CN1209222A - 具有最小能量损失的有源整流器 - Google Patents

具有最小能量损失的有源整流器 Download PDF

Info

Publication number
CN1209222A
CN1209222A CN96180134A CN96180134A CN1209222A CN 1209222 A CN1209222 A CN 1209222A CN 96180134 A CN96180134 A CN 96180134A CN 96180134 A CN96180134 A CN 96180134A CN 1209222 A CN1209222 A CN 1209222A
Authority
CN
China
Prior art keywords
rectifier
transistor
lead
terminal
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN96180134A
Other languages
English (en)
Other versions
CN1104087C (zh
Inventor
P·诺瓦克
R·布格曼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EM Microelectronic Marin SA
Original Assignee
EM Microelectronic Marin SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=8219936&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN1209222(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by EM Microelectronic Marin SA filed Critical EM Microelectronic Marin SA
Publication of CN1209222A publication Critical patent/CN1209222A/zh
Application granted granted Critical
Publication of CN1104087C publication Critical patent/CN1104087C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Abstract

用于电源电路的有源整流器,包括被连接在输入端子(9)和输出端子(8)之间的二极管(4),其特征在于,还包括在基片(50)上形成的并具有一个控制电极(5)和两个传导电极(6,7)的晶体管(2),这后两个电极分别被连接到所述的输入端子(9)和所述的输出端子(8),以及包括由所述电源电路供电的比较器(3),它具有分别被连接到所述输入端子(9)和输出端子(8)的两个输入端(+,-),和被连接到所述晶体管控制电极(5)的一个输出端。

