CN1195063C - 蛋白酶抑制剂融合蛋白 - Google Patents

蛋白酶抑制剂融合蛋白 Download PDF

Info

Publication number
CN1195063C
CN1195063C CNB988117886A CN98811788A CN1195063C CN 1195063 C CN1195063 C CN 1195063C CN B988117886 A CNB988117886 A CN B988117886A CN 98811788 A CN98811788 A CN 98811788A CN 1195063 C CN1195063 C CN 1195063C
Authority
CN
China
Prior art keywords
plant
protein
people
sequence
seq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB988117886A
Other languages
English (en)
Other versions
CN1280627A (zh
Inventor
H·J·阿特金森
M·J·麦克菲森
P·E·尤威
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Syngenta Participations AG
Original Assignee
Syngenta Participations AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Syngenta Participations AG filed Critical Syngenta Participations AG
Publication of CN1280627A publication Critical patent/CN1280627A/zh
Application granted granted Critical
Publication of CN1195063C publication Critical patent/CN1195063C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/81Protease inhibitors
    • C07K14/8107Endopeptidase (E.C. 3.4.21-99) inhibitors
    • C07K14/811Serine protease (E.C. 3.4.21) inhibitors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • C12N15/8285Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for nematode resistance
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/146Genetically Modified [GMO] plants, e.g. transgenic plants

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Plant Pathology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Peptides Or Proteins (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明描述了一种在植物及其后代植物中改善病原体抗性或耐受性的方法,包括将编码融合蛋白的基因整合入所述植物的基因组,其中融合蛋白包含(a)具有抗致病性活性的第一种蛋白质或蛋白质结构域;(b)连接肽;以及(c)具有抗致病性活性的第二种蛋白质或蛋白质结构域。本发明进一步的实施方案是所述基因构建体、其编码的融合蛋白和表达该融合蛋白的转基因植物。

Description

蛋白酶抑制剂融合蛋白
本发明公开了一种改善植物病原体抗性或耐受性的方法,其中用编码两种或多种蛋白质或蛋白质结构域之融合蛋白的转基因转化植物,当所述蛋白质或蛋白质结构域在其上表达时能改善病原体抗性或耐受性。以在拟南芥(Arabidopsis thaliana)中两种不同的蛋白酶抑制剂作为融合蛋白的共递送导致了对植物寄生线虫的抗性或耐受性的改善为例,阐述了本发明。至于本发明的目的,已确认根据本发明获得的转基因植物不仅能耐受或抗线虫,而且能耐受或抗病毒、真菌、细菌、昆虫、螨等。
线虫是造成每年估计在1000亿美元以上全球农业损失的主要的植物寄生虫。非常希望植物对寄生线虫的抗性改善,以减少对杀线虫剂的需要,其中一些杀虫剂属于农业应用中最不被接受的杀虫剂。有一些发展具有改善的线虫抗性的转基因植物的可能方法,包括抗侵入和迁移对策、饲养细胞弱化和抗线虫饲养对策(Atkinson等人,Tibtech13:369-374,1995)。后一种方法能利用天然植物防御对策中的重要成分的蛋白酶抑制剂(PI)(Ryan,植物病理学年鉴(Annu.Rev.Phytopathol.)28:425-49,1990)。有十类具植物特征的PI,涵盖了蛋白酶的所有4个组,即半胱氨酸蛋白酶、丝氨酸蛋白酶、金属蛋白酶和天冬氨酸蛋白酶(Richardson,植物生物化学方法(Methodsin Plant Biochemistry)5:259-305,1991)。EP-A-502 730公开了对线虫可以取得有效的、基于PI的转基因防御。PI在线虫控制方面的优选特性之一是它们体积小。在被人类摄取时许多PI无有害影响,这增加了PI用于在转基因作物保护中的潜能。
已克隆出一种胞囊线虫的编码半胱氨酸和丝氨酸消化蛋白酶的cDNA,它们主要的蛋白质酶解活性局限于肠,已显示PI CpTI和水稻半胱氨酸蛋白酶抑制剂(Oc-I)对这些蛋白酶有效。定点诱变在一个氨基酸缺失后导致Oc-I的Ki升高。这个修饰过的半胱氨酸蛋白酶抑制剂(Oc-IΔD86)作为转基因具有针对马铃薯胞囊线虫的增强的效能(Urwin等人,植物杂志(Plant J)8:121-131,1995)。在拟南芥中表达时,它限制了胞囊线虫(Heterodera schachtii)和根结线虫(Meloidogyne incognita)的生长。
分别表达CpTI与豌豆凝集素的转基因烟草的杂交后代,表现出对抗烟草烟青虫的叠加效能(Boulter等人,作物保护(CropProtection),9:251-354,1990)。串联启动子/基因构建体不需要杂交植物就可得到类似的结果。自然地提出至少两种以上的可选择方法能实现多于一种抑制剂的表达,即双功能抑制剂(Wen等人,植物分子生物学(Plant Mol Biol)18:813-814,1992)和多结构域PI(Waldron等人,植物分子生物学23:801-812,1993)。
本发明的目的是提供通过递送多于一个的抗性或耐受性效应蛋白质来改善病原体抗性或耐受性的方法。用于本发明的目的,抗性描述了引入的转基因对限制或防止病原体在转基因植物中或转基因植物上繁殖的作用。耐受性涉及转基因植物对病原体攻击的破坏作用的耐受力,或从破坏中恢复的能力以及丰产的能力。对病原体的抗性或耐受性都降低了由病原体造成的对作物的损害。
因此本发明提供:
一种在植物和其后代植物中改善病原体抗性或耐受性的方法,包括将编码融合蛋白的基因整合入所述植物的基因组,其中融合蛋白包含
(a)具有抗致病性活性的第一种蛋白质或蛋白质结构域;
(b)连接肽;以及
(c)具有抗致病性活性的第二种蛋白质或蛋白质结构域。
特别地,本发明提供了如前所提及的方法、基因和蛋白质,其中:
具有抗致病性活性的其它蛋白质或蛋白质结构域通过连接肽融合到融合蛋白
·具有抗致病性活性的多种蛋白质或蛋白质结构域中,至少有一种具有蛋白酶抑制剂活性
·具有抗致病性活性的多种蛋白质或蛋白质结构域中,至少有一种是蛋白酶抑制剂Oc-IΔD86
·具有抗致病性活性的多种蛋白质或蛋白质结构域中,至少有一种是蛋白酶抑制剂CpTI
·基因功能性地连接至一种驱动在植物根部优势表达的启动子序列
·连接肽包含一种可被植物蛋白水解性切割的氨基酸序列
·连接肽包含一种在植物中蛋白水解性稳定的氨基酸序列
·连接肽的特征在于包含氨基酸序列QASSYTAPQPQ
·连接肽的特征在于包含氨基酸序列VILGVGPAKIQFEG
·连接肽的特征在于包含氨基酸序列QASIEGRYTAPQPQ
·线虫抗性或耐受性得到改善
本发明另外提供通过以上提及的方法得到的转基因植物,特别地,本发明提供:
·一种表达根据本发明的DNA分子编码的融合蛋白的植物
另外,本发明允许所述DNA的使用,以改善植物和其后代植物的病原体抗性或耐受性。
为了帮助对本发明的理解,下面更详细解释常用的术语:
植物是指任何植物,特别是种子植物。植物的结构和生理单位是植物细胞,包含原生质体和细胞壁。术语“植物细胞”是指植物的部分或衍生于植物的任何细胞。细胞的例子包括是活体植物的部分的分化细胞;培养中的分化细胞;培养中的未分化细胞;如愈伤组织或肿瘤这样的未分化组织的细胞;种子、胚胎、繁殖体或花粉的分化细胞。特别地,植物细胞可能是呈分离的单一细胞或培养细胞的形式,或作为高等生物体构造单位的部分,例如,植物组织,或植物器官。一群植物细胞能组织成一个结构和功能单位,称为植物组织。这个术语包括,但不限于植物器官、植物种子、组织培养和组织成结构和/或功能单位的任何植物细胞群。
植物材料是指叶子、茎、根、花或花的部分、果实、花粉、花粉管、胚珠、胚囊、卵细胞、合子、胚胎、种子、插条、细胞或组织培养物,或植物任何别的部分或产物。
在其基因组中稳定掺入了重组DNA的植物或细胞在此称为转基因植物或转基因细胞。
转化是指将核酸引入细胞,特别是DNA分子稳定地整合入目的生物体的基因组中。
所述的重组DNA是指通过使用如Sambrook等人,在“分子克隆——实验指南”中,第二版,冷泉港实验室出版社,美国纽约,(1989),描述的重组DNA技术而实现的,连接不同来源的DNA片段而形成的一种或多种DNA分子。重组DNA技术体外产生重组的DNA,把它转移进能够在其中表达或繁殖的细胞(参照,生物医学和分子生物学简明字典(Concise Dictionary of Biomedicine and MolecularBiology),Juo主编,CRC出版社,Boca Raton(1996)),例如,以多种形式将DNA转移进原生质体或细胞内,包括,例如,(1)环状、线性或超螺旋形的裸露DNA,(2)核小体或染色体或核或其部分中包含的DNA,(3)与其它分子复合或结合的DNA,(4)包含于脂质体、原生质球、细胞或原生质体中的DNA,或者(5)从除了宿主生物体外的生物体转移来的DNA(除根癌农杆菌(Agrobacteriumtumefaciens)外)。把重组DNA引入细胞的这些和其它多种方法在本领域中众所周知,能够用于产生本发明的转基因细胞或转基因植物。
重组DNA的初次插入R0植物基因组不是通过传统的植物育种方法,而是通过如这里所描述的技术方法完成。初次插入以后,转基因后代主要用传统育种方法就能繁殖。
基因被考虑用来描述一种不连续的染色体区域,其包含负责控制编码序列的表达的调控DNA序列,该编码序列被转录并翻译成不同的多肽或蛋白质。特别地,基因是指一段编码序列和关联的调控序列,其中,编码序列被转录为RNA,如mRNA、rRNA、tRNA、snRNA、有义RNA或反义RNA。调控序列的例子是启动子序列、5’和3’非翻译序列以及终止序列。可能存在另外的成分,例如,内含子。
编码序列被考虑用来描述经转录和翻译导致多肽或蛋白质形成的一种DNA分子的序列。
表达是指植物中的内源基因或转基因的转录和/或翻译。例如,在反义构建体的例子中,表达可能只是指反义DNA的转录。
含有至少两种异源部分的DNA分子,例如,衍生自先前存在的但不以它们的先前存在状态结合的DNA序列,有时称为嵌合基因。所述的分子利用重组DNA技术能优选产生。
特别地,这里使用的异源的意味有“不同的天然或合成起源”。例如,如果宿主细胞被一段核酸序列转化而该核酸序列在非转化的宿主细胞中没有,所述核酸序列被认为异源于宿主细胞。转化的核酸可能包含异源的启动子、异源的编码序列、或者异源的终止序列。或者,转化的核酸可能是完全异源的,或可能包含异源和同源核酸序列的任何可能组合。
根据本发明的方法是基于编码效应蛋白质或蛋白质结构域的融合基因的构建,且用融合PI CpTI和Oc-IΔD86的构建体进行线虫控制来举例说明。选择所述PI是因为它们显示出不同的抑制性特性,其导致不同的抗胞囊线虫作用。因此,CpTI影响性的命运,Oc-IΔD86抑制生长,特别是发育中的雌性线虫的生长。所述融合蛋白的转基因表达导致经过单一世代,侵入的病原体群体减少,以新卵形成的线虫计至少减少25%,优选的50%。在繁殖效果中缺少可测量的损失时,由病原体造成的产量的损失能够至少降低25%,优选地可达50%。
本方法的原理主要在于允许两种PI作为融合蛋白以可被翻译的肽连接体的应用。连接体的性质决定了递送的模式,即:作为融合蛋白或因为蛋白酶剪切而分开。这样的连接体对策有扩展到控制线虫之外的广泛潜在的用途。它们为积累防御基因以加强转基因抗性或耐受性方法的效能和持久性提供了新的基础。
为了改善病原体抗性或耐受性,根据本发明的方法包括将编码融合蛋白的基因整合入植物的基因组,其中融合蛋白包含
(a)具有抗致病性活性的第一种蛋白质或蛋白质结构域;
(b)连接肽;
(c)具有抗致病性活性的第二种蛋白质或蛋白质结构域;以及
(d)任选的通过一种或多种肽连接体融合的具有抗致病性活性的一种或多种蛋白质或蛋白质结构域。
具有抗致病性活性的优选的多种蛋白质或蛋白质结构域是PI、苏云金芽孢杆菌(Bacillus thuringiensis)毒素、致病性相关蛋白质、几丁质酶、葡聚糖酶、包含裂解肽的肽、硫素、胶原酶、脂肪酶、凝集素、核糖体灭活蛋白、果胶酶抑制剂、脂肪酶抑制剂、α-淀粉酶抑制剂、多聚半乳糖醛酶(polygalacturonidase)抑制剂蛋白质、patatin、permatin、溶菌酶、胆固醇氧化酶、病毒外壳蛋白、抗体、单链抗体、无致病力基因和抗性基因的产物,以及减少昆虫、线虫、病毒、细菌或真菌的繁殖效果或减少它们造成的损害的其它蛋白质。融合的蛋白质或蛋白质结构域作为融合蛋白,在自然中还未曾发现。它们的相应基因序列优选地衍生于一种以上的生物体基因组,而且需要重组DNA技术把它们连到一起。与实现效应物浓度的实际增长之同一效应物结构域倍数比较,两种或更多效应物蛋白质的不同结构域可能有协同或叠加作用。如果一种或多种蛋白质或蛋白质结构域对应于待转化植物的特定基因组区域编码的结构域,根据本发明的融合构建体的整合将肯定在不同的基因组区域内发生。特别优选的是抗一种以上作物病原体的具有抗致病性活性的蛋白质或蛋白质结构域,或者例如那些对抗镰孢属(Fusarium)和根结线虫属(Meloidogyne)之间的疾病的多种抗致病性蛋白质。
某些线虫诱导涉及植物细胞修饰的饲养位点,且在一个位点饲养数小时或更长时间。它们包括根结线虫属(Meloidogyne)、球胞囊线虫属(Globodera)、胞囊线虫属(Heterodera)、小盘旋线虫属(Rotylenchulus)、小垫刀线虫属(Tylenchulus)、科布线虫属(Naccobus)、剑线虫属(Xiphinema)、长针线虫属(Longidorus)、异长针线虫属(Paralongidorus)、隐皮线虫属(Cryphodera)、营养小垫刀线虫属(Trophotylenchulus)、鞘线虫属(Hemicycliophora)、小环线虫属(Criconemella)、标矛线虫属(Verutus)和螺旋线虫属(Heliocotylenchus)。认为在一个位点饲养更严格的周期的属包括短体线虫属(Pratylenchus)、穿孔线虫属(Radopholus)、潜根线虫属(Hirschmanniella)、毛刺线虫属(Trichodorus)、副毛刺线虫属(Paratrichodorus)、茎线虫属(Ditylenchus)、滑刃线虫属(ADhelenchoides)、盾线虫属(Scutellonema)和刺线虫属(Belonolaimus)属的物种。就控制以上属和其它矛线虫(dorylaimid)的植食性属的物种以及垫刀科(tylenchid)线虫而言,PI、胶原酶、果胶酶抑制剂、凝集素、patatin和胆固醇氧化酶特别引起注意。许多PI是种子储藏蛋白质,其在种子发育过程中积累并可能成为成熟种子中最丰富的蛋白质之一。在本发明中可优选使用位于线虫肠内的半胱氨酸或丝氨酸消化蛋白酶的抑制剂。由于半胱氨酸蛋白酶不是哺乳动物消化酶,因而被特别注意。特别有效的是水稻半胱氨酸蛋白酶抑制剂(Oc-I)。Oc-I的定点诱变在一个氨基酸缺失后导致Ki升高。这个修饰过的半胱氨酸蛋白酶抑制剂(Oc-IΔD86)作为转基因具有针对马铃薯胞囊线虫的增强的作用(Urwin等人,植物杂志(Plant J)8:121-131,1995)。在拟南芥中表达时,它限制了一种胞囊线虫甜菜胞囊线虫(Heterodera schachtii),和一种根结线虫南方根结线虫(Meloidogyne incognita)的生长。单一PI对经济性线虫两种基本群体成员的作用使之可采用广谱抗性对策来控制目标作物完全不同的线虫类害虫。这与跟许多天然抗性基因相关的目标物种的严格范围相反。例如H1抗性存在于品种例如Maris Piper中,提供了抗马铃薯胞囊线虫(Globodera rostochiensis)的定性的抗性,但不能保护该品种抵抗另一密切相关的种(马铃薯白线虫(G.pallida))。
连接肽的功能是连接抗致病性蛋白质或蛋白质结构域而不破坏它们的功能。天然的连接体一般长度大约为3-15个氨基酸。在天然连接体中,仅仅由甘氨酸、丝氨酸和苏氨酸构成的五肽最常见,也构成最好的通用连接体。甘氨酸提供了柔韧性,其它两种氨基酸有极性,可与溶剂或它们主链氮上的氢键相互作用。这达到构型上的和能量的稳定。它们不大可能与连接的蛋白质或蛋白质结构域之其它部分相互作用,不易被宿主蛋白酶切割。也可考虑接受的是丙氨酸、脯氨酸、天冬氨酸、赖氨酸、谷氨酰胺和天冬酰胺。避免疏水性的残基,如分别为碱性和酸性残基中最大的精氨酸和谷氨酸。对广泛分布的蛋白酶切割敏感的连接体常常有一种或多种所述的不利成分。例如,甘氨酸-甘氨酸-X,其中X常常是一个具有疏水性侧链的氨基酸残基,能够作为一个蛋白酶解加工位点。Argos,P,分子生物学杂志(J.Mol.Biol.)211,943-958,1990描述了这些事情和可能有用的连接体清单。具有可切割的连接体的值没有考虑。
连接体已在很广泛的领域使用。与本发明最相关的是使用连接体表达有功能的抗体分子,例如植物中的单链抗体。完整的和工程化的抗体都已在植物中表达。抗体的单链Fy片段(ScFv)能够通过连接一种抗体基因(V)的可变重链(VH)和可变轻链(VL)被工程化。实现它的一种方法是使用肽连接体。通过使用计算机辅助程序和对三维肽序列文库的搜索,设计了许多肽。一种成功的连接体是具有毗连残基的天然免疫球蛋白连接体,其含有氨基酸序列KESGSVSSEQLAQFRSLD(Bird等人,科学242:423-427,1988;SEQ ID NO:12)。由甘氨酸、丝氨酸和苏氨酸占主要成分的另一种肽具有氨基酸序列EGKSSGSGSESKP(Bird等人,科学242:423-427,1988;SEQ ID NO:13)。它已被成功地用来在植物中表达ScFv(Owen等人,生物技术10,790-794;1992)。基于决定在VH结构域的C-末端与VL结构域的N-末端之间的欧几里德距离,推荐具有氨基酸序列GGGGSGGGGSGGGGS(SEQ ID NO:14)的连接体用于ScFv抗体(Huston等人,Proc.Natl.Acad.Sci.85,5879-5883;1988)。这个连接体在溶液中具有柔韧性,同时仍保留了稳定性和构型(Argos,P,分子生物学杂志211,943-958,1990)。
在本发明的一个实施方案中,通过设计为易于蛋白酶解的肽连接体,将PI Oc-IΔD86和CpTI的编码区串联并符合读框地连接。使用的肽连接体序列相应于豌豆金属硫蛋白样蛋白PsMTa(Evans等人,FEBS262:29-32,1990)的中心“间隔”区的14个氨基酸(VILGVGPAKIQFEG;SEQ ID NO:1)。这种“间隔”区公知对蛋白酶敏感(Kille等人,FEBS 295:171-175,1991和Tommey等人,FEBS 292:48-52,1991)。当在转基因拟南芥中表达时,CpTI和Oc-IΔD86都作为分离的蛋白质优势存在。已报道对蛋白酶解敏感的许多其它蛋白质,一些可识别的序列已经被表征。(Uhlen等人,酶学方法(Meth Enzymol)185:129-143,1990和Foresberg等人,蛋白质化学杂志(J.Prot.Chem.)11:201-211,1992)。
使用蛋白酶解敏感连接体的天然先例是马铃薯多半胱氨酸蛋白酶抑制剂(multicystatin)PML,该抑制剂包含通过对蛋白酶解切割敏感的序列连接的八个串联半胱氨酸蛋白酶抑制剂结构域(Waldron等人,植物分子生物23:801-812,1993)。然而,PML在植物中还未曾发现片段,但是它作为无活性的晶体储藏在薯块的亚木栓形成层。据信在特定昆虫的内脏被切断后其可获得活性。因此不适用于抵抗不大可能摄取这个86.8kDa蛋白质的线虫。园艺的烟草(Nicotianaalata)的柱头含有一种非寻常的PI(NA-PI-II)。它被表达为一种推定41.6kDa的前体蛋白质,该蛋白质在六个位点被切割,产生七种肽。除了肽1,其它的肽具有同样的体积,除了肽7之外,其可能没有功能性抑制位点用于胰蛋白酶或胰凝乳蛋白酶抑制,其它的肽有相同的N-末端的序列。导致释放功能性PI的加工位点还未被确定。
经历相似加工的分子在动物系统中也存在,例如参与哺乳动物表皮的终末分化的profilaggrin。
在本发明的另一个实施方案中,通过设计不易为蛋白酶解的肽连接体序列,PI Oc-IΔD86和CpTI的编码区被串联排列并符合读框地连接。使用的肽连接体相应于真菌酶半乳糖氧化酶的一个11个氨基酸的序列(QASSYTAPQPQ;SEQ ID NO:2),其连接该酶的前两个结构域。已知这个区域结构上为刚性(Ito等人,自然350:87-91,1991),没有蛋白酶解切割证据提示了,连接体对快速蛋白酶解不敏感。在拟南芥中,构建体指导基本保持完整的23kDa蛋白质Oc-IΔD86和CpTI融合蛋白的表达。其它的半刚性连接体已被报道,例如能用来执行同样功能的葡糖淀粉酶1(Kramer等人,J.Chem.Soc.Farad.Trans89:2595-2602,1993)。半乳糖氧化酶连接体的序列能够经过修饰变得对蛋白酶解切割敏感。因此修饰过的连接体序列QASIEGRYTAPQPQ(SEQ ID NO:11)在真菌的表达系统中被蛋白酶解切割。
根据本发明的融合蛋白的编码序列与植物表达启动子有效连接。优选的启动子包括组成型的、诱导型的、温度调控型的、发育调控型的、化学调控型的、组织优选的和/或组织专一性的启动子。
优选的组成型启动子包括CaMV 35S和19S启动子(Fraley等人,美国专利号No.5,352,605)。其它优选的启动子是源自任何一种公知在大部分细胞类型中表达的肌动蛋白基因。McElroy等人,基因分子遗传学,231;150-160,1991,描述的启动子表达盒能够被方便地修饰以用于编码序列的表达,且特别地适合在单子叶的宿主中使用。
还有另一种优选的组成型启动子起源于遍在蛋白质,该蛋白质是公知在许多细胞类型中积累的另一种基因产物。为了在转基因植物中使用,遍在蛋白质启动子已经从许多物种中克隆(例如向日葵-Binet等人,植物科学,79,87-94,1991;玉米-Christensen等人,植物分子生物学,12,619-632,1989)。玉米遍在蛋白质启动子已经在转基因单子叶植物系统中建成,它的序列和为单子叶植物转化构建的载体已经被公开在Christiansen等人,EP-A-342 926。
在植物中,特别在玉米和甜菜中,用于表达编码序列的组织专一性或组织优选的启动子,是那些在根、髓部、叶或花粉中指导表达的启动子。实例是来自拟南芥b1-微管蛋白基因的TUB1启动子(Snustad等人,植物细胞,4:549,1992)、来自矮牵牛的金属硫蛋白样基因的PsMTa启动子区域(Evans等人,FEBS Letters,262;29,1990)、来自拟南芥的RPL16A和ARSK1启动子以及在WO 97/20057和WO93/07278中公开的其它启动子。另一种有用的启动子是在创伤部位的周围组织被诱导的马铃薯wun1启动子片段(Siebertz等人,植物细胞,1;961-968,1989)。另外,化学可诱导的启动子对于指导表达是有用的,也是优选的(参考WO 95/19443)。
除了启动子,多种转录终止子也可以在根据本发明的嵌合基因中使用。转录终止子负责转基因的转录终止及其正确的聚腺苷酸化。在优选的实施方案中,编码序列有效地连接于其天然存在的聚腺苷酸化信号序列。在植物中合适的转录终止子和那些公知的具有功能者,包括CaMV 35S终止子、tml终止子、豌豆rbcS E9终止子和在本领域中其它公知者。方便的终止区域也可以从根癌土壤杆菌的Ti质粒中提供,例如章鱼氨酸合酶和胭脂合酶的终止区域。(参考,Rosenberg等人,基因,56:125,1987;Guerineau等人,基因分子遗传学,262:141-144,1991;Proudfoot,细胞,64:671-674,1991;Sanfacon等人,基因进展(Genes Dev.),5:141-149;Mogen等人,植物细胞,2:1261-1272,1990;Munroe等人,基因,91:151-158,1990;Ballas等人,核酸研究,17:7891-7903,1989;Joshi等人,核酸研究,15:9627-9639,1987)。
从转录单位中发现了大量增强基因表达的序列,这些序列能够与编码序列一起使用以增加在转基因植物中的表达。多种内含子序列已经显示能够增强表达,特别在单子叶的细胞中。例如,当导入玉米细胞中,已发现玉米Adh1基因内含子能够显著增强野生型基因在其同源启动子控制之下的的表达(Callis等人,基因进展,1:1183-1200,1987)。内含子序列一般掺入植物转化载体,位于非翻译的前导序列中。
构建体也可包含调节子,例如核定位信号(Kalderon等人,细胞,39:499-509,1984;Lassner等人,植物分子生物学,17:229-234,1991)、植物翻译性共有序列(Joshi,C.P.,核酸研究,15:6643-6653,1987)以及内含子(Luehrsen和Walbot,基因分子遗传学,225:81-93,1991),等,其有效地连接于合适的核苷酸序列。
优选地,5c前导序列包含于表达盒构建体中。这种前导序列能够导致翻译强增。翻译前导序列是本领域公知的,包括:小RNA病毒前导序列,例如,EMCV前导序列(病毒脑心肌炎5’非编码区)(Elroy-Stein,O.等人,美国国家科学院院报(Proc.Natl.Acad.Sci.USA,)86:6126-6130,1989);马铃薯Y病毒组前导序列,例如,TEV前导序列(烟草蚀刻病毒(Tobacco Etch Virus))(Allison等人,MDMV前导序列(玉米矮缩花叶病毒(Maize Dwarf MosaicVirus);病毒学(Virology),154:9-20,1986),和人免疫球蛋白重链结合蛋白(BiP),(Macejak,D.G.等人,自然,353:90-94,1991);来自苜蓿花叶病毒的外壳蛋白mRNA的非翻译前导序列(Jobling,S.A.等人,自然,325:622-625,1987);烟草花叶病毒前导序列(TMV)(Gallie,D.R.等人,RNA分子生物学(Molecular-Biology of RNA),237-256,1989);和玉米退绿斑驳病毒前导序列(MCMV))(Lommel,S.A.等人,病毒学,91:382-385,1991)。参考,Della-Cioppa等人,植物生理,84:965-968,(1987)。
编码如上所述的融合蛋白的基因能够通过许多本领域知晓的方式导入植物细胞。本领域技术人员知晓方法的选择取决于转化目标植物的类型。转化植物细胞的合适方法包括显微注射(Crossway等人,生物技术(Bio Techniques)4:320-334(1986))、电穿孔(Riggs等人,美国国家科学院院报83:5602-5606(1986)、农杆菌介导的转化(Hinchee等人,生物技术6:915-921(1988);参考,Ishida等人,自然生物技术(Nature Biotechnology)14:745-750(1996,6),玉米转化)、直接基因转移(Paszkows ki等人,EMBO J.3:2717-2722(1984);Hayashimoto等人,植物生理93:857-863(1990)(水稻))以及使用由Wisconsin,Madison的Agracetus公司和Delaware,Wilmington的Dupont公司提供设备的弹道粒子加速器(参考,例如,Sanford等人,U.S.Patent 4,975,050;和McCa be等人,生物技术6:923-626(1988))。也参照,Weissinger等人,遗传学年鉴(AnnualRev.Genet.)22:421-477(1988);Sanford等人,颗粒科学和技术(Particulate Science and Technology)5:27-37(1987)(洋葱);Svab等人,美国国家科学院学报87:5826-8530(1990)(烟草叶绿体);Christou等人,植物生理,87:671-674(1988)(大豆);McCabe等人,生物/技术6:923-926(1988)(大豆);Klein等人,美国国家科学院学报85:4305-4309(1988)(玉米);Klein等人,生物/技术6:559-563(1988)(玉米);Klein等人,植物生理,91:440-444(1988)(玉米);Fromm等人,生物技术8:833-839(1990);和Gordon-Kamm等人,植物细胞2:603-618(1990)(玉米);Koziel等人,生物技/术11:194-200(1993)(玉米);Shimamoto等人,自然338:274-277(1989)(水稻);Christou等人,生物/技术9:957-962(1991)(水稻);Datta等人,生物技术8:736-740(1990)(水稻);欧洲专利申请EP-A-332 581(orchardgrass和其它Pooideae);Vasil等人,生物技术11:1553-1558(1993)(小麦);Weeks等人,植物生理102:1077-1084(1993)(小麦);Wan等人,植物生理104:37-48(1994)(大麦);Jahne等人,Theor.Appl.Genet.89:525-533(1994)(大麦);Umbeck等人,生物/技术5:263-266(1987)(棉花);Casas等人,美国国家科学院学报90:11212-11216(1993,12)(高粱);Somers等人,生物/技术10:1589-1594(1992,12)(燕麦);Torbert等人,植物细胞报道(Plant Cell Reports)14:635-640(1995)(燕麦);Weeks等人,植物生理102:1077-1084(1993)(小麦);Chang等人,WO 94/13822(小麦)和Nehra等人,植物杂志(The Plant Journal)5:285-297(1994)(小麦)。
在Konwar,植物生物化学和生物技术杂志(J.Plant Biochem&Biotech)3:37-41,1994。中能见到一种通过农杆菌介导的转化将重组DNA分子导入甜菜的特别优选实施方案。
使用直接基因转移形式、粒子枪技术或农杆菌介导转移方法中,经常但不是必需利用可选择的或可筛选的标记,该标记提供对抗生素(例如,卡那霉素,潮霉素或氨甲蝶呤)或除草剂(例如,phosphinothricin)的抗性。然而,对于本发明来说,为植物转化选择可选择的或可筛选的标记并不关键。例举了赋予卡那霉素抗性和相关抗生素的NptII基因(Vieira和Messing,基因19:259-268(1982);Bevan等人,自然304:184-187(1983))、赋予抗phosphinothricin除草剂抗性的bar基因(White等人,核酸研究18:1062(1990),Spencer等人,Theor.Appl.Genet.79:625-631(1990))、赋予抗生素潮霉素抗性的hph基因(Blochlinger和Diggelmann,分子细胞生物学4:2929-2931)以及赋予氨甲蝶呤抗性的dhfr基因(Bourouis和Jarry,EMBO J.2:1099-1104(1983))。转化能够用单个DNA或多个DNA(即:共转化)施行,这两种技术都适合与例如PI编码序列一起使用。
本发明的其它实施方案是如上所述的融合蛋白,其包含
(a)具有抗致病性活性的第一种蛋白质或蛋白质结构域;
(b)连接肽;
(c)具有抗致病性活性的第二种蛋白质或蛋白质结构域;以及
(d)任选的通过一种或多种连接肽融合的具有抗致病性活性的一种或多种其它的蛋白质或蛋白质结构域,以及包含编码所述蛋白质的DNA构建体,所述蛋白质能用以改善植物及其后代植物的病原体抗性或耐受性,其中后代植物被定义为有性或无性衍生的将来世代植物,包括但不限于,子代植物。
病原体例如线虫造成世界上大部分作物的经济损失。这些作物包括温带农业的作物;马铃薯、甜菜、蔬菜作物(包括番茄、黄瓜、甘蓝、菜花、芹菜、莴苣、胡萝卜、甜菜、parsnip萝卜、鹰嘴豆和兵豆)、油料作物、谷类、豆科植物、玉米、小麦、大麦、燕麦、黑麦和其它禾谷类、草地草和饲料作物(包括一系列草类红色和白色三叶草以及苜蓿)、森林树木、落叶和坚果树、软果和藤本包括葡萄、园艺和鳞茎作物、大蒜、洋葱和温室作物。
这些作物也包括热带和亚热带作物例如水稻、其它禾谷类(包括小麦、大麦、玉米、燕麦、高粱、小米)、根和块茎作物(包括马铃薯、甘薯、木瓜、薯蓣、芋)、食用豆类、蔬菜(包括番茄、黄瓜、西印度黄瓜、罗马甜瓜和其它甜瓜、西瓜、甘蓝、菜花、辣椒、茄子、大蒜、洋葱、芹菜、南瓜、sashes和西葫芦、莴苣、鹰嘴豆和兵豆)、花生、柑桔、亚热带和热带水果树、椰子和其它棕榈、咖啡、可可、茶、香蕉、大蕉(plantains)和麻蕉、甘蔗、烟草、菠萝、棉花和其它的热带纤维作物和其它范围的作物。
转基因地表达根据本发明的融合蛋白之所述的双子叶或单子叶植物,以及所述植物的后代和它们的种子,均组成本发明更加优选的实施方案。本发明进一步包括了包含所述植物的种子之商业包装。优选的是带有标签的商业包装,该标签指导包内种子的使用。经遗传工程化进入以上所述植物的遗传学特性可通过有性生殖或营养生长来传递,因而能在后代植物中保持和繁殖。一般所说的保持和繁殖是利用公知的为适合专门的目的而发展的农业方法,例如耕种、播种或收获等。专业的方法例如水培法或温室技术也可以应用。由于生长的作物易受昆虫或侵染引起的攻击和损害,也易受到杂草植物的竞争,因此,应采取措施来控制杂草、植物病害、昆虫、线虫以及其它不良条件以提高产量。这些包括机械方法,例如土壤耕作,或去除杂草及受感染的植株,也可应用农业化学品例如除草剂、杀菌剂、杀配子剂、杀线虫剂、生长调节剂、催熟剂以及杀昆虫剂。
根据本发明的转基因植物和种子的有利的遗传学特性,能够进一步在植物育种中培育,育种目的在于其有改善性质的植物的培育,例如对害虫、除草剂或逆境的耐受性改善,改善了的营养价值,提高的产量,或者导致装运或分配中损失减少的改善了的结构。多种育种步骤其特征在于严格限定了人类的干预,例如选择待杂交品系,亲本系直接授粉,或者选择合适的后代植株。依据需要的性状而采用不同的育种方法。相关的技术在本领域众所周知,包括但不限于,杂交、自交、回交育种、多系育种、品种间杂交(variety blend)、种间杂交、非整倍体技术,等等。杂交技术也包括通过机械的、化学的或生物化学的手段产生雄性或雌性不育株的植株不育化。用不同品系的花粉给雄性不育株进行异种授粉,确保雄性不育但雌性可育株的基因组将一致性地获得双亲系的特性。因此,根据本发明的转基因种子和植物能够用于改善的植物系的育种,例如提高常规方法(诸如除草剂或杀虫剂处理)的效力,或者由于它们修饰了的遗传特性而可省略所述的方法。另外,可以获得具有改善的逆境耐受性的新作物,由于它们优化的遗传“装备”,因此,与不能耐受类似不利发育条件的产物相比产生出质量更好的收获产品。
在种子生产中,种子的发芽质量和一致是关键的产品特性,然而农民收获和销售的种子之发芽质量和一致性并不重要。由于难以将一种作物始终与其它作物和杂草种子分开,为了控制种生病害,为了生产发芽率高的种子,相当详细和严格限定的种子生产实践已经由在纯种子的生产、控制和销售领域中富有经验的种子生产者制订。因此,农民购买符合特定质量标准的分级种子而不是使用从他自己的作物中收获的种子已成为普通惯例。作种子使用的繁殖材料通常用包含除草剂、杀虫剂、杀真菌剂、杀细菌剂、杀线虫剂、杀软体动物药剂或其中的混合物的保护剂包衣进行处理。通常使用的保护剂包衣包含诸如环己烯亚胺、萎锈灵、福美双(TMTD)、methalaxyl(Apron)和虫螨灵Actellic)的化合物。如果需要这些化合物与其它载体、表面活性物质或通常用在配制技术中的促应用佐剂一起配制,以提供针对由细菌、真菌或动物害虫引起的损坏的保护。保护剂包衣可能通过用液体制剂来浸渗繁殖材料,或通过用混合的湿或干制剂包被加以应用。其它的应用方法也有可能,例如直接在花蕾或果实上处理。
本发明的其它方面是提供新农业方法,例如以上例举的方法,其特征在于根据本发明的转基因植物、转基因植物材料,或者转基因种子的应用,对此在以下的非限制性实施例中更加详细地描述。在这些实施例中,核酸的制造、操作和分析方法是按照Sambrook等人在“分子克隆-实验指南”第二版,冷泉港实验室出版社,NY,美国(1989)中描述的标准方法进行。
实施例
实施例1:双重抑制剂表达盒的产生
包含被连接体序列隔开的Oc-IΔD86和CpTI编码区的融合蛋白由两步PCR方法产生。通过PCR扩增从现有构建体扩增Oc-IΔD86编码区,利用相应于编码区5’端的寡核苷酸引物P1(5’-ATGTCGAGCGACGGACGGCCGGTGCTTGGC-3’SEQ ID NO:3),和第二种引物P2(5’- GATCTTCGCCGGACCGACGCCAAGAA TCACGGCATTTGCACTGGCATC-3’,SEQ ID NO:4),其互补于Oc-IΔD86编码区3’端以及可以从植物金属硫蛋白样PsMTa基因序列中获得的、带下划线的蛋白酶可切割的连接体序列之5’部分(Evans等人,FEBS262:29-32,1990)。类似地,包含由CaMV35S启动子控制的CpTI cDNA的二元载体pROK/CpTI+5的CpTI基因(Hilder等人,自然330:160-163,1987)由引物P3(5’- GTCGGTCCGG CGAAGATCCAGTTTGAAGGTAGTAATCATCATGATGAC-3’,SEQ ID NO:5)和P4(5’-TTCTTACTCATCATCTTCATCCCTGGACTTGC-3’,SEQ ID NO:6)一起扩增,P3设计为编码带下划线的蛋白酶可切割的PsMTa连接体序列的3’部分以及CpTI编码区的5’端,P4互补于CpTI编码区的3’端。扩增出的Oc-IΔD86和CpTI序列在它们的3’端和5’端分别包含一个18bp的互补区,并利用引物P1和P4,通过SOEing的PCR技术(Ho等人,基因77:51-59,1989;Horton等人,基因77:61-68,1989)连接在一起。这导致Oc-IΔD86和CpTI被具有氨基酸序列VILGVGPAKIQFEG的可切割连接体分隔,箭头指示推断的切割位点(Oc-IΔD86\PsMTa\CpTI融合蛋白)。
类似的方法用于产生编码具有间隔的非切割连接体之Oc-IΔD86和CpTI的DNA片段(Oc-IΔD86/go/CpTI融合蛋白),一方面使用由以上的P1和P5(5’- CTGGGGGGCTGTGTAAGAACTAGCTTGGGCATTTGGCACTGGCATC-3’,SEQ ID NO:7)组成的引物对,
另一方面由P6(5’- AGT TCTTACACAGC CCCCCAGCCTGG TAGTAATCATCATGATGAC-3’,SEQ ID NO:8)和以上的P4组成的引物对(编码连接体的序列用了下划线),从半乳糖氧化酶基因序列中获得。这个非切割连接体序列编码序列为QASSYTAPQPQ的肽。
扩增出的融合构建体最初克隆入载体PCRII(Invitrogen,Leek,荷兰),然后从载体PCRII进入pQE32表达载体(Qiagen)的Sma I位点用于测序和表达研究。随后,它们在Sst I(T4聚合酶修平的)/BamHI消化之后,从pQE32转移出来,以Pst I(T4聚合酶修平的)/BamHI片段来取代pBI121(Clonetech Laboratorirs Inc.)的GUS基因。融合序列受pBI121的CaMV35S启动子控制。
实施例2:单抑制剂表达盒的产生
编码成熟豇豆胰蛋白酶抑制剂(CpTI)的序列是通过聚合酶链式反应,利用寡聚核苷酸引物从pUSSR质粒(Hilder等人,自然220:160-163,1987)扩增出来,其中该引物来自于已发表的序列但添加了限制酶切位点(下划线部分)以帮助克隆进表达载体。两个引物为(5’-ACTAT GGATCCAGTAATCATCATGATGACTC-3’,SEQ IDNO:9)和5’-ATATT AAGCTTTTCTTACTCATCATCTTC-3’(SEQID NO:10)。利用整合入引物的BamHI和HindIII位点,直接将246bp产物克隆入表达载体pQ30(“QIA表达”系统,Qiagen)。
编码Oc-I的序列是利用引物P7(5’-ACATGTCGAATTCTTAGGCATTTGCACTGGC-3’,SEQ ID NO:15)和P8(5’-GAGGAGCCCGGGTCGAGCGACGGA-3’,SEQ ID NO:16),通过聚合酶链式反应从水稻(Oryza sativa L.japonica)基因组DNA中扩增。内含子通过基因SOEing的PCR技术去除(Ho等人,同前),其中,利用引物对P7/P9(5’-CTCGAACTCTAGAAGAGAATTGGCCTTGTTGTG-3’,SEQ ID NO:17)和P8/P10(5’-AATTCTCTTCTAGAGTTC-3’,SEQ ID NO:18)来扩增两个外显子。接着这些产物与SOEn一起通过引物P7和P8扩增,产物克隆入Smal/EcoR1消化的Bluescript。随后,利用BamHI/HindIII位点将工程化Oc-I基因克隆入IV型pQE表达载体(Qiagen)。
采用“单一位点消除”策略(Pharmacia)利用引物P11(5’-AAACCATGGATGTTCAAGGAGCTC-3’,SEQ ID NO:19),在Oc-I基因中产生单个密码子改变。
实施例3:植物转化
pBI衍生的质粒通过Shen和Forde,核酸研究17:83-85,1989描述的电穿孔法导入感受态的根癌农杆菌LBA4404。随后,如Clarke等人,植物分子生物学报告(Plant Mol.Biol.Rep.)10:178-189,1992,描述利用根癌农杆菌介导的根转化将其导入拟南芥生态型C24。利用Beta-Tech,Gent,比利时的Aracons从单一植株收获TI种子,保证自花可育。带有35S/Oc-IΔD86的拟南芥(Urwin等人,植物杂志12:455-461,1997)也用在这个研究中。
实施例4:大肠杆菌表达
单个和双重效应物构建体的表达正如Urwin等人,植物杂志8:121-131,1995,描述的那样进行。表达的蛋白质是融合蛋白,其含有分别被pQ30和Pq32载体编码的6×His N-末端并用镍树脂纯化,除了从Oc-IΔD86\PsMTa\CpTI融合蛋白中释放的CpTI。在后一情况中,利用6-组氨酸-标记于除去Oc-IΔD86之后鉴定粗匀浆。来自非转化的大肠杆菌的粗匀浆之抑制剂水平被从这些CpTI样品中扣除。用Urwin等人描述的多克隆抗体(Urwin等人,1995,同前)检测Oc-IΔD86,用根据Liddell和Cryer的“单克隆抗体的实践指南”,JohnWiley和Sons,纽约,美国,188页,1991,生产的单克隆抗体检测CpTI,。
主要如Abrahamson等人的描述,生物化学杂志(J.Biol.Chem.)262:9688-9694,1987,必需使用底物N-苄氧羰基-苯丙氨酸-精氨酸-7-酰胺-4-甲基香豆素(N-Cbz-phe-Arg-7-amido-4-methylcoumarin),木瓜蛋白酶和胰蛋白酶被分别用于半胱氨酸和丝氨酸蛋白酶抑制剂的检测。使用装有盘读数装置的Perkin ElmerSL50B荧光分光光度计测量荧光。
实施例5:表达的检测和线虫的摄取
大肠杆菌中表达的蛋白质,如Urwin等人描述的,1995,Urwin等人,植物杂志8:121-131,1995,使用QIA表达体系(Qiagen,Hilden,德国)来纯化,。
适合十二烷基硫酸钠-聚丙烯胺凝胶电泳(SDS PAGE)分析的拟南芥总蛋白质部分这样获得,用研杵和研钵将根部材料研磨成匀浆,然后从含有0.15M NaCl、10mM HEPES和10mM EDTA pH7.4的溶液中提取。电泳前,蛋白质样品经在SDS PAGE加样缓冲液中(15%β-巯基乙醇,15%SDS,1.5%溴酚蓝,50%甘油)煮沸而溶解。PI的表达用如Urwin等人(植物杂志12:455-461,1997)描述的蛋白质印迹分析,其中利用辣根过氧化物酶偶联的抗体促进辣根过氧化物酶化学发光(HRPL)体系的使用,该体系根据制造者的指示使用(NationalDiagnostics,Atlanta,Georgia)。可溶性蛋白质部分通过在缓冲液(0.15M NaCl,10mM Hepes,10mM EDTA pH7.4)中提取地面植物材料而收集。为了分离可溶性(胞质溶胶)和不溶性材料,在75000转/分下离心15分钟(Beckman Optima离心机,使用TLA100.2转头),沉淀在100mM碳酸钠,pH11溶液中完全重新悬浮,再次如上离心,上清波含有收集的一些膜连蛋白质。沉淀用所述的碳酸盐缓冲液清洗,并在SDS-PAGE加样缓冲液中重新悬浮。所有的样品于电泳前在SDS-PAGE加样缓冲液中煮沸。
蛋白质印迹分析也用来显示线虫从转基因植物中对抑制物的摄取。饲养雌虫通过人工从拟南芥的根部挑出,因此确保无植物材料的污染。从表达单一或双重PI的植物中收集了大约70个线虫。线虫于微离心管中磨碎,并在0.15M NaCl、10mM Hepes、10mM EDTA pH7.4的溶液中重新悬浮,其中包含市售的蛋白酶抑制剂的混合液(Boehringer,Mannheim,Lewes,英国)。样品在SDS-PAGE加样缓冲液中煮沸,蛋白质印迹分析如上述完成。
所得的针对CpTI和Oc-IΔD86的抗体与在表达单一PI构建体的拟南芥匀浆中有正确分子量的蛋白质条带相反应。抗体与植物匀浆中的非同源PI或样品中出现的其它蛋白质均无可测得的交叉反应。在大肠杆菌中和在拟南芥根的匀浆中,Oc-IΔD86/go/CpTI构建体产生一种c23 kDa的主要产物,该产物能够被两种抗体识别,因此包含两种PI。用每种抗体都能检测到相应于低分子量单个PI的弱信号,表明融合蛋白的低水平解离。Oc-IΔD86\PsMTa\CpTI构建体产生了相反蛋白质印迹带型,显示与低分子量产物相比,其与高分子量产物有更高的反应能力。这提示在此种情况中切割的PI占主要成分。对在大肠杆菌中产生的Oc-IΔD86\PsMTa\CpTI和Oc-IΔD86/go/CpTI的产物进行相关的抑制鉴定。二者都对木瓜蛋白酶和胰蛋白酶的活性有95%的抑制,提示串联的PI分子抑制了两种蛋白酶,而且在PsMTa衍生的连接体切割后两种PI依然有效。
在一定范围的转化系的根匀浆中进行蛋白质印迹分析。对于四种构建体中的每一种,选择一个品系做进一步研究。选择的每一个品系表达的目的PI占总蛋白质的0.4%。用两种抗体对线虫摄取的抑制剂的分析揭示,当寄生植物表达单一PI构建体时,南方根结线虫的雌虫摄食Oc-IΔD86或CpTI。通过两种抗体也检测到完整的融合蛋白Oc-IΔD86/go/CpTI。同时每种抗体检测相应于单一PI的一种较小产物。令人惊奇的是,在从表达Oc-IΔD86/PsMTa/CpTI构建体的植物上分离出的线虫中,没有检测到预期大小的产物。甜菜胞囊线虫的结果与南方根结线虫的类似,除了在线虫中不能检测到Oc-IΔD86/go/CpTI的非切割的产物。在线虫中没有检测到来自Oc-IΔD86/PsMTa/CpTI的产物是未预料到的,假设宿主植物中存在两种抑制剂的话。差化分离的植物材料的蛋白质印迹分析显示,Oc-IΔD86/PsMTa/CpTI的两种产物都与膜相结合,但不是整合膜蛋白。
实施例6:线虫感染,回复和测量
甜菜包囊线虫群体保持在甘蓝植株上。通过移栽植株到含有甜菜包囊线虫卵(密度为30个卵/克)的沙/壤土混合物的盆中,使四周龄甘蓝植株感染。甘蓝植株在22℃、正常日照长度下生长。回收用来生长这些植株的感染过的土壤,计数每克中的卵数。使用土壤分离器利用50%壤土/沙混合物进行3倍连续稀释,然后用来生长野生型C24拟南芥。在预备试验中,发现卵计数为9个卵/克时有最高的达5倍增长。然而,在随后的感染中,只使用了5个卵/克以确保良好的感染,而没有过分胁迫植物。
南方根结线虫群体保持在番茄植株上,在16小时日照长度、24℃下生长。感染植株的整个根球切成小片,用来准备在50%壤土/沙混合物中的连续稀释物。连续稀释的等分试样用来建立最适宜的感染率,土壤的堆保持在10℃。
干净的受感染的根材料和胞囊通过在50%壤土/沙混合物中生长植株而收集。如Urwin等人描述的用品红酸染根部,来协助人工收集早期时间点的线虫,除了薄拟南芥根不要求清洗(Clearing)步骤。利用Seinhorst淘洗机来进行胞囊的收集(Seinhorst 1964)。由对从一群植株的所有单株中收集的卵进行人工计数来决定雌性产卵力。
感染的拟南芥植株在16小时日照长度、6mmol光子m-2s-1的辐照度、22℃的三洋MLR3500生长箱中生长。包含野生型C24拟南芥的植物盆以及包含表达抑制剂的植物的那些植物盆随机放置在格中。
实施例7:半乳糖氧化酶连接体的修饰
在半乳糖氧化酶结构域1与结构域2之间的连接体区之氨基酸序列如下进行修饰:通过编码氨基酸序列SIEGR(SEQ ID NO:21)的序列TCT ATC GAA GGT CGC(SEQ ID NO:20)代替编码氨基酸序列SSY的三个氨基酸密码子AGT TCT TAC而被修饰。第一个密码子简单地代替存在的Ser密码子,剩余的四个密码子编码一个Xa因子蛋白酶解切割位点。Baron等人描述了使用的基于PCR的诱变方法,生物化学杂志269,25095-25105,1994。在构巢曲霉(Aspergillusnidulans)中表达了修饰过的半乳糖氧化酶基因。令人惊奇的是,在SDS-PAGE凝胶中发现了两个蛋白质条带,相应于结构域1(大约16kDa)和结构域2+3(大约52 kDa)的大小。在相应于全长半乳糖氧化酶的位置没有检测到蛋白质。结果显示修饰过的半乳糖氧化酶连接体对真菌蛋白酶的切割敏感。使用这个连接体及其进一步修饰允许植物蛋白酶在植物中加工多聚体分子。
虽然为了清晰和理解,上述发明已经进行了详细描述,但是,本领域技术人员通过阅读这个公开文本,应当知晓可做形式和细节上的多种改变而不偏离本发明和下述的权利要求书实际范围。
                       序列表
(1)一般信息:
(i)申请人:
  (A)姓名:NOVARTIS AG
  (B)街道:Schwarzwaldallee 215
  (C)城市:Basel
  (E)国家:瑞士
  (F)邮政编码:4058
  (G)电话:41 61 324 11 11
  (H)传真:41 61 322 75 32
(ii)发明名称:融合蛋白产物
(iii)序列数目:21
(iv)计算机可读形式:
  (A)介质类型:软盘
  (B)计算机:IBM PC兼容机
  (C)操作系统:PC-DOS/MS-DOS
  (D)软件:PatentIn Release#1.0,版本#1.25(EPO)
(2)SEQ.ID.NO.1的信息:
(i)序列特征:
  (A)长度:14个氨基酸
  (B)类型:氨基酸
  (C)链型:单链
  (D)拓扑结构:线性
(ii)分子类型:肽
(iii)假拟:非
(iii)反义:否
(v)片段类型:内部
(vi)初始来源:
  (A)生物:PsMTa连接体
(xi)SEQ.ID.NO.1的序列描述:
Val Ile Leu Gly Val Gly Pro Ala Lys Ile Gln Phe Glu Gly
1               5                   10
(2)SEQ.ID.NO.2的信息:
(i)序列特征:
  (A)长度:11个氨基酸
  (B)类型:氨基酸
  (C)链型:单链
  (D)拓扑结构:线性
(ii)分子类型:肽
(iii)假拟:非
(iii)反义:否
(v)片段类型:内部
(vi)初始来源:
  (A)生物:半乳糖氧化酶连接体
(xi)SEQ.ID.NO.2的序列描述:
Gln Ala Ser Ser Tyr Thr Ala Pro Gln Pro Gln
1               5                   10
(2)SEQ.ID.NO.3的信息:
(i)序列特征:
  (A)长度:30个碱基对
  (B)类型:核酸
  (C)链型:单链
  (D)拓扑结构:线性
(ii)分子类型:DNA(基因组)
(iii)假拟:非
(iii)反义:否
(vi)初始来源:
  (A)生物:Oligo P1
(xi)SEQ.ID.NO.3的序列描述:
ATGTCGAGCG ACGGACGGCC GGTGCTTGGC             30
(2)SEQ.ID.NO.4的信息:
(i)序列特征:
  (A)长度:48个碱基对
  (B)类型:核酸
  (C)链型:单链
  (D)拓扑结构:线性
(ii)分子类型:DNA(基因组)
(iii)假拟:非
(iii)反义:否
(vi)初始来源:
  (A)生物:Oligo P2
(xi)SEQ.ID.NO.4的序列描述:
GATCTTCGCC GGACCGACGC CAAGAATCAC GGCATTTGCA CTGGCATC           48
(2)SEQ.ID.NO.5的信息:
(i)序列特征:
  (A)长度:48个碱基对
  (B)类型:核酸
  (C)链型:单链
  (D)拓扑结构:线性
(ii)分子类型:DNA(基因组)
(iii)假拟:非
(iii)反义:否
(vi)初始来源:
  (A)生物:Oligo P3
(xi)SEQ.ID.NO.5的序列描述:
GTCGGTCCGG CGAAGATCCA GTTTGAAGGT AGTAATCATC ATGATGAC           48
(2)SEQ.ID.NO.6的信息:
(i)序列特征:
  (A)长度:32个碱基对
  (B)类型:核酸
  (C)链型:单链
  (D)拓扑结构:线性
(ii)分子类型:DNA(基因组)
(iii)假拟:非
(iii)反义:否
(vi)初始来源:
  (A)生物:Oligo P4
(xi)SEQ.ID.NO.6的序列描述:
TTCTTACTCA TCATCTTCAT CCCTGGACTT GC                            32
(2)SEQ.ID.NO.7的信息:
(i)序列特征:
  (A)长度:45个碱基对
  (B)类型:核酸
  (C)链型:单链
  (D)拓扑结构:线性
(ii)分子类型:DNA(基因组)
(iii)假拟:非
(iii)反义:否
(vi)初始来源:
  (A)生物:Oligo P5
(xi)SEQ.ID.NO.7的序列描述:
CTGGGGGGCT GTGTAAGAAC TAGCTTGGGC ATTTGCACTG GCATC                       45
(2)SEQ.ID.NO.8的信息:
(i)序列特征:
  (A)长度:45个碱基对
  (B)类型:核酸
  (C)链型:单链
  (D)拓扑结构:线性
(ii)分子类型:DNA(基因组)
(iii)假拟:非
(iii)反义:否
(vi)初始来源:
  (A)生物:Oligo P6
(xi)SEQ.ID.NO.8的序列描述:
AGTTCTTACA CAGCCCCCCA GCCTGGTAGT AATCATCATG ATGAC                       45
(2)SEQ.ID.NO.9的信息:
(i)序列特征:
  (A)长度:31个碱基对
  (B)类型:核酸
  (C)链型:单链
  (D)拓扑结构:线性
(ii)分子类型:DNA(基因组)
(iii)假拟:非
(iii)反义:否
(xi)SEQ.ID.NO.9的序列描述:
ACTATGGATC CAGTAATCAT CATGATGACT C                                       31
(2)SEQ.ID.NO.10的信息:
(i)序列特征:
  (A)长度:29个碱基对
  (B)类型:核酸
  (C)链型:单链
  (D)拓扑结构:线性
(ii)分子类型:DNA(基因组)
(iii)假拟:非
(iii)反义:否
(xi)SEQ.ID.NO.10的序列描述:
ATATTAAGCT TTTCTTACTC ATCATCTTC                                          29
(2)SEQ.ID.NO.11的信息:
(i)序列特征:
  (A)长度:14个氨基酸
  (B)类型:氨基酸
  (C)链型:单链
  (D)拓扑结构:线性
(ii)分子类型:肽
(iii)假拟:非
(iii)反义:否
(v)片段类型:内部
(vi)初始来源:
  (A)生物:修饰的半乳糖氧化酶连接体
(xi)SEQ.ID.NO.11的序列描述:
Gln Ala Ser Ile Glu Gly Arg Tyr Thr Ala Pro Gln Pro Gln
1               5                   10
(2)SEQ.ID.NO.12的信息:
(i)序列特征:
  (A)长度:18个氨基酸
  (B)类型:氨基酸
  (C)链型:单链
  (D)拓扑结构:线性
(ii)分子类型:肽
(iii)假拟:非
(iii)反义:否
(v)片段类型:内部
(vi)初始来源:
  (A)生物:天然免疫球蛋白连接体
(xi)SEQ.ID.NO.12的序列描述:
Lys Glu Ser Gly Ser Val Ser Ser Glu Gln Leu Ala Gln Phe Arg Ser
1               5                   10                  15
Leu Asp
(2)SEQ.ID.NO.13的信息:
(i)序列特征:
  (A)长度:13个氨基酸
  (B)类型:氨基酸
  (C)链型:单链
  (D)拓扑结构:线性
(ii)分子类型:肽
(iii)假拟:非
(iii)反义:否
(v)片段类型:内部
(vi)初始来源:
  (A)生物:连接肽
(xi)SEQ.ID.NO.13的序列描述:
Glu Gly Lys Ser Ser Gly Ser Gly Ser Glu Ser Lys Pro
1               5                   10
(2)SEQ.ID.NO.14的信息:
(i)序列特征:
  (A)长度:15个氨基酸
  (B)类型:氨基酸
  (C)链型:单链
  (D)拓扑结构:线性
(ii)分子类型:肽
(iii)假拟:非
(iii)反义:否
(v)片段类型:内部
(vi)初始来源:
  (A)生物:连接肽
(xi)SEQ.ID.NO.14的序列描述:
Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser
1               5                   10                  15
(2)SEQ.ID.NO.15的信息:
(i)序列特征:
  (A)长度:31个碱基对
  (B)类型:核酸
  (C)链型:单链
  (D)拓扑结构:线性
(ii)分子类型:DNA(基因组)
(iii)假拟:非
(iii)反义:否
(vi)初始来源:
  (A)生物:Oligo P7
(xi)SEQ.ID.NO.15的序列描述:
ACATGTCGAA TTCTTAGGCA TTTGCACTGG C                                      31
(2)SEQ.ID.NO.16的信息:
(i)序列特征:
  (A)长度:24个碱基对
  (B)类型:核酸
  (C)链型:单链
  (D)拓扑结构:线性
(ii)分子类型:DNA(基因组)
(iii)假拟:非
(iii)反义:否
(vi)初始来源:
  (A)生物:Oligo P8
(xi)SEQ.ID.NO.16的序列描述:
GAGGAGCCCG GGTCGAGCGA CGGA                                              24
(2)SEQ.ID.NO.17的信息:
(i)序列特征:
  (A)长度:33个碱基对
  (B)类型:核酸
  (C)链型:单链
  (D)拓扑结构:线性
(ii)分子类型:DNA(基因组)
(iii)假拟:非
(iii)反义:否
(vi)初始来源:
  (A)生物:Oligo P9
(xi)SEQ.ID.NO.17的序列描述:
CTCGAACTCT AGAAGAGAAT TGGCCTTGTT GTG                                      33
(2)SEQ.ID.NO.18的信息:
(i)序列特征:
  (A)长度:18个碱基对
  (B)类型:核酸
  (C)链型:单链
  (D)拓扑结构:线性
(ii)分子类型:DNA(基因组)
(iii)假拟:非
(iii)反义:否
(vi)初始来源:
(A)生物:Oligo P10
(xi)SEQ.ID.NO.18的序列描述:
AATTCTCTTC TAGAGTTC                       18
(2)SEQ.ID.NO.19的信息:
(i)序列特征:
  (A)长度:24个碱基对
  (B)类型:核酸
  (C)链型:单链
  (D)拓扑结构:线性
(ii)分子类型:DNA(基因组)
(iii)假拟:非
(iii)反义:否
(vi)初始来源:
(A)生物:Oligo P11
(xi)SEQ.ID.NO.19的序列描述:
AAACCATGGA TGTTCAAGGA GCTC                                              24
(2)SEQ.ID.NO.20的信息:
(i)序列特征:
  (A)长度:15个碱基对
  (B)类型:核酸
  (C)链型:单链
  (D)拓扑结构:线性
(ii)分子类型:DNA(基因组)
(iii)假拟:非
(iii)反义:否
(xi)SEQ.ID.NO.20的序列描述:
TCTATCGAAG GTCGC                  15
(2)SEQ.ID.NO.21的信息:
(i)序列特征:
  (A)长度:5个氨基酸
  (B)类型:氨基酸
  (C)链型:单链
  (D)拓扑结构:线性
(ii)分子类型:肽
(iii)假拟:非
(iii)反义:否
(v)片段类型:内部
(xi)SEQ.ID.NO.21的序列描述:
    Ser Ile Glu Gly Arg
     1              5

Claims (12)

1.一种在植物和其后代植物中改善线虫抗性或耐受性的方法,包括将编码融合蛋白的基因整合入所述植物的基因组,其中融合蛋白包含
(a)具有抗致病性活性的第一种蛋白质或蛋白质结构域;
(b)连接肽;以及
(c)具有抗致病性活性的第二种蛋白质或蛋白质结构域,
其中至少一种具有抗致病性活性的蛋白质或蛋白质结构域为蛋白酶抑制剂CpTI。
2.根据权利要求1所述的方法,其中具有抗致病性活性的多种蛋白质或蛋白质结构域中,至少有一种是蛋白酶抑制剂Oc-IΔD86。
3.根据权利要求1所述的方法,其中基因有功能地连接至一种驱动在植物根内优势表达的启动子序列。
4.根据权利要求1所述的方法,其中连接肽包含一种在植物中被蛋白水解性切割的氨基酸序列。
5.根据权利要求1所述的方法,其中连接肽包含一种在植物中蛋白水解性切割稳定的氨基酸序列。
6.根据权利要求5所述的方法,其中连接肽的特征在于包含氨基酸序列QASSYTAPQPQ。
7.根据权利要求4所述的方法,其中连接肽的特征在于包含氨基酸序列VILGVGPAKIQFEG。
8.根据权利要求4所述的方法,其中连接肽的特征在于包含氨基酸序列QASIEGRYTAPQPQ。
9.一种编码改善植物中线虫抗性或耐受性的融合蛋白的DNA分子,其中融合蛋白包含
(a)具有抗致病性活性的第一种蛋白质或蛋白质结构域;
(b)连接肽;以及
(c)具有抗致病性活性的第二种蛋白质或蛋白质结构域,
其中,具有抗致病性活性的多种蛋白质或蛋白质结构域中,至少有一种为蛋白酶抑制剂CpTI。
10.根据权利要求9的DNA分子编码的融合蛋白。
11.一种表达根据权利要求9所编码的融合蛋白的植物细胞。
12.根据权利要求9的DNA分子用于改善植物及其后代植物的线虫抗性或耐受性的用途。
CNB988117886A 1997-12-03 1998-12-01 蛋白酶抑制剂融合蛋白 Expired - Fee Related CN1195063C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GBGB9725556.6A GB9725556D0 (en) 1997-12-03 1997-12-03 Organic compounds
GB9725556.6 1997-12-03

Publications (2)

Publication Number Publication Date
CN1280627A CN1280627A (zh) 2001-01-17
CN1195063C true CN1195063C (zh) 2005-03-30

Family

ID=10823024

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB988117886A Expired - Fee Related CN1195063C (zh) 1997-12-03 1998-12-01 蛋白酶抑制剂融合蛋白

Country Status (20)

Country Link
US (1) US6784337B1 (zh)
EP (1) EP1036185B1 (zh)
JP (1) JP2001525343A (zh)
CN (1) CN1195063C (zh)
AR (1) AR017190A1 (zh)
AT (1) ATE264396T1 (zh)
AU (1) AU1672499A (zh)
BR (1) BR9814707A (zh)
CA (1) CA2312050A1 (zh)
DE (1) DE69823225T2 (zh)
DK (1) DK1036185T3 (zh)
ES (1) ES2215333T3 (zh)
GB (1) GB9725556D0 (zh)
HK (1) HK1032073A1 (zh)
HU (1) HUP0004509A3 (zh)
PL (1) PL340924A1 (zh)
RU (1) RU2230787C2 (zh)
TR (1) TR200001572T2 (zh)
UA (1) UA71901C2 (zh)
WO (1) WO1999028484A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7622301B2 (en) * 2004-02-24 2009-11-24 Basf Plant Science Gmbh Compositions and methods using RNA interference for control of nematodes
BRPI0514342A2 (pt) * 2004-08-13 2009-10-06 Basf Plant Science Gmbh molécula de rna de filamento duplo, agrupamento de moléculas de rna de filamento duplo, planta transgênica, e, métodos para controlar a infecção de uma planta por um nematóide parasìtico e para fabricar uma planta transgênica
SG171689A1 (en) * 2006-05-25 2011-06-29 Hexima Ltd Multi-gene expression vehicle
ES2660965T3 (es) 2011-02-07 2018-03-26 Hexima Limited Defensinas vegetales modificadas útiles como agentes antipatógenos
CN104411714A (zh) 2012-03-09 2015-03-11 韦斯塔隆公司 毒肽产生、植物中的肽表达和富含半胱氨酸的肽的组合
US11692016B2 (en) 2012-03-09 2023-07-04 Vestaron Corporation High gene expression yeast strain
BR112015004734A2 (pt) * 2012-09-07 2017-11-21 Sanofi Sa proteínas de fusão para tratar uma síndrome metabólica
WO2015167809A1 (en) * 2014-04-28 2015-11-05 Syngenta Participations Ag Method for controlling nematode pests
JP2020500009A (ja) 2016-10-21 2020-01-09 ベスタロン コーポレイション 切断可能ペプチドならびにそれを含む殺虫性タンパク質及び殺線虫性タンパク質

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5380831A (en) 1986-04-04 1995-01-10 Mycogen Plant Science, Inc. Synthetic insecticidal crystal protein gene
US5436392A (en) 1990-01-12 1995-07-25 Arizona Technology Development Corporation Transgenic plants expressing M. sexta protease inhibitor
AU648140B2 (en) * 1991-02-01 1994-04-14 Virtual Drug Development, Inc. Reverse antimicrobial peptides and antimicrobial compositions
US5461032A (en) 1991-03-01 1995-10-24 Fmc Corporation Insecticidally effective peptides
GB9104617D0 (en) * 1991-03-05 1991-04-17 Nickerson Int Seed Pest control
EP0674712B1 (en) * 1992-12-16 2005-03-23 Hexima Limited A proteinase inhibitor, precursor thereof and genetic sequences encoding same
US5849870A (en) * 1993-03-25 1998-12-15 Novartis Finance Corporation Pesticidal proteins and strains
JPH10510146A (ja) * 1994-11-21 1998-10-06 ザ ユニバーシティ オブ リーズ 改変されたプロテイナーゼインヒビター
US5837876A (en) * 1995-07-28 1998-11-17 North Carolina State University Root cortex specific gene promoter
GB9524395D0 (en) * 1995-11-29 1996-01-31 Nickerson Biocem Ltd Promoters

Also Published As

Publication number Publication date
HUP0004509A2 (hu) 2001-04-28
RU2230787C2 (ru) 2004-06-20
GB9725556D0 (en) 1998-02-04
AR017190A1 (es) 2001-08-22
DK1036185T3 (da) 2004-08-02
ATE264396T1 (de) 2004-04-15
DE69823225T2 (de) 2004-09-02
TR200001572T2 (tr) 2000-11-21
HK1032073A1 (en) 2001-07-06
CA2312050A1 (en) 1999-06-10
EP1036185B1 (en) 2004-04-14
ES2215333T3 (es) 2004-10-01
HUP0004509A3 (en) 2002-11-28
WO1999028484A1 (en) 1999-06-10
EP1036185A1 (en) 2000-09-20
UA71901C2 (en) 2005-01-17
US6784337B1 (en) 2004-08-31
BR9814707A (pt) 2000-10-03
CN1280627A (zh) 2001-01-17
AU1672499A (en) 1999-06-16
PL340924A1 (en) 2001-03-12
DE69823225D1 (de) 2004-05-19
JP2001525343A (ja) 2001-12-11

Similar Documents

Publication Publication Date Title
CN1024021C (zh) 含谷胱甘肽s-转移酶基因的除莠剂耐性植物
CN1334874A (zh) Cry3B杀虫蛋白在植物中的提高表达
CN1332800A (zh) 转化植物以表达苏云金芽孢杆菌δ-内毒素的方法
CN1151183A (zh) Rps2基因及其应用
CN1761753A (zh) δ-内毒素基因及其使用方法
CN1285875A (zh) 突变的羟基苯丙酮酸双氧化酶、基dna序列和含该基因且耐除草剂的植物的分离
CN1263946A (zh) 合成杀虫的晶状蛋白质基因
CN1823168A (zh) 提高植物非生物胁迫耐受性和/或生物量的方法及用该方法所产生的植物
CN1796559A (zh) 利用水稻转录因子基因OsNACx提高植物抗旱耐盐能力
CN1232468A (zh) 获得性抗性npr基因及其用途
CN1375009A (zh) 抗昆虫的水稻植物
CN1642977A (zh) 新的苏云金芽孢杆菌杀昆虫蛋白质
CN1333833A (zh) 鉴定非寄主植物抗病基因的新方法
CN1228123A (zh) 对植物病原真菌有抑制活性的肽
CN1249779A (zh) 细胞色素p450单加氧酶
CN1155714C (zh) 抗真菌蛋白及其编码dna和掺入此dna的宿主
CN1190433A (zh) 在植株内表现出抗病毒和/或抗真菌活性的pap突变蛋白
CN1195063C (zh) 蛋白酶抑制剂融合蛋白
CN1594571A (zh) 百草枯抗性基因及维管束和毛状体特异性启动子
CN101062943A (zh) 水稻的与耐逆性相关的dreb类转录因子及其编码基因与应用
CN1809640A (zh) 延迟植物中种子落粒的方法和手段
CN1793172A (zh) 无诱导表达基因工程菌株及构建方法和应用
CN1202254C (zh) 水稻抗白叶枯病基因Xa26(t)
CN1239515C (zh) 参与由细胞质雄性不育恢复至可育的蛋白质及编码该蛋白质的基因
CN1219883C (zh) 改造合成的苏云金芽孢杆菌杀虫晶体蛋白基因CrylC*

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: SINGENTA PARTICIPATION AG

Free format text: FORMER OWNER: NOVANNIS COMPANY

Effective date: 20021017

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20021017

Address after: Basel

Applicant after: Xingenta Shara Co., Ltd.

Address before: Basel

Applicant before: Novartis AG

C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee