CN1211943A - 经过磷化处理的铁粉及其制造方法 - Google Patents

经过磷化处理的铁粉及其制造方法 Download PDF

Info

Publication number
CN1211943A
CN1211943A CN97192452A CN97192452A CN1211943A CN 1211943 A CN1211943 A CN 1211943A CN 97192452 A CN97192452 A CN 97192452A CN 97192452 A CN97192452 A CN 97192452A CN 1211943 A CN1211943 A CN 1211943A
Authority
CN
China
Prior art keywords
powder
iron
phosphoric acid
matrix
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN97192452A
Other languages
English (en)
Other versions
CN1223422C (zh
Inventor
帕特里西亚·詹森
拉尔斯-艾克·拉尔森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoganas AB
Original Assignee
Hoganas AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from SE9600724A external-priority patent/SE9600724D0/xx
Priority claimed from SE9600725A external-priority patent/SE9600725D0/xx
Application filed by Hoganas AB filed Critical Hoganas AB
Publication of CN1211943A publication Critical patent/CN1211943A/zh
Application granted granted Critical
Publication of CN1223422C publication Critical patent/CN1223422C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/02Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using non-aqueous solutions
    • C23C22/03Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using non-aqueous solutions containing phosphorus compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/145Chemical treatment, e.g. passivation or decarburisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Soft Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)
  • Glanulating (AREA)
  • Materials For Medical Uses (AREA)

Abstract

本发明涉及一种新颖的低氧粉末,它包括主要由具有绝缘的含氧和含磷隔离层的纯铁构成的基体粉末的颗粒。新粉末的含氧量按重量计至多比基体粉末的含氧量高0.2%,并且在用ESCA方法测量时,O:P比为30~1,最好为15~12,更好为10~3。本发明还涉及一种制备铁基粉末的新方法,它包括下列步骤:制备由水粉碎铁粉或海绵铁粉构成的基体粉末;用磷酸在有机溶剂中的溶液处理混合物并干燥得到的混合物,由此在混合的同时将磷酸溶液喷射到基体粉末上。

Description

经过磷化处理的铁粉及其制造方法
本发明涉及一种新的铁基粉末。更具体一些,本发明涉及一种用于制备软磁材料的新的铁基粉末,该软磁材料在高频和低频下使用时都具有改进的性能。本发明还涉及一种用于制造新的铁基粉末的新方法。
在用粉末冶金方法制造结构元件时,铁基颗粒曾长期被用作基体材料。铁基颗粒首先在高压下在模具中被模制,以便得到所要求的形状。在模制步骤之后,结构元件通常要经过烧结步骤,从而赋予零件以必要的强度。
磁芯元件也曾经用这种粉末冶金方法制造,但是,在这些方法中所用的铁基颗粒通常都涂覆以环绕的绝缘材料层。
铁芯元件的两个主要特性是其磁导率和铁芯损耗特性。材料的磁导率是其被磁化的能力或其传播磁通量的能力的指标。磁导率被定义为感应的磁通量与磁化力或磁场强度之比。当磁性材料受到快速变化的磁场的作用时,芯部的总能量由于产生滞后回线损失和/或涡流损耗而减少。滞后回线损失是由于必须消耗能量,以在铁芯元件中克服剩余磁力而产生的。涡流损耗的产生是因为由于交流(AC)条件所引起的磁通变化而在铁芯元件中产生电流。
磁芯元件通常用层压的薄钢板制造,但是这些元件难于制造成得到小的复杂零件的网状,并且在高频时遭受大的铁芯损耗。这些叠片基芯子的应用还受到这样的限制,即必须只在薄板的平面中传播磁通量,以免有过大的涡流损耗。作为用于磁芯元件的材料,曾经用烧结的金属粉末代替层压的薄钢板,但是这些烧结的零件也有高的铁芯损失并且主要限于直流(DC)工作。
采用包覆铁基粉末通过粉末冶金制造磁芯元件的研究曾经针对铁粉成分的研制,这种铁粉成分能加强某些物理性能和磁性能,而且不会不利地影响其它性能。所要求的性能包括经过宽广的频率范围的高磁导率,高的压缩强度,低的铁芯损耗和用于压缩模制技术的适合性。
当模制一用于AC动力场合的芯部元件时,通常要求铁颗粒有电绝缘涂层,以减少铁芯损耗。
在文献中公开了各种类型的用于铁颗粒的绝缘涂层。
按照DE 129 1028,用磷酸溶液处理铁粉,接着经过洗涤和干燥。这一工艺的特征为,铁粉的颗粒尺寸最大为10μm,并且除了磷酸以外还用铬酸处理铁粉。该公报没有公开由铁粉制备的材料的磁性能。
此领域中的另一公开文献为DE2825235,它公开了一种由被涂覆以氧化物层的颗粒组成的铁粉。颗粒尺寸在0.05mm至0.15mm之间,并且颗粒具有氧化物涂层,该涂层按颗粒重量计算包括0.3%-0.8wt%的氧。氧化物涂层可以通过在空气中加热或通过化学氧化得到,但是没有公开任何工艺参数和包覆粉粒的分析。根据一些例子可以计算出,所得到的磁导率的范围为30-35。
欧洲专利申请434669涉及一种磁粉,其中,电绝缘涂层将磁粉颗粒分开。颗粒具有10-300μm的平均颗粒尺寸,并且包覆磁粉的每个颗粒的绝缘材料包括厚度为10μm或更小的连续绝缘膜,而且此膜包括一金属酚盐或其分解产物。
WO 95/29490公开了通过采用一种以水中的磷酸为基础的方法得到的绝缘层。
最后,DE专利3439397公开了由磷酸盐涂层电绝缘的铁颗粒。这种涂层可以例如是磷酸镁或磷酸锌。绝缘的磷酸盐涂层应当为铁颗粒的重量的0.1%-1.5%。此公开文献的例1较详细地披露了这种电绝缘的涂层是通过在浓度为89%的磷酸在丙酮中的溶液中搅拌铁粉而得到的。按照WO专利申请的粉末和按照DE专利的粉末之间的比较性研究表明,按照DE专利的绝缘层包括比按照WO申请的粉末多得多的氧和磷。
现在已经非常意外地发现,通过采用按照本发明的新的低氧粉末可以得到显著改进的性能。这些性能包括强度、密度、磁感和磁导率,同时有较低的损耗。
新的粉末以一种基体粉末为基础,它主要由纯铁组成并且可以例如是可从市场上得到的水粉碎铁粉或具有圆的,不规则的或扁平的颗粒的海绵铁粉。可以使用的不规则的、水粉碎的铁粉的典型例子为可以从瑞典Hgans公司得到的ABC 100和ASC100系列的粉末。基体粉末的颗粒尺寸取决于粉末的预定最终用途并且通常小于200μm,而且最好小于150μm。对于较高的频率,优选小于45μm的颗粒尺寸。更为优选的是,多数铁基粉末的颗粒应有大于10μm的颗粒尺寸。
按照本发明,此基体粉末设有一氧涂层或隔离层,其与众不同的新特征在于,新粉末的氧气量只比基体粉末的略高一些。更具体一些,新粉末中的氧气量按重量百分比计比基体粉末中的至多多0.2%,最好至多多0.15%。
可以认为,对于新粉末的性能来说,颗粒的表面结构和成分是重要的,为此,曾经用FSCA法研究了新粉末(参看:“第六届国际X射线光学和微量分析会议会刊”东京大学出版社,1972,385~392页和393~398页;或Anthony R.west著的“固体化学及其应用”,由John willey and sons出版社出版1984,第86页和第92~96页)。按照此方法,O∶P比此应当小于30并大于1。此比例最好应小于15,且大于2,小于10并大于3更好。
新粉末的颗粒的表面膈离层的另一重要特征为厚度,而且通过使用AES方法(参看上面所引用的出版物“固体化学及其应用”)已发现,绝缘膈离层或涂层应当小于100nm,最好小于70nm,更好的是小于50nm。
按照本发明的绝缘涂层是通过以一段足以得到所要求的量的时间用有机溶剂中的磷酸处理基体粉末而施加在基体粉末上的。磷酸在有机溶剂中的浓度应当大大地低于在DE专利中公开的浓度并在0.5%~50%之间变化,最好在0.5%~20%之间变化,更好一些在1%~5%之间变化。新粉末可以通过在一段足以达到上述水平的时间内将磷酸溶液喷射在基体粉末上而得到。磷酸的浓度最好应当小于按重量计的l0%,更好一些小于5%。
按照本发明的新的铁基粉末在压实步骤之前可以与按重量计为0.1%~1.0%的润滑剂和任选的一种有机热固性或热塑性树脂结合。润滑剂的代表性例子为Kenolube、H蜡、EBS和像硬脂酸锌这样的硬脂酸盐。有机树脂可以从由Peracit、Ultem组成的组中选取。
压实可以在最高达1000Mpa的传统压力下进行,而且压实可在环境温度或高温下进行。
本发明进一步地由下列试验说明。
使1kg在市场上可从瑞典Hgans公司得到的粉末ABC100。30的试样分别通过使用在水和乙醇中的正磷酸而受到涂层处理。在一段足以得到氧和磷的涂层或膈离层的时间内,将其量在2.5~120ml/kg间变化的溶液喷射在铁基粉末上随后干燥所有的试样,以便去掉溶剂。所得到的粉末的ESCA分析显示,通过使用水溶液得到的粉末的O∶P比(原子%O∶原子%P)约为30,而且通过采用按照本发明的方法得到的同样比例在5~10之间变化。
对试样的化学分析表明,通过使用水溶液得到的粉末的氧含量要比基体粉末中的高0.2%以上,而通过采用按照本发明的方法得到的粉末的氧含量要比基体粉末中的高0.2%以下。试样的AES分析表明,所有试样的氧化物厚度均小于100nm。
下表综合了用由A指代的新粉末得到的数据,以与本发明范围以外的粉末比较。
                            表1
   试样    O/P   原子%P     原子%O    O总量    O增加    P总量    P增加
 基体粉末(1)    0.00    53.98    0.067      0    0.003      0
    A4    9.3    5.83    53.98    0.070    0.003    0.004    0.001
    A3    6.95    5.91    41.13    0.093    0.026    0.014    0.011
    A2    4.6    13.49    61.92    0.171    0.104    0.048    0.045
  参考B    29.7    1.92    57.01    0.214    0.147    0.013    0.010
采用以单色Al作为X射线源的KRATOS AXIS HS光谱仪的ESCA测量O/P比,Kα=1486.6eV;-39.5nm。
O和P的量用化学分析测量。
参考B是根据在WO 95/29490中公开的方法用水溶液制备的试样。
表2公开了与本发明范围以外的粉末相比,用从新型粉末制备的材料得到的湿强度和密度。粉末在800Mpa下压实并加入0.6%的Kenolube作为润滑剂。
                        表2
   材料  湿强度(N/mm2)     密度(g/cm3)
   参考B      26.71        7.25
    A      39.55        7.31
   参考C      19.24        7.14
参考C是按照DE专利3439397制备的试样。
图1示出了按照本发明的低氧粉末在用低氧粉末制备的试样的磁性能方面的改进效果。粉末曾经用其由ESCA方法测量的O/P比定义。试样通过在800MP下压实粉末并在500℃加热压实的试样30min而制备。“参考B”代表通过对同样的铁基粉末采用水处理而得到的结果。可以看出,采用按照本发明的新的低氧铁可以得到惊人的改进。
图2公开了作为图1中示出的试样的总含氧量的函数的改进效果。

Claims (8)

1.一种低氧粉末,包括主要由具有绝缘的含氧和含磷膈离层的纯铁构成的基体粉末的颗粒,其特征为,粉末的含氧量按重量计至多比基体粉末的含氧量高0.2%,并且用ESCA方法测量,O∶P比在30和1之间,较好地是在15和2之间,最好在10和3之间。
2.如权利要求1所述的低氧粉末,其特征为,基体粉末为海绵铁粉或水粉碎的铁粉。
3.如权利要求1或2所述的低氧粉末,其特征为,用AES方法测量,氧膈离层的厚度至多为100nm。
4.一种用于制备铁基粉末的方法,它包括下列步骤:制备由水粉碎铁粉或海绵铁粉构成的基体粉末,用磷酸在有机溶剂中的溶液处理混合物并干燥所得到的混合物,其特征为,在混合的同时将磷酸溶液喷射到基体粉末上。
5.如权利要求4所述的方法,其特征为,磷酸在有机溶剂中的浓度在按重量计为0.5%~20.0%之间变化,最好在按重量计为0.5%~5%之间变化。
6.如权利要求4或5所述的方法,其特征为,有机溶剂是从包括乙醇和丙酮的组中选取的。
7.如权利要求4至6中的任一项所述的方法,其特征为,在一段足以提供一按AES方法测量至多为100nm的绝缘涂层的时间里将磷酸溶液喷射到铁基粉末上。
8.如权利要求4至7中的任一项所述的方法,其特征为,在一段足以提供按重量计最多比基体粉末的含氧量高0.2%的粉末的含氧量的时间里,将磷酸溶液喷射到铁基粉末上。
CNB97192452XA 1996-02-23 1997-02-19 经过磷化处理的铁粉及其制造方法 Expired - Lifetime CN1223422C (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
SE9600724A SE9600724D0 (sv) 1996-02-23 1996-02-23 Iron based powder
SE96007240 1996-02-23
SE96007257 1996-02-23
SE9600725A SE9600725D0 (sv) 1996-02-23 1996-02-23 Manufacturing method

Publications (2)

Publication Number Publication Date
CN1211943A true CN1211943A (zh) 1999-03-24
CN1223422C CN1223422C (zh) 2005-10-19

Family

ID=26662527

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB97192452XA Expired - Lifetime CN1223422C (zh) 1996-02-23 1997-02-19 经过磷化处理的铁粉及其制造方法

Country Status (14)

Country Link
US (1) US6348265B1 (zh)
EP (1) EP0881959B1 (zh)
JP (1) JP4187266B2 (zh)
KR (1) KR100454855B1 (zh)
CN (1) CN1223422C (zh)
AT (1) ATE248674T1 (zh)
AU (1) AU714473B2 (zh)
BR (1) BR9707648A (zh)
DE (1) DE69724589T2 (zh)
ES (1) ES2203784T3 (zh)
MX (1) MX220648B (zh)
PL (1) PL183359B1 (zh)
RU (1) RU2176577C2 (zh)
WO (1) WO1997030810A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100439012C (zh) * 2003-09-09 2008-12-03 霍加纳斯股份有限公司 铁基软磁粉末
CN101142044B (zh) * 2005-01-25 2010-12-01 大冶美有限公司 含Mg氧化膜包覆的铁粉末
US8075710B2 (en) 2005-06-15 2011-12-13 Höganäs Ab Soft magnetic composite materials
CN102917819A (zh) * 2010-05-07 2013-02-06 赫格纳斯公司 改进的压实方法
CN105742049A (zh) * 2016-04-29 2016-07-06 成都锦粼科技有限公司 一种铁芯及其制作方法
CN107745120A (zh) * 2014-06-20 2018-03-02 昭荣化学工业株式会社 碳被覆金属粉末、导电性糊剂及层叠电子部件、以及碳被覆金属粉末的制造方法

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6903641B2 (en) 2001-01-19 2005-06-07 Kabushiki Kaisha Toyota Chuo Kenkyusho Dust core and method for producing the same
SE0102103D0 (sv) 2001-06-13 2001-06-13 Hoeganaes Ab High density soft magnetic products and method for the preparation thereof
JP4060101B2 (ja) 2002-03-20 2008-03-12 株式会社豊田中央研究所 絶縁皮膜、磁心用粉末および圧粉磁心並びにそれらの製造方法
US7494600B2 (en) * 2003-12-29 2009-02-24 Höganäs Ab Composition for producing soft magnetic composites by powder metallurgy
SE0303580D0 (sv) * 2003-12-29 2003-12-29 Hoeganaes Ab Composition for producing soft magnetic composites by powder metallurgy
JP2005213621A (ja) * 2004-01-30 2005-08-11 Sumitomo Electric Ind Ltd 軟磁性材料および圧粉磁心
JP4325950B2 (ja) * 2004-03-31 2009-09-02 住友電気工業株式会社 軟磁性材料および圧粉磁心
US7416578B2 (en) * 2004-09-17 2008-08-26 Höganäs Ab Powder metal composition
US7824324B2 (en) 2005-07-27 2010-11-02 Neuronetics, Inc. Magnetic core for medical procedures
WO2007036679A1 (en) * 2005-09-30 2007-04-05 Loughborough University Enterprises Limited Method for preparing insulated particulate metals
CH698498B1 (de) * 2006-03-31 2009-08-31 Alstom Technology Ltd Magnetische abschirmung im stirnbereich des stators eines drehstromgenerators.
WO2008069749A2 (en) * 2006-12-07 2008-06-12 Höganäs Ab Soft magnetic powder
TWI517526B (zh) * 2008-03-19 2016-01-11 好根那公司 永久磁體機
PL2252419T3 (pl) * 2008-03-20 2017-11-30 Höganäs Ab (Publ) Kompozycja ferromagnetycznego proszku i sposób jej wytwarzania
WO2009136854A1 (en) * 2008-05-09 2009-11-12 Höganäs Ab (Publ) Method for improving the magnetic properties of a compacted and heat treated soft magnetic composite component
US8911663B2 (en) 2009-03-05 2014-12-16 Quebec Metal Powders, Ltd. Insulated iron-base powder for soft magnetic applications
IN2012DN03175A (zh) 2009-09-18 2015-09-25 Hoganas Ab Publ
JP5719369B2 (ja) * 2009-09-21 2015-05-20 ホガナス アクチボラゲット 多相固定子デバイス
CN102574934B (zh) * 2009-10-15 2013-10-16 东丽株式会社 核壳颗粒的制造方法、核壳颗粒和使用该核壳颗粒的糊料组合物以及片材组合物
WO2011076579A1 (en) 2009-12-21 2011-06-30 Höganäs Ab (Publ) Stator element for a modulated pole machine
KR20120106984A (ko) 2009-12-21 2012-09-27 회가내스 아베 변조 극기용 회전자
CN102844824B (zh) 2010-02-18 2017-08-15 霍加纳斯股份有限公司 铁磁粉末组合物及其制造方法
CN103119831B (zh) 2010-09-17 2016-06-01 霍加纳斯股份有限公司 用于磁极调制式机器的转子
KR101551228B1 (ko) 2010-12-22 2015-09-08 회가내스 아베 (피유비엘) 조절된 폴 머신을 위한 고정자
CN103270559A (zh) 2010-12-23 2013-08-28 霍加纳斯股份有限公司 软磁粉末
EP2509081A1 (en) 2011-04-07 2012-10-10 Höganäs AB New composition and method
CN102218532B (zh) * 2011-06-10 2013-04-24 莱芜钢铁集团粉末冶金有限公司 一种绝缘铁粉的生产设备和方法
RU2465669C1 (ru) * 2011-08-12 2012-10-27 Геннадий Антонович Говор Способ изготовления композиционного магнитно-мягкого материала
WO2013135569A2 (en) 2012-03-12 2013-09-19 Höganäs Ab (Publ) Stator and rotor for an electric machine
WO2013189863A2 (en) 2012-06-20 2013-12-27 Höganäs Ab (Publ) Rotor for modulated pole machine
EP2936512B1 (en) 2012-12-19 2017-04-05 Höganäs AB (publ) An inductor and inductor core
CN104885167B (zh) 2012-12-19 2017-04-05 霍加纳斯股份有限公司 电感器芯
CN103537700A (zh) * 2012-12-31 2014-01-29 袁志刚 一种片状铝粉粉末涂料的生产方法
DE102013200229B4 (de) * 2013-01-10 2024-06-06 Robert Bosch Gmbh Verfahren zum Herstellen eines weichmagnetischen Verbundwerkstoffs
EP2787612A1 (en) 2013-04-02 2014-10-08 Höganäs AB (publ) Flux switching modulated pole machine
WO2014184105A1 (en) 2013-05-13 2014-11-20 Höganäs Ab (Publ) Inductor
WO2015091762A1 (en) 2013-12-20 2015-06-25 Höganäs Ab (Publ) Soft magnetic composite powder and component
EP3083109B1 (en) 2013-12-20 2019-10-23 Höganäs AB (publ) Soft magnetic powder mix
EP3199264A1 (en) 2016-02-01 2017-08-02 Höganäs Ab (publ) New composition and method
EP3576110A1 (en) 2018-05-30 2019-12-04 Höganäs AB (publ) Ferromagnetic powder composition
US20240049716A1 (en) * 2019-03-07 2024-02-15 Agency For Science, Technology And Research A composite and a method of preparing the same
JP7347354B2 (ja) * 2020-07-17 2023-09-20 トヨタ自動車株式会社 圧粉磁心の製造方法
KR102237022B1 (ko) 2020-08-07 2021-04-08 주식회사 포스코 연자성 철계 분말 및 그 제조방법, 연자성 부품

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2232352A (en) * 1936-04-29 1941-02-18 Rca Corp Production of magnetic material
GB1046241A (en) 1961-08-31 1966-10-19 Secr Defence Improvements in the production of iron powder having high electrical resistivity
US4177089A (en) * 1976-04-27 1979-12-04 The Arnold Engineering Company Magnetic particles and compacts thereof
JPS5416664A (en) 1977-06-08 1979-02-07 Nippon Kinzoku Co Ltd Reactor
EP0434669B1 (en) * 1984-09-29 1994-08-10 Kabushiki Kaisha Toshiba Method of making a coated magnetic powder and a compressed magnetic powder core
DE3439397A1 (de) * 1984-10-27 1986-04-30 Vacuumschmelze Gmbh, 6450 Hanau Verfahren zur pulvermetallurgischen herstellung eines weichmagnetischen koerpers
SE9401392D0 (sv) * 1994-04-25 1994-04-25 Hoeganaes Ab Heat-treating of iron powders

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100439012C (zh) * 2003-09-09 2008-12-03 霍加纳斯股份有限公司 铁基软磁粉末
CN101142044B (zh) * 2005-01-25 2010-12-01 大冶美有限公司 含Mg氧化膜包覆的铁粉末
US8075710B2 (en) 2005-06-15 2011-12-13 Höganäs Ab Soft magnetic composite materials
CN102917819A (zh) * 2010-05-07 2013-02-06 赫格纳斯公司 改进的压实方法
CN102917819B (zh) * 2010-05-07 2015-04-01 赫格纳斯公司 改进的压实方法
CN107745120A (zh) * 2014-06-20 2018-03-02 昭荣化学工业株式会社 碳被覆金属粉末、导电性糊剂及层叠电子部件、以及碳被覆金属粉末的制造方法
CN107745120B (zh) * 2014-06-20 2019-08-20 昭荣化学工业株式会社 碳被覆金属粉末、导电性糊剂及层叠电子部件、以及碳被覆金属粉末的制造方法
CN105742049A (zh) * 2016-04-29 2016-07-06 成都锦粼科技有限公司 一种铁芯及其制作方法

Also Published As

Publication number Publication date
EP0881959A1 (en) 1998-12-09
JP4187266B2 (ja) 2008-11-26
MX9806871A (en) 1999-01-31
PL328509A1 (en) 1999-02-01
EP0881959B1 (en) 2003-09-03
KR100454855B1 (ko) 2004-12-16
WO1997030810A1 (en) 1997-08-28
DE69724589T2 (de) 2004-08-05
CN1223422C (zh) 2005-10-19
RU2176577C2 (ru) 2001-12-10
KR19990087118A (ko) 1999-12-15
ATE248674T1 (de) 2003-09-15
MX220648B (en) 2004-05-28
ES2203784T3 (es) 2004-04-16
AU714473B2 (en) 2000-01-06
JP2000504785A (ja) 2000-04-18
BR9707648A (pt) 1999-07-27
DE69724589D1 (de) 2003-10-09
PL183359B1 (pl) 2002-06-28
AU2238297A (en) 1997-09-10
US6348265B1 (en) 2002-02-19

Similar Documents

Publication Publication Date Title
CN1223422C (zh) 经过磷化处理的铁粉及其制造方法
EP2147445B1 (en) Soft magnetic powder
EP3441989A1 (en) Dust core coated with silica-based insulation, method for manufacturing same, and electromagnetic circuit component
JP4740417B2 (ja) 圧粉磁心用鉄粉及びその製造方法
WO2014157517A1 (ja) リアクトル用圧粉磁心
JP2007088156A (ja) 軟磁性材料、圧粉磁心、軟磁性材料の製造方法、および圧粉磁心の製造方法
JP2020164899A (ja) 複合磁性体およびこれを用いたインダクタ
JP2006225766A (ja) 磁性鉄粉末の熱処理
JP5372481B2 (ja) 圧粉磁心及びその製造方法
JP2010196101A (ja) 圧粉磁心用鉄基軟磁性粉末およびその製造方法、ならびに圧粉磁心
WO2012173239A1 (ja) 圧粉磁心用鉄基軟磁性粉末およびその製造方法、ならびに圧粉磁心
JP2006278833A (ja) 高強度、高磁束密度および高抵抗を有する複合軟磁性焼結材の製造方法
JP5016513B2 (ja) 剥離型複水酸化物を使用した絶縁皮膜形成金属粉末及びその製造方法
US11948715B2 (en) Magnetic composite
Slovenský et al. Preparation and characterization of fe based soft magnetic composites coated by SiO2 layer prepared by Stöber method
JP2005079511A (ja) 軟磁性材料およびその製造方法
CN110814336B (zh) 一种抗氧化吸收剂及其制备方法
JP2007084839A (ja) Ni基合金部材、Ni基合金部材の表面処理方法及び複合磁性体
CA2247150C (en) A low oxygen iron powder and method for the manufacturing thereof
TW415860B (en) Iron based powder
CN117649991A (zh) 一种软磁复合材料粉体的制备方法
KR20180055257A (ko) 철계 분말 및 이의 제조방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term

Granted publication date: 20051019

CX01 Expiry of patent term