Description

具有最小能量损失的有源整流器
本发明涉及整流器,具体地,涉及包括一个被连接在输入和输出端子之间的二极管的整流器。
众所周知,使用整流器以便完全地或部分地构成各种把由电压发生器产生的交流电压变换成适用于作为电子电路用的电源的直流电压的电路。例如,这样的电路被用于手表,该手表的特点在于具有交流(AC)电压发生器和由它产生的电源所驱动的时间保持电路。在这种手表中,需要整流器电路,以便把由AC电压发生器产生的交流电压变换成适用于驱动时间保持电路的直流(DC)电压。在已知的手表应用中,整流器电路借助于单个二极管完成半波整流,或借助于采用以传统方式排列的四个二极管的电桥来完成全波整流。
然而,在前向偏置时,二极管在其输入和输出端子之间呈现的电压降略大于阈值电压,在此阈值电压下电流开始流入二极管。对于硅结型二极管,这个电压降可以是约为0.7伏,在肖特基二极管的情况下,约为0.4伏。所以,加到时间保持电路的电压可以比AC电压发生器提供的电压小1.4伏,其结果是功率受到损失。在许多情况下,例如在低功率、低电压的应用中,这种功率损失变成很显著,因而是不希望有的。
为了克服这种损失,在理论上可以增加AC发生器线圈的圈数。然而,具有大圈数的线圈很笨重,并可能难于装进小体积的钟表(例如手表)中可提供的有限空间中。如果人们要做出这种具有足够小直径的绕组的线圈以使得它不笨重,则它的制造将成为很难和很贵的。增加AC发生器线圈的圈数也增加线圈的电阻,因而,附加了功率损失。
而且,上述的电压降导致能提供给时间保持电路并且以后由时间保持电路存储的能量的减小。如果AC发生器在任何持续的时间间隔内不工作,那麽在这个不工作时间间隔内,只有较少的能量用于驱动和保持时间保持电路正确地工作。
本发明的一个目的是提供一种可减轻和克服已知整流器缺点的整流器。
本发明的另一个目的是提供在把交流信号变换为直流信号的期间能量损失最小的整流器。
本发明的再一个目的是提供能以集成电路形式实现的整流器,优选地,它是以CMOS技术实现的,它使所需要的外部元件数最小。
本发明的又一个目的是提供实现简便、经济的和占用最小体积的整流器。
考虑到此,本发明提供了一种用于电源电路的整流器,包括被连接在输入和输出端子之间的二极管,其特征在于,所述整流器还包括:在基片上形成的并具有一个控制电极和两个传导电极的晶体管,这两个传导电极分别连接到所述输入端和输出端子;以及由所述电源电路供电的比较器,它具有分别连接到所述输入和输出端子的两个输入端,和连接到所述晶体管控制电极的一个输出端。
二极管在启动时,确保整流器在输入和输出端子之间导通。一旦达到比较器的最小电源电压,二极管就被比较器控制的晶体管短路,这样,在正常工作时,整流器的电压降大大降低。
在本发明的优选实施例中,二极管可以由在基片上形成的寄生结型二极管构成,以便使所需要的外部元件数再进一步最小化。
从以下的对于整流器的各种不同实施例的非限制性例子的说明,本发明的其它目的和优点将变得很明显。这些说明将参照附图被给出,其中:
-图1是包括按照本发明的整流器的半波整流器电路的一个实施例的电路原理图;
-图2是包括按照本发明的多个整流器的全波整流器电路的一个实施例的电路原理图;
-图3是构成图2的两个整流器的一部分的晶体管的横截面示意图;
-图4是包括按照本发明的多个整流器的全波整流器电路的另一个实施例的电路原理图;
-图5是包括按照本发明的多个整流器的全波整流器电路的再一个实施例的电路原理图;
-图6是构成图5的整流器的一部分的晶体管的横截面示意图;
-图7是通过图5的两个晶体管的扩散而形成的几个寄生元件的示意图;
-图8是显示图4的整流器的MOS晶体管的空间排列的实施例的示意图;
现在参照图1,图上显示了有源整流器1,包括MOS晶体管2,比较器3,和二极管4,该二极管优选地是通过把MOS晶体管2扩散在基片中而形成的。在本文中,术语“有源整流器”是指通过使用至少一个有源元件(例如,运算放大器,比较器,晶体管或类似元件)来整流交流信号的器件,它必须由电源供电,与此相对的是“无源整流器”,它只使用无源元件,例如,二极管。类似地,在以下说明中的名词“基片”是指在其上形成晶体管的基片,阱(well)或任何其它结构。
MOS晶体管2包括栅极5,源极6,和漏极7,这后两个电极分别连接到输出端子8和输入端子9。MOS晶体管最好是通常的关断器件(OFFdevice),例如,增强型MOSFET,它在加在其栅极和源极之间的电压为零时,没有明显的漏电流。
比较器3的两个输入端分别被连接到端子8和9。比较器3的输出优选地通过倍压器10被连接到MOS晶体管2的栅极5。在运行期间,比较器3比较在端子8和9之间的电位差。当在端子8和9之间的电位差为正值时,逻辑高信号被提供给倍压器10的输入端。类似地,当在端子8和9之间的电位差为负值时,逻辑低信号被提供给倍压器10的输入端。
倍压器10在来自比较器的输出信号被加到晶体管2的栅极5之前放大该输出信号。这样由倍压器10加在MOS晶体管2的栅极和源极之间的电压便起作用,使得在任何给定的漏-源电压下,晶体管2的漏电流最大。因此,当晶体管2处在导通状态时,在漏极和源极之间的电阻保持为极低。在p-型MOS晶体管的情况下,这种现象被称为负栅极过激励,或在n-型MOS晶体管的情况下,这种现象被称为正栅极过激励。然而,应当看到,本发明的其它实施例可以省略使用这样的倍压器,因为即使没有这种特性,在按照本发明的有源整流器上的电压降也出现明显降低。
有源整流器1的端子8和9与AC发生器11串联,该发生器在其端子和负载12上提供AC电压。有源整流器1提供对由AC发生器11给出的AC电压的半波整流,并提供这个直流整流电压给负载12。负载12包括至少一个电容元件,以使它能存储电荷,这样,正如下面所解释的,作为用于比较器3和倍压器10的电源而进行工作。
从比较器3和倍压器10都由有源整流器1本身产生的整流器直流电压来激励的意义上,有源整流器1提供了它自己的电源电压。比较器3和倍压器10每个包括两个电源端子,它们分别连接到端子8和在AC发生器11与负载12之间的公共点。
AC发生器11可以是通常在手表中包含的类型,因此将不作详细描述。这样的手表包括振动块(oscillating weight),其中旋转中心和重力中心彼此之间是偏心的。由手表运动造成的振动块的旋转被安排成使得构成AC发生器一部分的转子旋转。转子包括永久磁铁,并由定子包围。线圈被绕在构成定子一部分的芯心上。转子的旋转在线圈中感应一个以交流电压形式出现的电动势。
例如,当包括图1所示的电路的手表留在静止位置一段长时间,因而负载12被完全放电时,在AC发生器11、有源整流器1或负载12中没有电流流动。因此,在端子8和在AC发生器11与负载12之间的公共点之间基本上不出现电压。所以,没有足够的电源电压来使得比较器3和倍压器10能工作。在不存在加到其栅极5上的信号时,MOS晶体管处在非传导状态,没有明显的漏极电流流动。
在AC发生器11启动后,例如当手表被用户拿起并戴上时,在其端子上产生交流(AC)电压,且相应的AC电流开始流动。当MOS晶体管2处在非导通状态时,这个电流通过寄生二极管4,并由该二极管半波整流。这样,在负载12上建立了整流的DC电压,借此,使得负载能执行它的设计的运行。在手表的情况下,负载12可以是时间保持电路,且AC发生器11的启动将使时间保持电路能开始进行时间保持运行。
一旦这个电流已建立,负载12能为在有源整流器端子8和在AC发生器11与负载12之间的公共点之间的电压存储足够的电荷,以便使该电压超过为使比较器3和倍压器10能工作所需要的最小供电电压。
由于流过寄生二极管4的电流,在有源整流器端子8和9之间起始存在有约0.7伏的电位差。一旦至少提供了最小供电电压,这个电位差可被比较器3检测到,比较器3连同倍压器10一起提供一个信号给MOS晶体管2的栅极5,从而使后者导电。由于它的极低的电阻,这样MOS晶体管2有效地短路了寄生二极管4,从而,它使得在有源整流器端子8和9之间的电压降大大地减小。
此后,只要在有源整流器端子8和在AC发生器11与负载12之间的公共点之间的电压超过所需的最小供电电压,AC发生器11产生的AC电流就继续被比较器3、MOS晶体管2和在本实施例中的倍压器10进行半波整流。这样,MOS晶体管2在由AC发生器11产生的交流电压的每正半周内被设置在导电状态,而每负半周内被设置在非导电状态。
将会看到,图1的MOS晶体管2可以由n-型MOS(NMOS)或p-型MOS(PMOS)晶体管构成。
现在参照图2,图上显示了用于图1的AC发生器11和负载12的整流器电路的另一个实施例。整流器电路20是全波整流器,正如所看到的,包括多个按照本发明的整流器。整流器电路20包括第一PMOS晶体管21和相关的比较器22、寄生二极管23和倍压器24。这些元件以上面相对于图1的有源整流器所描述的方式互连在两个端子25和26之间。同样地,整流器电路20包括另一个PMOS晶体管27和相关的比较器28、寄生二极管29和倍压器30,这些元件以上述的方式互连在两个端子26和31之间。
整流器电路20包括另两个PMOS晶体管32和33。PMOS晶体管32被连接到相关的比较器35和倍压器36,而PMOS晶体管33被连接到相关的比较器37和倍压器38,它们分别以上述的方式被互连。PMOS晶体管32的漏极和源极被连接在端子25和端子34之间,而PMOS晶体管33的漏极和源极被连接在端子31和端子34之间。
比较器35的两个输入端被分别连接到端子26和端子31,而比较器35的两个输入端被分别连接到端子25和端子26。
另外,整流器20包括分别被连接在PMOS晶体管32和33的漏极和源极之间的两个非寄生二极管39和40。这些二极管例如可以是分立二极管或集成二极管,诸如多晶体二极管。
AC发生器11把它的两个输出端子连接在端子25和端子31之间,而端子26和端子34被连接到负载12,以便向其提供供电电压。这两个端子的电位分别被称为VDD和VFWR。另外,端子25和端子31的电位分别被称为VGEN1和VGE2
图3显示了扩散在N基片50上的PMOS晶体管27和33的横截面示意图;晶体管21和32也可被扩散在基片50上,以便具有基本上等同于图3所示结构的结构。
在本实施例中,基片由弱掺入的n-型硅构成,以符号N-表示。PMOS晶体管27包括两个强掺入的p-型区51和52,它们构成其漏极和源极。多晶体硅或金属电极53构成PMOS晶体管21的栅极,并通过薄绝缘材料(诸如硅氧化物)(图上未示出)使它和在区域51和52之间的通道分隔开。另外,与PMOS晶体管27有关的强掺入的n-型区55被扩散到基片50中,把后者连接到供电电位VDD,以便使基片50能适当地偏置。
同样地,PMOS晶体管33包括两个强掺入的p-型区56和57,它们构成其漏极和源极。多晶体硅或金属电极58构成PMOS晶体管33的栅极,并通过硅氧化物的薄绝缘材料使它和在区域56和57之间的通道分隔开。与PMOS晶体管33有关的强掺入的n-型区59被扩散到基片50中,把这一后者连接到供电电位VDD,以便使基片50能适当地偏置。
正如半导体器件的技术人员将会看到的,结型二极管由分别具有p-型掺杂剂和n-型掺杂剂的两个相邻的非本征硅区形成。在p和n区处的边界被称为pn结,且p和n区分别构成结型二极管的正极和负极。再次参照图3,可以看到,由于PMOS晶体管27的扩散,寄生结型二极管29被固有地构成在p型区51和n-型基片50之间,这一后者通过诸如n型区域55那样的区域,被固定到供电电位VDD。这样,这个寄生结型二极管29被有效地并联到PMOS晶体管27的漏极和源极之间,并提供其相关的有源整流器支路的导通,而提供给比较器和倍压器的供电电压小于这后者所需要的最小供电电压。同样地,寄生结型二极管23由于PMOS晶体管21的扩散而被固有地形成在基片50上。
然而,在图2所示的实施例中,没有这样的寄生二极管被做在PMOS晶体管32和33的漏极和源极之间。所以,二板管39和40必须由离散的二极管构成,或者被分开地扩散在基片50上,或者在基片50外部构成。
当包括图2所示的电路的手表停留在静止位置一段长时间时,负载12被完全放电,在AC发生器11、有源整流器1或负载12中没有电流流动。因此,在端子26和34之间基本上没有电压出现。所以,没有足够的电源电压能使得比较器22,28,35和37以及倍压器24,30,36,和38工作。在不存在加到其各自的栅极上的适当控制信号时,MOS晶体管21,27,32和33处在非导通状态,没有明显的漏极电流流过这些晶体管的任一个晶体管。
在AC发生器11启动后,在其端子上产生交流(AC)电压。在这个AC电压的正半周内(即,当电位VGEN1大于VGE2时),这个电流通过寄生二极管23流到负载12和流到分立二极管40。同样地,在这个AC电压的负半周内(即,当电位VGEN1小于VGEN2时),这个电流通过寄生二极管29流到负载12和流到分立二极管39。
这样,在负载12上建立了整流的DC电压,因此,使得负载能执行它的设计的运行。在手表的情况下,负载12可以是时间保持电路,且AC发生器11的启动将使时间保持电路能开始进行时间保持运行。
一旦这个电流已建立,负载12能为在有源整流器端子26和34之间的电压存储足够的电荷,以便使该电压超过为使比较器22,38,35和37以及倍压器24,30,36和38能工作所需要的最小供电电压。
一旦在由AC发生器11提供的AC电压的每个正半周期间至少最小供电电压可供使用时,二极管23上的电位差可被比较器22检测,比较器22连同倍压器24一起提供一个信号给PMOS晶体管21的栅极,从而使后者导电。由于它的极低的电阻,这样PMOS晶体管21有效地短路了寄生二极管23,因此,它使得在有源整流器20的端子26和25之间的电压降大大地减小。
由于比较器22和37的输入端都分别连接到端子25和26,所以比较器37连同倍压器38在每个正半周内将同样地使得PMOS晶体管33导电。这样,PMOS晶体管33有效地短路了寄生二极管40,因此,它使得在有源整流器20的端子31和34之间的电压降大大地减小。
以同样方式,在由AC发生器11提供的AC电压的每个负半周内,二极管29上的电位差被比较器28检测,比较器28连同倍压器30一起提供一个适当的控制信号给PMOS晶体管27的栅极,因此使后者导电。这样PMOS晶体管27短路了寄生二极管29,因此,它使得在有源整流器20的端子26和31之间的电压降大大地减小。
由于比较器28和35的输入端都分别连接到端子26和31,所以比较器35连同倍压器36在每个负半周内将同样地使得PMOS晶体管32导电。这样,PMOS晶体管32有效地短路了分立二极管39,因此,它使得在有源整流器20的端子25和34之间的电压降大大地减小。
通过考虑图2的整流器20的运行,将会认识到,在它的某些组成部分中,有一些功能重复。为此目的,从此图中可以看到,比较器22和37的两个输入端都被连接到端子26和25并且它们的功能是一样的。同样地,也可看到,比较器28和35、倍压器24和38以及倍压器30和36也是相同的。所以,有可能省略这些重复的电路元件的某些部分或全部,以便简化按照本发明的整流器的设计。
现在参照图4,图上显示了表示本发明的再一个实施例的整流器70,其中这些重复的元件已被省略。整流器70和图2的整流器20相同,但是已去掉了比较器35和37以及倍压器36和38。因此,PMOS晶体管32的栅极被直接连接到倍压器30的输出端,而PMOS晶体管33的栅极被直接连接到倍压器24的输出端。
不管这种简化,无论如何,可能会有这样的一些应用情况,其中更宁可采用图2的整流器20,而不用图4的整流器70。因为整流器70中的比较器22和28每个都需要通过两个倍压器激励两个MOS晶体管,它们的能量消耗将大于图2的整流器20中的相应的比较器。同样地,由于构成整流器的一部分的倍压器24和30每个激励两个MOS晶体管,所以它们的表面积将大于整流器20中的相应的倍压器。
在图2和4中所示的本发明的实施例中,都要求将非寄生的二极管连接到两个晶体管的漏极和源极之间,以构成整流器20和70的整流器电桥,即分立二极管39和40被连接在PMOS晶体管32和33的漏极和源极之间。
图5显示了本发明的再一个实施例,其中不需要这样的分立二极管元件。这个图显示了整流器100,该整流器100和图4的整流器70相同,除了PMOS晶体管32和33、以及分立二极管39和40已被省略以外。在它们的位置上,整流器100包括两个NMOS晶体管101和102。NMOS晶体管101的漏极和源极分别连接到端子25和34,而NMOS晶体管102的漏极和源极分别连接到端子31和34。NMOS晶体管101和102的栅极分别连接到端子31和25。
另外,全波整流器100包括两个寄生双极结型晶体管103和104,它们由于NMOS晶体管101和102的漏极扩散而被构成。这将参照图6来说明,图上显示了PMOS晶体管27(已相对于图3进行描述)和NMOS晶体管102的横截面图,它们有利地扩散到基片50,作为互补型MOS晶体管(CMOS)。将会看到,晶体管21和101也可被扩散到基片50上,以便具有和图3所示的结构基本上相同的结构。
NMOS晶体管102包括扩散到n型基片50中的弱掺入p型阱110。两个强掺入n型区域111和112分别构成晶体管102的源极和漏极。多晶体硅或金属电极113构成NMOS晶体管102的栅极,并由薄绝缘材料(诸如硅氧化物)(图上未示出)使它和在区域111和112之间的通道分隔开。
两个强掺入的p-型区域114和115被扩散到基片50中,把p-型阱连接到供电电位VFWR。另外,两个强掺入的n-型区域116和117被扩散到基片50中,以便使基片50能适当地偏置到VDD
正如从图6中可看到的,NMOS晶体管102的扩散固有地形成了在n型区112和p-型区110之间的寄生结型二极管118,这一后者通过诸如p型区域114和115那样的区域而被固定到供电电位VFWR。另外,寄生结型二极管119被形成在p型区110和n-型基片50之间,这一后者通过诸如n型区域116和117那样的区域而被固定到供电电位VDD。这两个结型二极管118和119分别形成图5所示寄生双极结型晶体管104的基极-发射极结和集电极-基极结。在有源整流器100的启动状态期间,寄生双极结型晶体管104的基极-发射极二极管提供了其相关的有源整流器分枝的导通,而提供给比较器22和28以及倍压器24和30的供电电压小于它们的所需要的最小供电电压。
寄生双极结型晶体管103由于图5所示的NMOS晶体管101的扩散而同样地被形成。
在由AC发生器11产生的AC电压的每个正半周内,在NMOS晶体管102的栅和源极之间加上的电位差VGEN1-VFWR使得该晶体管导通。这有效地短路了由晶体管104的基极-发射极结所构成的寄生结型二极管。因此,由AC发生器11产生的AC电流在每个正半周内通过PMOS晶体管21流到负载12和通过NMOS晶体管102。
在由AC发生器11产生的AC电压的每个负半周内,在NMOS晶体管101的栅和源极之间加上的电位差VGEN2-VFWR使得该晶体管导通,这有效地短路了由晶体管103的基极-发射极结构成的寄生结型二极管。因此,由AC发生器11产生的AC电流通过PMOS晶体管27流到负载12和通过NMOS晶体管101。
有利地,图5所示的有源整流器的实施例可以通过使用CMOS制造技术而被实现,这样,MOS晶体管21,27,101和102由两个n型/p型互补型MOS晶体管对组成。
在MOS晶体管的漏极和源极之间的正向导通的电阻RON由下式给出: R ON = 1 W L β ( V GS - V T ) 其中,W是晶体管通道的宽度,L是晶体管通道的长度,VGS是栅-源电压,VT是门限电压,β是具有等于1的比值W/L的晶体管的当前的增益。
有源整流器100利用这一事实,NMOS晶体管的电流增益β比PMOS晶体管的电流增益近似大三倍。这样,NMOS晶体管的电阻RON及因而源-漏电压降固有地小于同样尺寸的PMOS晶体管的电阻及源-漏电压降。
无论如何,在导通状态时,每个晶体管101和102上的电压降可通过把两个倍压器的输入端分别连接到端子31和25以及把它们的输出端分别连接到晶体管101的栅极和晶体管102的栅极而进一步地减小。
现在参照图7,图上显示了在图5的结构中存在的几个寄生元件的示意图。这些元件包括两个寄生双极结型晶体管160和161以及两个寄生电阻162和163。
正如从图6中所能看到的,侧向双极结型晶体管160由在p型区域51和n型基片50之间的结型二极管(发射极-基极结)与在p型阱110和n型基片50之间的结型二极管(集电极-基极结)组成。而且,附加的发射极-基极结由在p型区域52和n型基片50之间的结型二极管组成。寄生晶体管160的集电极通过寄生电阻162连接到p型区域115,该寄生电阻代表电流流过p型阱110时的电阻。
同样地,垂直双极结型晶体管161由在n型区域51和p型阱110之间的结型二极管(发射极-基极结)与在p型阱110和n型基片50之间的结型二极管(集电极-基极结)组成。附加的发射极-基极结也由在n型区域111和p型阱110之间的结型二极管组成。寄生晶体管161的集电极通过寄生电阻163连接到n型区域54,该寄生电阻163代表电流流过n型基片50时的电阻。
将会指出,晶体管161的基极和晶体管160的集电极是公共的(即,n型基片50),晶体管160的基极和晶体管161的集电极也是公共的(即,p型阱110)。
当图5的MOS晶体管21,27,101和102被扩散到图6的基片50时,必须当心避免闩锁(latch-up)效应的风险。这种现象是在CMOS技术中熟知的,可通过考虑图7所示的元件而理解。在由AC发生器11产生的AC电压的每个正半周期间内,电位差VGEN1-VDD引起晶体管160中的集电极-发射极电流。这个集电极电流流过电阻162,并在其上造成电位差。这个电位差被加在晶体管161的基极和发射极之间,它使晶体管161导通。这样,造成集电极电流流过电阻163,并在其上造成电位差。这个电位差被加在晶体管160的基极和发射极之间,因此它确保晶体管160处在导通状态。
当电位差VFWR-VGEN2引起晶体管161中的集电极-发射极电流时,可触发类似的闩锁效应。这两种闩锁触发机制是CMOS电路的特征,但在图5所示的实施例中,这些触发机制同时发生。
所以,可以看到,每个晶体管可能阻止另一个晶体管使它不能在导电和非导电状态之间交变。这样的闩锁或竞争(race-around)条件会有效地阻塞晶体管的运行,并阻止有源整流器正确运行。特别是,当闩锁状态期间,电流消耗可能高到100毫安,将会阻止整流器起始运行。对于使用n型和p型晶体管的实施例,由于造成如图7所示的寄生双极性结型晶体管,闩锁风险是更大的。
对于有源整流器20,70和100的拓扑结构可作出几种改进,以便提出这些关系。
如在图6中所看到的,例如,弱掺入p型区域被扩散到基片50中。在这些区的顶部,分别扩散了强掺入p型区172和173。虽然区170到173在图6中被表示为分开的区,但事实上,区170到173可以以整个地环绕PMOS晶体管27的p型环的形式被扩散。这个环起到寄生晶体管160的“伪集电极”的作用,它被“直接连接”到电位VFWR,如以图7中的参考符号174表示。这样,使流过寄生电阻162的集电极电流最小化,因而,减小了应用足够大的基极-发射极电压以使得晶体管161导通的风险。优选地,如图6所示的区170和171被扩散的深度至少等于p型阱110的深度,以便使这种效果最大化。
同样地,区116和117也可以以整个地环绕NMOS晶体管102的n型环的形式被扩散。这个环起到寄生晶体管161的伪集电极的作用,它被“直接连接”到电位VDD,如以图7中的参考符号175表示,这样,使流过寄生电阻163的集电极电流最小化,以及减小了应用足够大的基极-发射极电压以使得晶体管160导通的风险。
而且,区114和115可以以第二环的形式被扩散,在这种情况下它也是整个地环绕NMOS晶体管102的p型环。通过使这个环离开晶体管102的距离最小,电阻162的阻值能被最小化,这导致加到晶体管160的基极-发射极电压最小。
区54和55也可以以第二环的形式被扩散,在这种情况下它也是整个地环绕PMOS晶体管27的n型环。通过使这个环离开晶体管27的距离最小,电阻163的阻值能被最小化,这导致加到晶体管161的基极-发射极电压最小。
另外,由于前面所述的双触发机制,把在由AC发生器11产生的AC电压的每个半周内导通的MOS晶体管互相分开是有利的。例如,如图8所示,都在每个正半周内导通的PMOS晶体管21和NMOS晶体管102可由PMOS晶体管27互相分开。同样地,都在每个负半周内导通的PMOS晶体管27和NMOS晶体管102可由PMOS晶体管21互相分开。在任何给定时间导通的两个MOS晶体管的这样的互相分开起到减小双极晶体管160和161的电流增益的作用,从而更难于达到闩锁条件。
在本发明的使用四个MOS晶体管的其它实施例中,PMOS晶体管,例如图中标以参考数字32和33的那些晶体管,将被做成源极跟随器,借此,源极上的输出跟随漏极的电位。(这种结构类似于双极结型晶体管的发射极跟随器的结构。)所以,在这样的应用中,希望使用具有较大增益的倍压器,以便确保这些PMOS晶体管的正确的切换运行。
最后,应当看到,可以对有源整流器作出各种不同的修正和/或增补,而不背离在附属权利要求中所规定的本发明的范围。
例如,虽然在以上说明中参照了MOS晶体管,但其它实施例可使用其它类型的具有一个控制极和两个传导电极的晶体管,例如双极结型晶体管。在这后一种情况中,比较器(以及,有时是倍压器)可以适合于提供足够的基极电流以便把双极结型晶体管激励到饱和,因而把它们的集电极-发射极电压减小到几乎为零。然后,在电路设计上可适当地考虑由于扩散造成的寄生结型二极管,以便获得本发明的优点。
虽然,上述的例子包括被制做在n型基片和/或p型阱上的晶体管,但将会看到,本发明也适于应用到被制做在p型基片和/或n型阱上的晶体管。

Claims (13)

1.一种用于电源电路的整流器,包括:
--被连接在输入端子(9)和输出端子(8)之间的二极管(4),
其特征在于,还包括
--在基片(50)上形成的并具有一个控制电极(5)和两个传导电极(6,7)的晶体管(2),这后两个电极分别被连接到所述的输入端子(9)和所述的输出端子(8)、以及
--由所述电源电路供电的比较器(3),具有分别被连接到所述输入端子(9)和所述输出端子(8)的两个输入端(+,-),和被连接到所述晶体管控制电极(5)的一个输出端。
2.按照权利要求1的有源整流器,其特征在于,
所述二极管(4)由在所述基片(50)上形成的寄生结型二极管组成。
3.按照权利要求1或2的有源整流器,其特征在于,它还包括
--连接在所述比较器(3)输出端和所述晶体管控制端子(5)之间的倍压器(10)。
4.按照先前权利要求的任一项的有源整流器,其特征在于,其中所述晶体管(2)是MOS晶体管。
5.一种用于电源电路的桥式整流器,包括:
--第一整流器(21-24),被连接在第一输入端子(25)和第一输出端子(26)之间,
--第二整流器(27-30),被连接在第二输入端子(31)和所述第一输出端子(26)之间,
--第三整流器(32,35,36,39;101,103),被连接在所述第一输入端子(25)和第二输出端子(34)之间,
--第四整流器(33,37,38,40;102,104),被连接在所述第二输入端子(31)和所述第二输出端子(34)之间,
其特征在于,
所述第一,第二,第三,或第四有源整流器中的至少一个整流器由按照权利要求1到4中任一项的有源整流器组成。
6.按照权利要求5的桥式整流器,其特征在于,
构成所述第一,或第二有源整流器中的至少一个整流器的一部分的晶体管是p型MOS晶体管。
7.按照权利要求5或6的桥式整流器,其特征在于,
所述第三有源整流器(101,103)包括:
--在所述基片(50,110)上形成的并具有栅极、漏极和源极的n型MOS晶体管(101),这后两个电极被连接在所述的第一输入端子(25)和所述的第二输出端子(34)之间,以及
--在所述基片(50,110)上形成的寄生结型二极管(103),被连接在所述的第二输出端子(34)和所述的第一输入端子(25)之间。
8.按照权利要求5到7的任一项的桥式整流器,其特征在于,
所述第四有源整流器(102,104)包括:
--在所述基片(50,110)上形成的并具有栅极、漏极和源极的n型MOS晶体管(102),这后两个电极被连接在所述的第二输入端子(31)和所述的第二输出端子(34)之间,以及
--在所述基片(50,110)上在所述的第二输出端子(34)和所述的第一输出端子(26)之间形成的寄生结型二极管(104)。
9.按照权利要求5到8的任一项的桥式整流器,其特征在于,
构成所述第一、第二、第三、和第四有源整流器的一部分的晶体管作为CMOS晶体管被形成在所述基片(50)上。
10.按照权利要求5到9的任一项的桥式整流器,其特征在于,它还包括
--至少一个第一环(170-173)被形成在所述基片(50,110)上,它整个地环绕一个所述晶体管,并作为该晶体管的伪集电极工作。
11.按照权利要求5到10的任一项的桥式整流器,其特征在于,
构成所述第一和第四有源整流器的那些晶体管在所述基片(50,110)上被构成所述第二或第三有源整流器的晶体管之一将其互相分离开,以及
构成所述第二和第三有源整流器的那些晶体管在所述基片(50,110)上被构成所述第一,或第四有源整流器的晶体管之一将其互相分离开。
12.一种包括AC发生器(11)和时间保持电路(12)的手表,其特征在于,
所述AC发生器(11)和所述时间保持电路(12)由按照权利要求1到4的任一项的有源整流器所互连。
13.一种包括AC发生器(11)和时间保持电路(12)的手表,其特征在于,
所述AC发生器(11)和所述时间保持电路(12)由按照权利要求5到11的任一项的桥式整流器所互连。
CN96180134A 1995-12-29 1996-12-23 具有最小能量损失的有源整流器 Expired - Fee Related CN1104087C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP95120718.2 1995-12-29
EP95120718 1995-12-29

Publications (2)

Publication Number Publication Date
CN1209222A true CN1209222A (zh) 1999-02-24
CN1104087C CN1104087C (zh) 2003-03-26

Family

ID=8219936

Family Applications (1)

Application Number Title Priority Date Filing Date
CN96180134A Expired - Fee Related CN1104087C (zh) 1995-12-29 1996-12-23 具有最小能量损失的有源整流器

Country Status (11)

Country Link
US (1) US5991182A (zh)
EP (1) EP0870357B2 (zh)
JP (1) JP3875996B2 (zh)
KR (1) KR19990076761A (zh)
CN (1) CN1104087C (zh)
AT (1) ATE224608T1 (zh)
AU (1) AU715800B2 (zh)
CA (1) CA2241271A1 (zh)
DE (1) DE69623814T2 (zh)
HK (1) HK1018556A1 (zh)
WO (1) WO1997024795A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106688170A (zh) * 2014-09-11 2017-05-17 飞利浦照明控股有限公司 用于照明装置电源中的高频隔离变压器的电荷泵效应补偿

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2132931T5 (es) 1995-09-07 2006-11-16 Richemont International S.A. Mecanismo de relojeria.
EP0891038B1 (en) 1996-11-13 2006-01-11 Seiko Epson Corporation Power supply device and portable electronic equipment
JP3624665B2 (ja) * 1997-02-07 2005-03-02 セイコーエプソン株式会社 発電装置、充電方法および計時装置
DE19706985B4 (de) * 1997-02-21 2004-03-18 Telefonaktiebolaget L M Ericsson (Publ) Eingangspufferschaltkreis
US5999849A (en) * 1997-09-12 1999-12-07 Alfred E. Mann Foundation Low power rectifier circuit for implantable medical device
US6088608A (en) 1997-10-20 2000-07-11 Alfred E. Mann Foundation Electrochemical sensor and integrity tests therefor
EP1056190B1 (en) * 1998-09-17 2005-11-23 Seiko Epson Corporation Power supply device, power supply method, portable electronic device, and electronic watch
CN1192474C (zh) * 1998-12-02 2005-03-09 精工爱普生株式会社 供电装置、供电方法、携带式电子机器和电子表
US6271712B1 (en) * 1999-04-07 2001-08-07 Semiconductor Components Industries Llc Synchronous rectifier and method of operation
JP2001186771A (ja) 1999-10-15 2001-07-06 Seiko Epson Corp チョッパ回路、チョッパ回路の制御方法、チョッパ式充電回路、電子機器及び計時装置
US6421262B1 (en) 2000-02-08 2002-07-16 Vlt Corporation Active rectifier
US6501320B1 (en) * 2000-07-25 2002-12-31 Exar Corporation Self-powered, maximum-conductive, low turn-on voltage CMOS rectifier
JP2004519991A (ja) * 2001-03-28 2004-07-02 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 同期整流器
KR100468787B1 (ko) * 2003-05-02 2005-01-29 삼성전자주식회사 래치-업(Latch-up)에 의한 전류 흐름을 방지할 수있는 반도체 장치
US7199636B2 (en) * 2004-03-31 2007-04-03 Matsushita Electric Industrial Co., Ltd. Active diode
DE102004029439A1 (de) * 2004-06-18 2006-02-02 Infineon Technologies Ag Gleichrichter-Schaltkreis, Schaltkreis-Anordnung und Verfahren zum Herstellen eines Gleichrichter-Schaltkreises
JP4546184B2 (ja) * 2004-08-04 2010-09-15 株式会社ニデック 整流回路及びこれを備えた視覚再生補助装置
US7561404B2 (en) * 2005-11-22 2009-07-14 Harris Corporation Biased-MOSFET active bridge
US8614874B2 (en) * 2005-11-22 2013-12-24 Harris Corporation Biased MOSFET active bridge with active gate drive
JP4493045B2 (ja) * 2005-12-05 2010-06-30 パナソニック株式会社 スイッチングレギュレータ回路
US7411768B2 (en) * 2006-05-30 2008-08-12 Harris Corporation Low-loss rectifier with shoot-through current protection
US20080084239A1 (en) * 2006-09-08 2008-04-10 Matsushita Electric Industrial Co., Ltd. Regulated charge pump circuit
US7852639B2 (en) * 2007-05-22 2010-12-14 Harris Corporation Low-loss rectifier with optically coupled gate shunting
US7737668B2 (en) 2007-09-07 2010-06-15 Panasonic Corporation Buck-boost switching regulator
US7683719B2 (en) * 2007-09-07 2010-03-23 Panasonic Corporation Internal frequency compensation circuit for integrated circuit controllers
US8064227B2 (en) * 2008-09-08 2011-11-22 GM Global Technology Operations LLC Rectifying circuit for a multiphase electric machine
US8174214B2 (en) 2009-09-28 2012-05-08 Harris Corporation Three-phase low-loss rectifier with active gate drive
US8125808B2 (en) * 2009-09-28 2012-02-28 Harris Corporation Three-phase low-loss rectifier
US8354871B2 (en) 2009-11-09 2013-01-15 University Of Florida Research Foundation, Inc. Self-powered comparator
US8045350B2 (en) * 2009-12-11 2011-10-25 Harris Corporation N-phase active bridge circuits including N-channel field effect transistors with active gate drive
US8606447B2 (en) 2011-05-23 2013-12-10 GM Global Technology Operations LLC Method and apparatus to operate a powertrain system including an electric machine having a disconnected high-voltage battery
US9434258B2 (en) 2011-11-18 2016-09-06 GM Global Technology Operations LLC Power converter with diagnostic unit power supply output
DE102011122197B4 (de) * 2011-12-23 2018-06-07 Albert-Ludwigs-Universität Freiburg Spannungswandler mit geringer Anlaufspannung
EP2757352B1 (fr) * 2013-01-17 2015-11-18 EM Microelectronic-Marin SA Système de contrôle et méthode de gestion de capteur
KR101502153B1 (ko) * 2013-04-30 2015-03-12 주식회사 맵스 능동 다이오드 드라이버
KR101440919B1 (ko) 2013-07-05 2014-09-18 한국항공대학교산학협력단 Cmos 정류기

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4139880A (en) * 1977-10-03 1979-02-13 Motorola, Inc. CMOS polarity reversal circuit
JPS5482039A (en) 1977-12-12 1979-06-29 Seiko Instr & Electronics Circuit for charging solar cell and secondary cell
CH627610GA3 (zh) 1980-05-16 1982-01-29
US4519024A (en) * 1983-09-02 1985-05-21 At&T Bell Laboratories Two-terminal transistor rectifier circuit arrangement
NL8303319A (nl) * 1983-09-28 1985-04-16 Hazemeijer Bv Aktieve dubbelzijdige gelijkrichtschakeling.
JPS6136946A (ja) 1984-07-30 1986-02-21 Nec Corp 半導体装置
ES2037128T3 (es) * 1987-05-15 1993-06-16 Alcatel N.V. Circuito de control de voz para un terminal de telecomunicaciones.
EP0510730B1 (en) 1987-09-21 1996-03-06 Seiko Epson Corporation Analog electronic timepiece
JPH05110002A (ja) 1991-10-17 1993-04-30 Nec Corp 相補型半導体集積回路装置
EP0665634B1 (de) * 1994-01-31 1997-05-14 Siemens Aktiengesellschaft Schaltungsanordnung mit einem Feldeffekttransistor
US5506527A (en) 1994-04-15 1996-04-09 Hewlett-Packard Compnay Low power diode
JPH07280964A (ja) 1995-03-31 1995-10-27 Seiko Epson Corp 発電装置付き電子時計

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106688170A (zh) * 2014-09-11 2017-05-17 飞利浦照明控股有限公司 用于照明装置电源中的高频隔离变压器的电荷泵效应补偿
CN106688170B (zh) * 2014-09-11 2020-03-13 飞利浦照明控股有限公司 用于照明装置电源中的高频隔离变压器的电荷泵效应补偿

Also Published As

Publication number Publication date
ATE224608T1 (de) 2002-10-15
EP0870357B1 (en) 2002-09-18
AU715800B2 (en) 2000-02-10
KR19990076761A (ko) 1999-10-15
EP0870357B2 (en) 2009-04-08
EP0870357A1 (en) 1998-10-14
HK1018556A1 (en) 1999-12-24
US5991182A (en) 1999-11-23
CA2241271A1 (en) 1997-07-10
DE69623814D1 (de) 2002-10-24
JP2000502877A (ja) 2000-03-07
DE69623814T2 (de) 2003-08-07
AU1378697A (en) 1997-07-28
CN1104087C (zh) 2003-03-26
JP3875996B2 (ja) 2007-01-31
WO1997024795A1 (en) 1997-07-10

Similar Documents

Publication Publication Date Title
CN1104087C (zh) 具有最小能量损失的有源整流器
US6429723B1 (en) Integrated circuit with charge pump and method
TW569458B (en) Semiconductor device
CN1035009A (zh) 带发电装置的电子手表
EP1432038A3 (en) Integrated circuit
JP2003197790A (ja) 半導体装置及びその製造方法
JP2011067051A (ja) インバータと、それを用いた電気機器および太陽光発電装置
JP2003197793A (ja) チャージポンプ装置
CN1836204A (zh) 开关充电乘法器-除法器
JP2009164415A (ja) 半導体装置
CN1838413A (zh) 半导体集成电路
CN1905345A (zh) 采用标准cmos逻辑工艺实现高耐压的整流器
JPH04280670A (ja) スイッチ回路およびゲート電圧クランプ型半導体装置
JP4079644B2 (ja) チャージポンプ装置
CN1832315A (zh) 启动装置
CN2773989Y (zh) 启动装置
Yasir et al. A modified boost converter for energy harvesting applications
JPH10256483A (ja) Mos型半導体集積回路
EP0921619A3 (en) A power source circuit of a semiconductor integrated circuit
JP3761518B2 (ja) チャージポンプ装置
Lin Analysis and Design of a Low-Power Integrated Controllable High-Voltage Start-Up Current Source
Szczerba et al. A Bipolar Smart Power Synchronous Rectifier
JPS62104313A (ja) 半導体集積回路装置
CN1553574A (zh) 软激活电路
JPS6135634B2 (zh)

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee