CN1207610A - 微波增益自动控制装置 - Google Patents
微波增益自动控制装置 Download PDFInfo
- Publication number
- CN1207610A CN1207610A CN98116786A CN98116786A CN1207610A CN 1207610 A CN1207610 A CN 1207610A CN 98116786 A CN98116786 A CN 98116786A CN 98116786 A CN98116786 A CN 98116786A CN 1207610 A CN1207610 A CN 1207610A
- Authority
- CN
- China
- Prior art keywords
- microwave
- gain control
- signal
- amplifier
- automatic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000003321 amplification Effects 0.000 claims description 3
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 3
- 230000008878 coupling Effects 0.000 claims 2
- 238000010168 coupling process Methods 0.000 claims 2
- 238000005859 coupling reaction Methods 0.000 claims 2
- 230000007704 transition Effects 0.000 claims 1
- 238000001514 detection method Methods 0.000 abstract description 38
- 238000009434 installation Methods 0.000 description 8
- 238000004891 communication Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 230000010355 oscillation Effects 0.000 description 5
- 230000001105 regulatory effect Effects 0.000 description 5
- 239000000523 sample Substances 0.000 description 5
- 239000003990 capacitor Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000012423 maintenance Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03G—CONTROL OF AMPLIFICATION
- H03G3/00—Gain control in amplifiers or frequency changers
- H03G3/20—Automatic control
- H03G3/30—Automatic control in amplifiers having semiconductor devices
- H03G3/3036—Automatic control in amplifiers having semiconductor devices in high-frequency amplifiers or in frequency-changers
- H03G3/3042—Automatic control in amplifiers having semiconductor devices in high-frequency amplifiers or in frequency-changers in modulators, frequency-changers, transmitters or power amplifiers
Landscapes
- Control Of Amplification And Gain Control (AREA)
- Microwave Amplifiers (AREA)
Abstract
本发明揭示的自动微波增益控制装置包括:信号放大器,连接所述信号放大器一端的定向耦合器,连接所述定向耦合器一端的微波检测二极管,向所述微波检测二极管提供可调节的直流偏压的偏置电路,放大微波检测二极管的输出电压与偏置电压相加所得电压的直流放大器,设置在信号放大器另一端的可变衰减器;其中,可变衰减器根据直流放大器的输出电压,控制信号衰减量,由此把输出端输出的功率控制为恒定功率。本发明可用于下变频器和上变频器。
Description
本发明涉及通过广播卫星和通信卫星进行卫星广播和卫星通信的微波发送放大器、接收下变频器中所使用的微波自动增益控制装置。
近年来,由于卫星广播已达到普及阶段,且利用商业通信卫星的通信卫星广播已开始服务,一般家庭直接接收多个卫星广播的机会增加。随之,对接收和发送微波信号设备性能的稳定要求提高。
现参照图6叙述已有技术的微波自动增益控制装置,经微波信号输入端68输入的微波信号由微波信号放大器61放大后,传输至微波信号输出端60。在微波信号输出端60连接定向耦合器65,该耦合器65的一端连接微波检测二极管66。部分输出微波信号经定向耦合器65提供给二极管66。二极管66产生与微波输出信号相应的直流电压并提供给直流放大器67。
直流放大器67放大的直流电压提供给起可变衰减器作用的PIN二极管64,连接半波短截线63端的PIN二极管64,根据直流电压的值吸收从微波信号输入端68输入的微波信号功率。结果,通过PIN二极管64的这种功能,已有技术的自动微波功率控制装置,保持微波信号输出端60的恒定输出功率。
但是,由于各二极管特性及安装位置的离差对微波检测二极管66检测性能的影响,上述结构的已有技术电路很难在超高频段(SHF)稳定检测特性。由于尤其是微波检测二极管检测特性离差比其它电路元件大,因而提出了减小微波检测二极管特性离差的课题。
本发明的自动微波增益控制装置包括:信号放大器,连接所述信号放大器端子的一侧以取出部分微波信号功率的定向耦合器,连接所述定向耦合器一端的微波检测二极管,向所述微波检测二极管提供可调节的直流偏压的偏置电路,放大所述微波检测二极管的微波检测输出电压与所述偏置电路的偏置电压相加所得到的电压的直流放大器,设置在所述信号放大器端子的另一侧的可变衰减器;其中,可变衰减器根据所述直流放大器的输出电压控制所述信号放大器端子另一侧的信号衰减量,由此,把自动微波增益控制装置输出端的输出功率控制成恒定功率,从而可不受微波检测二极管特性及安装位置离差的影响。
图1是本发明第1实施例的自动微波增益控制装置的电路框图。
图2是本发明第2实施例的自动微波增益控制装置的电路框图。
图3是本发明第3实施例的自动微波增益控制装置的电路框图。
图4是本发明第4实施例的具有上变频器功能的自动微波增益控制装置的电路框图。
图5是本发明第5实施例的具有下变频器功能的自动微波增益控制装置的电路框图。
图6是已有技术的自动微波增益控制装置的电路框图。第1示范性实施例。
下文,参照图1的电路框图,说明本发明第1实施例的自动微波增益控制装置的结构和工作。
连接微波信号放大器1输出端的定向耦合器2,其一端连接微波检测二极管3的阳极并经低通滤波器5连接至直流偏置电路6,后者,包括直流电源和可变电阻。定向耦合器2的另一端连接匹配电阻器。微波检测二极管3的阴极连接平滑电容器4和包括运算放大器、电阻8、9及其它元件的直流放大器7,平滑电容器的另一端接地。直流放大器7的输出端经低通滤波器25连接PIN二极管10的阳极及用于隔直的直流阻断器12。PIN二极管10的阳极连接负载电阻11(其另一端接地)并经直流阻断器13连接微波信号放大器1。输入端26连接直流阻断器12,输出端14连接定向耦合器2的另一端。经输入端26输入的微波由本实施例的自动微波增益控制装置加以稳定并从其输出端14输出。除偏置电路6外的微波信号放大器1、定向耦合器2和其它部件构成在单片介质基片上。
如上构成的自动微波增益控制装置以下述方式动作。
定向耦合器2取出部分由微波信号放大器1放大的微波信号功率并提供给与其一端相连的微波检测二极管3。
微波检测二极管3的阳极施加由直流偏置电路6经低通滤波器5提供的正偏压。该正偏压可调节。
通过调节加至微波检测二极管3的偏置电压控制检测二极管3的工作点。调节偏置电压控制检测二极管3的结阻抗,使检测二极管特性及安装位置离差可引起的阻抗离差大为减小,由此减少离差引起的对检测特性的不利影响,从而获得极稳定的检测特性。
平滑电容器4平滑微波检测二极管3检测的微波信号并使之转换成直流电压。与来自偏置电路6的直流偏置电压相加后,经平滑的直流电压提供给直流放大器7。直流放大器7通过比较由电阻8和9分压确定的预置电压与其值为经平滑的直流电压与直流偏置电压的和的提供电压,调整其输出电压,使上述两电压相等。直流放大器7的输出电压经低通滤波器25提供至PIN二极管10的阳极。最好,直流放大器7具有大于1的放大系数。
PIN二极管10构成具有负载电阻11的可变衰减器。当加至PIN二极管10的正向偏置电流增加时,可变衰减器的衰减量减少;而当正向偏置电流减少时,衰减量增加。若PIN二极管10施加反向偏置,则衰减量进一步增大。
因此,若微波输入功率增加,定向耦合器2取出的微波功率增加,提供给直流放大器7的电压增加,PIN二极管10的正向电流减少,可变衰减器的衰减值增加,从而微波功率减少。反之,若定向耦合器2取出的微波功率减少,可变衰减器的衰减值减少,从而使微波功率增加。
于是,尽管微波输入变动,本实施例的自动微波增益控制装置仍能实现输出功率稳定。
进而,要加至检测二极管3阳极的偏置电路6的电压调高时,加至直流放大器7的电压增加,加至PIN二极管10的正向电流减少,可变衰减器的衰减值增加,从而使微波功率减少。反之,当偏置电路6的电压调低时,提供给直流放大器7的电压减少,加至PIN二极管10的正向电流增加,可变衰减器的衰减值减少,从而使微波功率增加。这样,本实施例的自动微波增益控制装置可通过调节偏置电路6的电压控制微波输出功率幅度。
以这种方式,通过用一直流电压操纵可变衰减器,本实施例的自动微波增益控制装置控制微波信号的放大增益,该直流电压是在检测和平滑微波信号产生的直流电压与不受微波检测二极管3的特性和安装位置离差影响的偏置电压相加后,由直流放大器7放大的。这样,通过使用反馈环路,自动微波增益控制装置控制使微波输出端14产生的微波输出功率始终保持恒定。
而且,本实施例的自动微波增益控制装置通过调节由偏置电路6提供的直流电压,可产生期望的微波输出功率值。第2示范性实施例
下文,参照图2叙述本发明第2实施例的自动微波增益控制装置的结构和工作。与图1相同标号所示的图2电路元件,因其动作与图1相似,故这里不再叙述。
第2实施例的自动微波增益控制装置与第1实施例的不同处在于,与第1实施例相比,由于在放大器1后连接两个微波信号放大器15、16,微波信号放大系数增大;不同处还在于,通过在定向耦合器2的输出侧设置微波带状传输线(“微带线”)27、探针17及波导18,从而构成把微波信号从横电磁波模式(TEM波)转换成波导模式的微带线-波导转换器,从而微波信号转换成电磁波形式后输出。
下文,叙述如上所述构成的自动微波增益控制装置的动作。
以与第1实施例相同的方式,本实施例的自动微波增益控制装置,通过改变偏置电路6的直流电压,可不受微波检测二极管3特性和安装位置离差的影响,检测微波信号,而且使经微带线27和探针17,从波导18输出的微波输出功率保持定值。同时,通过调节由偏置电路6提供的直流电压,该装置也能产生期望的微波输出功率值。
用本实施例的自动微波增益控制装置,通过调节偏置电路提供的偏置电压,可容易地例如在制造过程中,把微波输出功率设定在预定值。第3示范性实施例
下文,参照图3,叙述本发明第3实施例的自动微波增益控制装置的结构和动作。与图2相同标号所示的电路元件,由于工作相似,故这里不再叙述。
第3实施例的自动微波增益控制装置与第2实施例控制装置的不同点在于,本实施例的偏置电路6,如图3所示,设置在自动微波增益控制装置外,而在第2实施例的情况下,如图2所示,该电路设置在控制装置内。为此,本实施例的自动微波增益控制装置备有从外部设置的偏置电路6提供直流偏压的微波输出功率调整端19。换言之,该偏置电路6在室内卫星通信设备中提供并经微波输出功率调整端19相连。因而,在本实施例的自动微波增益控制装置中,由室内卫星通信设备中的偏置电路6,控制微波输出功率。第4示范性实施例
下文,参照图4叙述本发明第4实施例的自动微波增益控制装置的结构和工作。与图3相同标号所示的电路元件,因为其工作相似,故这里不再叙述。
第4实施例与第3实施例的自动微波增益控制装置的不同处在于,它是上变频器,把中频信号变换成微波(高频信号)发送。
输入端26输入中频信号,而不是微波信号。输入的中频信号经包括PIN二极管10和负载电阻11的衰减器,由中频放大器20放大,然后与由本振电路21输入的本振信号在变频器22进行混频,变换成微波信号。微波信号经微波信号放大器1和15放大并通过定向耦合器2后,经微带线27和探针17由波导18输出。
本实施例的上变频器通过与第1实施例同样的方式,用直流电压操纵可变衰减器,来控制要输入至中频放大器20的中频信号,该直流电压是在检测并平滑微波信号而产生的直流电压与来自外部设置的偏置电路的偏置电压相加后,由直流放大器7放大的。
变频器22将受控的中频信号与本振电路21输入的本振信号混频,变换成微波。该微波信号然后由微波信号放大器1和15放大并通过定向耦合器2后,经微带线27和探针17从波导18输出。
这样,以与第1实施例相同的方式,本实施例的上变频器通过改变偏置电路6的直流电压,可不受微波检测二极管3的特性和安装位置离差的影响,保持微波输出功率为定值。
同时,用该上变频器,通过控制室内卫星通信设备的偏置电路6的偏置电压,微波输出功率可控制在预定值。第5示范性实施例
下文,参照图5叙述本发明第5实施例的自动微波增益控制装置的结构和工作。
本实施例的自动微波增益控制装置是接收微波信号(即高频信号)并将其变换成中频信号的下变频器。
波导18上的探针17,经微带线27连接两级低噪声微波信号放大器23和24。低噪声微波信号放大器24的输出端经定向耦合器2连接变频器22。变频器22连接本振电路21,且产生的中频信号输出至中频放大器20。包括PIN二极管10和负载电阻11的可变衰减器,经直流阻断器12连接中频放大器20的输出端,中频信号经另一直流阻断器13输出至中频信号输出端34。定向耦合器2取出的部分微波信号经微波检测二极管3和直流放大器7输出至可变衰减器,其构成方式与第1实施例相同。
上述构成的下变频器其动作如下:
定向耦合器2取出的微波信号提供给微波检测二极管3。直流偏置电路6,经低通滤波器5向微波检测二极管3的阳极提供正偏压。通过调节向微波检测二极管3提供的直流偏压,与第1实施例相同,由于可使检测二极管特性及安装位置离差引起的阻抗离差大为减小,能实现极稳定的检测特性。
与第1实施例相同,微波检测二极管3检测的微波信号由平滑电容器4平滑并转换成直流电压,然后与偏置电压相加后提供给直流放大器7。直流放大器7的电压输出,向PIN二极管10提供电流。PIN二极管10与负载电阻11一起构成可变衰减器,可变衰减器的衰减值,与第1实施例相同,随向PIN二极管10提供的偏置电流而改变。
即,若微波功率输入增加,则定向耦合器2取出的微波功率增加,向直流放大器7提供的电压增加,提供PIN二极管10的正向电流减少,可变衰减器的衰减值增加,从而中频功率输出减少。反之,若定向耦合器2取出的微波功率减少,由于可变衰减器的衰减减少,中频输出功率增加。以这种方式,即使微波功率输入变化,本实施例的下变频器也能始终稳定输出。
而且,向检测二极管3供电的偏置电路6的电压调高时,加给直流放大器7的电压增加,PIN二极管10的正向电流减少,可变衰减器的衰减值增加,从而使中频功率减少。反之,当偏置电路6的电压调低时,供给直流放大器7的电压减少,PIN二极管的正向电流增加,可变衰减器的衰减量减少,从而使中频功率增加。这样,本实施例的下变频器能通过调节偏置电路6的电压,控制中频输出功率的值。
本实施例的自动微波增益控制装置,当接收带有例如因雷达而引起的强干扰的微波信号时,可有效抑制干扰信号,且始终控制中频输出功率为恒定电平。
以这种方式,通过用直流电压操纵可变衰减器,本实施例的下变频器控制中频信号的放大增益,该直流电压是在检测并平滑微波信号而产生的直流电压与不受微波检测二极管3的特性及安装位置离差影响的偏置电压相加后,由直流放大器7放大的。由于上述工作过程,本实施例的下变频器能保持中频输出端34产生的中频输出功率持续恒定。
同时,本实施例的下变频器,通过调节偏置电路6提供的直流电压,能产生期望的中频输出功率值。
虽然在本发明上述实施例中,通过PIN二极管与信号通路串联的方式构成可变衰减器,但这种方式不是唯一的,衰减器也可用多个PIN二极管,以∏型网络及T型网络的方式构成。自然,用场效应晶体管(FET)的结构来代替,也可取得同样效果。
关于微波检测二极管3的极性,在本发明的上述实施例中举了一个例子,其中,微波检测二极管3的阳极与定向耦合器2及偏置电路6的正极相连。上述连接可修改成,微波检测二极管3的阴极与定向耦合器2及偏置电路6的负极相连,在这种情况下,同时要求改变PIN二极管的极性及更改直流放大器7。
而且,除了示范性实施例中叙述的通过与直流电源连接的可变电阻来调节电路6的输出电压外,偏置电路6的电路结构还可有许多变换。因而,本发明可有许多方式实施,所附权利要求试图覆盖本发明精神及范围内的所有修改。
Claims (9)
1.一种自动微波增益控制装置,其特征在于包括:
放大微波信号的信号放大器;
接收所述经放大的微波信号的至少一部分的定向耦合器;
提供直流偏置电压的偏置电路;
对所述直流偏置电压与所述经放大的部分微波信号相加后的信号进行整流的微波检测装置;
放大整流后的所述直流偏置电压与所述经放大的部分微波信号相加后的信号的直流放大器;
耦合至所述直流放大器的输出端,用于改变衰减量以使所述自动微波增益控制装置的输出信号实质上恒定的可变衰减器。
2.如权利要求1所述的自动微波增益控制装置,其特征在于,所述直流偏压是可调的。
3.如权利要求1所述的自动微波增益控制装置,其特征在于,所述信号放大器备有在其输入端的中频放大器、在其输出端的微波信号放大器、和频率变换器。
4.如权利要求1所述的自动微波增益控制装置,其特征在于,所述可变衰减器设置在所述直流放大器输出端和所述信号放大器输入端之间。
5.如权利要求1至4之任一所述的自动微波增益控制装置,其特征在于,所述微波检测装置包括:
(a)与所述偏置电路正极及所述定向耦合器一端耦合的阳极;
(b)与所述直流放大器耦合的阴极。
6.如权利要求2或3所述的自动微波增益控制装置,其特征在于,进一步包括耦合至所述定向耦合器、把TEM波转换为波导模式的微带线-波导转换器。
7.如权利要求4所述的自动微波增益控制装置,其特征在于,进一步包括耦合至所述定向耦合器、把波导模式转换成TEM波的波导-微带转换器。
8.如权利要求7所述的自动微波增益控制装置,其特征在于,进一步包括设置在所述定向耦合器和所述波导-微带线转换器之间的低噪声放大器。
9.如权利要求6所述的自动微波增益控制装置,其特征在于,进一步包括用于从所述偏置电路施加直流偏压的微波输出功率调整端。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20566097 | 1997-07-31 | ||
JP205660/1997 | 1997-07-31 | ||
JP205660/97 | 1997-07-31 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1207610A true CN1207610A (zh) | 1999-02-10 |
CN1144356C CN1144356C (zh) | 2004-03-31 |
Family
ID=16510585
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB981167861A Expired - Fee Related CN1144356C (zh) | 1997-07-31 | 1998-07-31 | 微波增益自动控制装置 |
Country Status (6)
Country | Link |
---|---|
US (1) | US6069528A (zh) |
EP (1) | EP0895351B1 (zh) |
KR (1) | KR100330519B1 (zh) |
CN (1) | CN1144356C (zh) |
DE (1) | DE69830106T2 (zh) |
TW (1) | TW444429B (zh) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100420150C (zh) * | 2001-12-20 | 2008-09-17 | 联发科技股份有限公司 | 用于高增益信号信道的偏置量校准系统和方法 |
CN101051856B (zh) * | 2007-01-30 | 2010-05-26 | 深圳国人通信有限公司 | 压控衰减器、压控衰减器的实现方法与应用电路 |
CN101383443B (zh) * | 2008-09-26 | 2013-02-20 | 熊猫电子集团有限公司 | 短波大功率定向耦合器 |
CN105356928A (zh) * | 2015-09-28 | 2016-02-24 | 四川九洲电器集团有限责任公司 | 一种Ku频段卫星通信变频终端设备 |
CN107748307A (zh) * | 2017-09-29 | 2018-03-02 | 华中科技大学 | 一种高功率毫米波模式实时分析系统 |
CN108039877A (zh) * | 2017-11-13 | 2018-05-15 | 北京无线电计量测试研究所 | 一种微波幅度调节器 |
CN108982957A (zh) * | 2017-06-01 | 2018-12-11 | 现代自动车株式会社 | 用于改善传感器检测值控制的感测系统和方法 |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20010003272A (ko) * | 1999-06-22 | 2001-01-15 | 김영환 | 알에프 회로를 사용하는 시스템에서의 이득 제어회로 |
EP1094600A1 (en) * | 1999-10-19 | 2001-04-25 | Siemens Aktiengesellschaft | Apparatus for amplifying signals |
US6429746B1 (en) * | 1999-12-07 | 2002-08-06 | Nokia Networks Oy | System and method for auto-bias of an amplifier |
US6549071B1 (en) * | 2000-09-12 | 2003-04-15 | Silicon Laboratories, Inc. | Power amplifier circuitry and method using an inductance coupled to power amplifier switching devices |
US6917245B2 (en) * | 2000-09-12 | 2005-07-12 | Silicon Laboratories, Inc. | Absolute power detector |
DE10045560B4 (de) * | 2000-09-14 | 2008-10-23 | Grundig Multimedia B.V. | Selbsttastende Pegelregelung |
US6828859B2 (en) * | 2001-08-17 | 2004-12-07 | Silicon Laboratories, Inc. | Method and apparatus for protecting devices in an RF power amplifier |
US6894565B1 (en) | 2002-12-03 | 2005-05-17 | Silicon Laboratories, Inc. | Fast settling power amplifier regulator |
DE10260749B4 (de) * | 2002-12-23 | 2012-03-22 | Atmel Automotive Gmbh | Hochfrequenz-Leistungsdetektor mit dBm-linearer Kennlinie und dessen Verwendung zur Regelung der Leistung einer elektrischen HF-Schwingung |
US6897730B2 (en) * | 2003-03-04 | 2005-05-24 | Silicon Laboratories Inc. | Method and apparatus for controlling the output power of a power amplifier |
US7171171B1 (en) * | 2003-08-15 | 2007-01-30 | Rf Micro Devices, Inc. | GaAs RF signal detection circuit with operational amplifier |
JP2008011482A (ja) * | 2006-05-29 | 2008-01-17 | Alps Electric Co Ltd | 高周波回路 |
TWI406497B (zh) * | 2009-06-02 | 2013-08-21 | Richwave Technology Corp | 具溫度和輸出功率補償機制之功率放大器積體電路 |
TW201506414A (zh) * | 2013-08-06 | 2015-02-16 | Maxi Amp Inc | 用於通訊系統之功率偵測電路裝置 |
CN108490763B (zh) * | 2018-05-22 | 2024-03-29 | 中国科学技术大学 | 微波功率稳定装置 |
RU185932U1 (ru) * | 2018-07-30 | 2018-12-25 | Акционерное общество "Научно-исследовательский институт Приборостроения имени В.В. Тихомирова" | Устройство управления СВЧ усилителя |
CN118399910B (zh) * | 2024-06-24 | 2024-09-10 | 深圳市君威科技有限公司 | 微波放大器设备的自动功率控制方法 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2667388B2 (ja) * | 1986-02-28 | 1997-10-27 | 株式会社東芝 | 自動電力制御装置 |
US4760347A (en) * | 1987-01-20 | 1988-07-26 | Novatel Communications Ltd. | Controlled-output amplifier and power detector therefor |
JPH0440702A (ja) * | 1990-06-06 | 1992-02-12 | Sharp Corp | マイクロ波回路 |
JPH04219001A (ja) * | 1990-12-19 | 1992-08-10 | Fujitsu Ltd | マイクロ波帯増幅器 |
JP2871889B2 (ja) * | 1991-04-16 | 1999-03-17 | 三菱電機株式会社 | 高周波電力増幅装置 |
FI92531C (fi) * | 1991-07-23 | 1994-11-25 | Nokia Mobile Phones Ltd | Suurtaajuusilmaisin laajalla dynamiikalla |
JPH0783224B2 (ja) * | 1993-06-08 | 1995-09-06 | 日本電気株式会社 | 自動利得制御回路 |
US5392464A (en) * | 1993-08-19 | 1995-02-21 | Nokia Mobile Phones Ltd. | Directional detector for power level control |
JPH08125448A (ja) * | 1994-09-01 | 1996-05-17 | Matsushita Electric Ind Co Ltd | マイクロ波ミキサー回路とこれを備えたダウンコンバータ |
DE19506051C2 (de) * | 1995-02-22 | 1999-07-29 | Mikom Gmbh | Schaltungsanordnung zur Reduzierung der Amplitude von Intermodulationsprodukten |
US5862460A (en) * | 1996-09-13 | 1999-01-19 | Motorola, Inc. | Power control circuit for a radio frequency transmitter |
-
1998
- 1998-07-31 US US09/127,302 patent/US6069528A/en not_active Expired - Fee Related
- 1998-07-31 KR KR1019980031285A patent/KR100330519B1/ko not_active IP Right Cessation
- 1998-07-31 DE DE69830106T patent/DE69830106T2/de not_active Expired - Fee Related
- 1998-07-31 EP EP98114472A patent/EP0895351B1/en not_active Expired - Lifetime
- 1998-07-31 CN CNB981167861A patent/CN1144356C/zh not_active Expired - Fee Related
- 1998-07-31 TW TW087112663A patent/TW444429B/zh not_active IP Right Cessation
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100420150C (zh) * | 2001-12-20 | 2008-09-17 | 联发科技股份有限公司 | 用于高增益信号信道的偏置量校准系统和方法 |
CN101051856B (zh) * | 2007-01-30 | 2010-05-26 | 深圳国人通信有限公司 | 压控衰减器、压控衰减器的实现方法与应用电路 |
CN101383443B (zh) * | 2008-09-26 | 2013-02-20 | 熊猫电子集团有限公司 | 短波大功率定向耦合器 |
CN105356928A (zh) * | 2015-09-28 | 2016-02-24 | 四川九洲电器集团有限责任公司 | 一种Ku频段卫星通信变频终端设备 |
CN105356928B (zh) * | 2015-09-28 | 2019-01-22 | 四川九洲电器集团有限责任公司 | 一种Ku频段卫星通信变频终端设备 |
CN108982957A (zh) * | 2017-06-01 | 2018-12-11 | 现代自动车株式会社 | 用于改善传感器检测值控制的感测系统和方法 |
CN108982957B (zh) * | 2017-06-01 | 2022-02-11 | 现代自动车株式会社 | 用于改善传感器检测值控制的感测系统和方法 |
CN107748307A (zh) * | 2017-09-29 | 2018-03-02 | 华中科技大学 | 一种高功率毫米波模式实时分析系统 |
CN107748307B (zh) * | 2017-09-29 | 2019-09-13 | 华中科技大学 | 一种高功率毫米波模式实时分析系统 |
CN108039877A (zh) * | 2017-11-13 | 2018-05-15 | 北京无线电计量测试研究所 | 一种微波幅度调节器 |
Also Published As
Publication number | Publication date |
---|---|
DE69830106D1 (de) | 2005-06-16 |
CN1144356C (zh) | 2004-03-31 |
TW444429B (en) | 2001-07-01 |
EP0895351A2 (en) | 1999-02-03 |
KR19990014332A (ko) | 1999-02-25 |
DE69830106T2 (de) | 2005-11-17 |
EP0895351B1 (en) | 2005-05-11 |
US6069528A (en) | 2000-05-30 |
EP0895351A3 (en) | 2000-02-16 |
KR100330519B1 (ko) | 2002-05-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1144356C (zh) | 微波增益自动控制装置 | |
CN100505528C (zh) | 保持rf功率放大器的线性的方法和电路 | |
JP3568994B2 (ja) | 電力レベル制御用の方向性検波装置 | |
CN1086064C (zh) | 便携式rf发射端的温度补偿宽动态范围功率检测电路 | |
US8279009B2 (en) | Distributed doherty amplifiers | |
US20040113698A1 (en) | Signal amplifier using a doherty amplifier | |
CN1527478A (zh) | 利用自适应偏压控制的多赫蒂放大器 | |
CN1421073A (zh) | 改善增益的包络跟踪放大器、利用该放大器的移动通信终端机,以及与其相关的增益改善方法 | |
CN1871745A (zh) | 采用自适应功率放大器补偿提供集成负载匹配的方法及设备 | |
EP1437023A1 (en) | Amplifier power detection circuitry | |
CN1234206C (zh) | 供开关电容器结构使用的放大器共模反馈系统 | |
CN101036288A (zh) | 双重偏置控制电路 | |
US6317002B1 (en) | Circuit for efficiently producing low-power radio frequency signals | |
JP2000174559A (ja) | マイクロ波電力増幅装置 | |
CN100499357C (zh) | 线性化电路 | |
CN1050720C (zh) | 应用大功率放大器的通信设备 | |
EP1232564A1 (en) | Power amplifiers | |
US3996524A (en) | Linear amplifier utilizing adaptive biasing | |
CN1318226A (zh) | 双端频率相关网络 | |
EP1387485A1 (en) | Circuit for power amplification | |
JP4343831B2 (ja) | 電力増幅器 | |
US11942913B2 (en) | Variable gain amplifier | |
CN220653340U (zh) | 一种增益控制射频功率放大器 | |
JPH11103225A (ja) | マイクロ波自動利得制御装置 | |
JP2001230635A (ja) | 電力モニタ機能付前置歪補償回路および適応制御型高周波増幅器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20040331 Termination date: 20100731 |