (en) * 1998-12-22 2001-09-25 Cvc Products Inc. Semiconductor chip interconnect barrier material and fabrication method
US6245655B1 (en) 1999-04-01 2001-06-12 Cvc Products, Inc. Method for planarized deposition of a material
US6204204B1 (en) * 1999-04-01 2001-03-20 Cvc Products, Inc. Method and apparatus for depositing tantalum-based thin films with organmetallic precursor
US6448190B1 (en) 1999-05-21 2002-09-10 Symetrix Corporation Method and apparatus for fabrication of integrated circuit by selective deposition of precursor liquid
US6627995B2 (en) 2000-03-03 2003-09-30 Cvc Products, Inc. Microelectronic interconnect material with adhesion promotion layer and fabrication method
US6444263B1 (en) 2000-09-15 2002-09-03 Cvc Products, Inc. Method of chemical-vapor deposition of a material
EP1302441B1 (en) * 2001-10-10 2007-01-03 Rohm And Haas Company An improved method for making lithium borohydride
US7727777B2 (en) * 2002-05-31 2010-06-01 Ebrahim Andideh Forming ferroelectric polymer memories
US6794284B2 (en) * 2002-08-28 2004-09-21 Micron Technology, Inc. Systems and methods for forming refractory metal nitride layers using disilazanes
US6995081B2 (en) * 2002-08-28 2006-02-07 Micron Technology, Inc. Systems and methods for forming tantalum silicide layers
US6967159B2 (en) 2002-08-28 2005-11-22 Micron Technology, Inc. Systems and methods for forming refractory metal nitride layers using organic amines
TW200506093A (en) * 2003-04-21 2005-02-16 Aviza Tech Inc System and method for forming multi-component films
US20050070126A1 (en) * 2003-04-21 2005-03-31 Yoshihide Senzaki System and method for forming multi-component dielectric films
JPWO2004097854A1 (ja) * 2003-04-30 2006-07-13 旭硝子株式会社 強誘電体薄膜形成用液状組成物および強誘電体薄膜の製造方法
TW200731404A (en) * 2005-04-07 2007-08-16 Aviza Tech Inc Multilayer, multicomponent high-k films and methods for depositing the same
US7521356B2 (en) * 2005-09-01 2009-04-21 Micron Technology, Inc. Atomic layer deposition systems and methods including silicon-containing tantalum precursor compounds
KR101364701B1 (ko) * 2011-11-17 2014-02-20 주식회사 유진테크 위상차를 갖는 반응가스를 공급하는 기판 처리 장치
KR101408084B1 (ko) * 2011-11-17 2014-07-04 주식회사 유진테크 보조가스공급포트를 포함하는 기판 처리 장치
WO2020003603A1 (ja) * 2018-06-26 2020-01-02 国立大学法人京都大学 放射線検出器、及び放射線検出器の製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1217927A (en) * 1983-04-15 1987-02-17 Tsutomu Nanao Inorganic composite material and process for preparing the same
EP0278996A1 (de) * 1987-02-17 1988-08-24 Ibm Deutschland Gmbh Verfahren zur Verbesserung der Haftung von Photoresistmaterialien
US5456945A (en) * 1988-12-27 1995-10-10 Symetrix Corporation Method and apparatus for material deposition
US5316579A (en) * 1988-12-27 1994-05-31 Symetrix Corporation Apparatus for forming a thin film with a mist forming means
US5423285A (en) * 1991-02-25 1995-06-13 Olympus Optical Co., Ltd. Process for fabricating materials for ferroelectric, high dielectric constant, and integrated circuit applications
US5612082A (en) * 1991-12-13 1997-03-18 Symetrix Corporation Process for making metal oxides
JPH05170486A (ja) * 1991-12-25 1993-07-09 Central Glass Co Ltd ガラス表面用撥水処理剤およびその撥水処理ガラス
US5429673A (en) * 1993-10-01 1995-07-04 Silicon Resources, Inc. Binary vapor adhesion promoters and methods of using the same
US5972428A (en) * 1996-03-05 1999-10-26 Symetrix Corporation Methods and apparatus for material deposition using primer

Also Published As

Publication number Publication date
EP0925606A1 (en) 1999-06-30
JP3788628B2 (ja) 2006-06-21
JP2001506801A (ja) 2001-05-22
KR20000036180A (ko) 2000-06-26
JP2006093720A (ja) 2006-04-06
WO1998011603A1 (en) 1998-03-19
KR100300655B1 (ko) 2001-09-29
US5843516A (en) 1998-12-01
US5846597A (en) 1998-12-08
US5849071A (en) 1998-12-15
TW365683B (en) 1999-08-01

Similar Documents

Publication Publication Date Title
CN1231063A (zh) 使用六甲基乙硅氮烷的液体源薄膜的形成
US6056994A (en) Liquid deposition methods of fabricating layered superlattice materials
US6511718B1 (en) Method and apparatus for fabrication of thin films by chemical vapor deposition
CN1184348C (zh) 选择性沉积铋基铁电薄膜的方法
US5456945A (en) Method and apparatus for material deposition
JP3162717B2 (ja) 集積回路の製造方法
US5614252A (en) Method of fabricating barium strontium titanate
JP3747325B2 (ja) 薄膜電子素子、電子素子を作成する方法、薄膜強誘電容量素子の作成に使用する液状前駆体溶液、薄膜強誘電材料の製造に使用する前駆体溶液を作成する方法
KR100316442B1 (ko) 낮은 누설 전류와 낮은 분극피로를 가지는 전자 소자 제조를 위한 uv 방사 방법 및 금속 산화물 결정 재료
CN1114577C (zh) 一种生产铋层结构的铁电薄膜的方法
JPH09504500A (ja) 超格子物質を作成するための化学蒸着プロセス
CN1181840A (zh) 介质电容器的底层电极结构及其制造方法
JP2001500318A (ja) 集積回路にシリコンジオキシドおよびシリコンガラス層を形成する方法および装置
CN1358326A (zh) 高介电常数的金属氧化物薄膜
Huffman Liquid source misted chemical deposition (LSMCD)–a critical review
JP3803583B2 (ja) 超格子材料を製造する高速ランプアニール法
CN1194060A (zh) 具有极化兼容缓冲层的金属绝缘体半导体结构
CN1199506A (zh) 包含基材和线路层、且在基材和线路层之间带有缓冲层的集成电路
JP2006522352A (ja) 基板上への層の堆積法
CN1351761A (zh) 母液选择沉淀法制备集成电路
CN1311896A (zh) 制造叠层超晶格材料和制造包括该材料的电子器件的低温处理方法
JP3238663B2 (ja) 材料蒸着方法
CN1365400A (zh) 陶瓷的制法及其制造装置以及半导体器件和压电元件
US5908658A (en) Process for forming thin film metal oxide materials having improved electrical properties
KR100253571B1 (ko) 반도체소자의 캐패시터 형성방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ERR Gazette correction

Free format text: CORRECT: INVENTOR; FROM: KLAUS NUOSIHEFEIER TO: CARLOS A. PAZ DE ARAUJO

C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication