CN1182565C - 半导体膜以及半导体装置的制造方法 - Google Patents

半导体膜以及半导体装置的制造方法 Download PDF

Info

Publication number
CN1182565C
CN1182565C CNB021251622A CN02125162A CN1182565C CN 1182565 C CN1182565 C CN 1182565C CN B021251622 A CNB021251622 A CN B021251622A CN 02125162 A CN02125162 A CN 02125162A CN 1182565 C CN1182565 C CN 1182565C
Authority
CN
China
Prior art keywords
film
semiconductor film
oxidation
polycrystal
noncrystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB021251622A
Other languages
English (en)
Other versions
CN1395287A (zh
Inventor
ɭ���Ѻ�
森本佳宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Publication of CN1395287A publication Critical patent/CN1395287A/zh
Application granted granted Critical
Publication of CN1182565C publication Critical patent/CN1182565C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/32105Oxidation of silicon-containing layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02502Layer structure consisting of two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02678Beam shaping, e.g. using a mask
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02686Pulsed laser beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02691Scanning of a beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/32115Planarisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/127Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement
    • H01L27/1274Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor
    • H01L27/1285Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor using control of the annealing or irradiation parameters, e.g. using different scanning direction or intensity for different transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Thin Film Transistor (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

本发明提供一种半导体装置及其制造方法,对形成于绝缘性基板(10)上的a-Si膜(12)照射激光(14)而成为p-Si膜(13),而且将该p-Si膜(13)进行高压氧化而形成表面氧化膜(13a)。然后,通过去除该表面氧化膜(13a),而将p-Si膜(13)表面所产生的突起部(100)的高度降低,可以使p-Si膜(13)的表面平坦。由此,可去除在半导体膜产生的突起而获得使该表面平坦的半导体膜,同时使用该半导体膜而提供具有良好特性的半导体装置。

Description

半导体膜以及半导体装置的制造方法
技术领域
本发明涉及半导体装置及其制造方法,特别涉及将半导体膜的表面进行平坦的半导体装置及其制造方法。
背景技术
以下,说明现有的薄膜晶体管(Thin Film Transistor,以下称‘TFT’)的制造方法。
图5表示经多结晶化的多晶硅膜的表面状态,图6表示沿图5中的A-A线的现有的薄膜晶体管的制造过程的剖面图。
步骤1(图6(a)):在由玻璃、石英玻璃等构成的绝缘性基板10上,以CVD法形成由SiN和/或SiO2膜构成的绝缘性膜11。采用CVD法使非晶硅膜(以下称‘a-Si膜’)12成膜于其上。
步骤2(图6(b)):以XeCl、KrF、ArF等线状的准分子激光(ExcimerLaser)14,针对该a-Si膜12由一方向另一方进行扫描照射并进行退火处理,将a-Si膜12溶解再结晶化而使其多结晶化成为多晶硅膜(以下称为‘p-Si膜’)13。
此时,对于a-Si膜12的表面以准分子激光14向箭头方向(图中左方向)扫描照射,由此a-Si膜12即溶解而再结晶化。即,以激光照射14而加热的a-Si膜12在溶融后被冷却再结晶化成为p-Si膜。然而,此时各结晶的粒子将互撞隆起而产生突起部100。
步骤3(图6(c)):在p-Si膜13上,以CVD法全面形成由SiO2膜构成的栅极绝缘膜14。然后,采用溅镀法形成由铬(Cr)、钼(Mo)等的高融点金属构成的金属膜,并采用来自微影技术及RIE(Reactive IonEtching:活性化离子蚀刻)法的干式蚀刻技术加工成预定形状,而形成栅极电极15。
然后,在形成P通道型TFT时,将栅极电极15作为屏蔽,而隔着栅极绝缘膜14对于p-Si膜13注入硼(B)等P型离子,而在形成N通道型TFT时,则注入磷(P)等N型离子。由此,由作为主动层的p-Si膜13的栅极电极15所覆盖的部分将成为通道区13c,而该两侧的部分则成为源极区13s以及漏极区13d。
然后,采用CVD法形成SiO2膜单体、或由SiO2膜与SiN膜的2层构成的层间绝缘膜16。
步骤4(图6(d)):然后,在与漏极区13d对应的位置,使贯通层间绝缘膜16与栅极绝缘膜14的第1接触孔17,形成到达p-Si膜13,并在该第1接触孔17部分,形成由铝等金属构成的漏极电极19。该漏极电极19的形成,例如在形成有第1接触孔17的层间绝缘膜16上,溅镀而堆积的同时,并以填充于第1接触孔17的铝进行图案化的方式而形成。
然后,在层间绝缘膜16漏极及电极19上形成平坦化绝缘膜20,以使表面平坦化。该平坦化绝缘膜20,涂布树脂溶液并进行烧成,可填埋栅极电极15、漏极电极19引起的凹凸以使表面平坦化。
而且,在源极区13s上,形成贯通平坦化绝缘膜20、层间绝缘膜16以与栅极绝缘膜14的第2接触孔21,并在该第2接触孔21部分,与源极13s连接而形成扩展于丙烯树脂层上的显示电极22。该显示电极22,在形成有第2接触孔21的平坦化绝缘膜15上,层积透明导电膜,例如ITO(Indium thin Oxide:氧化铟锡),然后,在其透明导电膜上涂布光阻膜之后,形成预定的电极图案,并利用HBr气体以及Cl2以作为蚀刻气体,并通过干式蚀刻法、例如RIE法而将露出的透明导电膜蚀刻,形成显示电极22。
然而,依据上述所示的现有制造方法制造的TFT,在a-Si膜被激光照射而溶融再结晶化时,各结晶的粒子将相互碰撞,而形成该相互碰撞之处隆起的突起部100。因此,形成于该p-Si膜13表面的突起部100的上层的栅极绝缘膜14的厚度,在突起部100产生之处将变薄。例如,该突起部100,p-Si膜13的厚度在约40nm时,将与其厚度相同成为约40nm。因此,p-Si膜13与栅极电极15之间无法取得充分的绝缘,或是在突起部100的高度较栅极绝缘膜14的厚度大时,将产生p-Si膜13与栅极电极15短路的缺点。
另外,由于电场因施加于突起部100的电压而集中,造成绝缘破坏,而产生p-Si膜13与栅极电极15短路的缺点。
而且,针对p-Si膜13而施加的栅极电极15的电压,将在绝缘性基板内产生不均匀,其结果将有形成特性不一致的TFT的缺点。在采用该TFT于液晶显示装置等的显示装置时,将有在显示画面内产生不均匀的缺点。
发明内容
鉴于上述缺点,本发明的目的在于,去除在半导体膜产生的突起而获得使该表面平坦的半导体膜,同时应用该半导体膜而提供具有良好特性的半导体装置及其制造方法。
本发明的半导体膜是,将表面具有凹凸的半导体膜氧化,并去除该表面氧化膜,由此而将上述半导体膜进行平坦化的半导体膜。
另外,本发明的半导体膜是,对基板上的非晶质半导体膜照射激光,而将多结晶化的多晶半导体膜的表面氧化,并去除因该氧化而形成的表面氧化膜,由此而将上述半导体膜的表面进行平坦化的半导体膜。
而且,本发明的半导体膜是,对基板上的非晶质半导体膜照射激光,而使多结晶化的多晶半导体膜的表面以高压氧化环境氧化,并去除因该氧化所形成的表面氧化膜,由此而将上述半导体膜的表面进行平坦化的半导体膜。
本发明的半导体膜的形成方法包括:将表面具有凹凸的半导体膜的表面氧化而形成表面氧化膜的步骤;以及去除该表面氧化膜、而使上述半导体膜的表面的凹凸减少的步骤。
另外,本发明的半导体膜的形成方法包括:在基板上形成非晶质半导体膜的步骤;对该非晶质半导体膜照射激光、而将非晶质半导体膜重整成多晶半导体膜的步骤;在高压环境中将该多晶半导体膜的表面进行氧化的步骤;以及将该经氧化的氧化多晶半导体膜去除的步骤。
本发明的半导体装置的制造方法包括:在基板上形成非晶质半导体膜的步骤;对该非晶质半导体膜照射激光、而将非晶质半导体膜重整成多晶半导体膜的步骤;在高压氧化环境中将该多晶半导体膜的表面进行氧化的步骤;将该经氧化的氧化多晶半导体膜去除、而露出上述多晶半导体膜的步骤;在该多晶半导体膜形成源极及漏极之后、形成覆盖该多晶半导体膜的绝缘膜的步骤;以及在该绝缘膜上形成栅极电极的步骤。
另外,本发明的半导体装置的制造方法包括:在基板上形成栅极电极的步骤;形成覆盖该栅极电极的栅极绝缘膜的步骤;在上述栅极电极的上方形成非晶质半导体膜的步骤;对该非晶质半导体膜照射激光、而将非晶直半导体膜重整成多晶半导体膜的步骤;在高压氧化环境中、将该多晶半导体膜的表面进行氧化的步骤;将该经氧化的氧化多晶半导体膜去除、而露出上述多晶半导体膜的步骤;在该多晶半导体膜形成源极和漏极的步骤。
附图说明
图1是本发明的半导体装置的制造方法的制造过程剖面图。
图2是在液晶显示装置中采用本发明的半导体装置的制造方法时的剖面图。
图3是用于本发明的半导体装置的制造方法的高压氧化装置的剖面图。
图4是本发明的半导体装置的半导体膜的扩大剖面图。
图5是表示照射激光后的半导体膜的表面的立体图。
图6是现有的半导体装置的制造过程剖面图。
符号说明:10绝缘性基板,11绝缘性膜,12a-Si膜,13p-Si膜,14准分子激光,15栅极电极,16层间绝缘膜,17第1接触孔,19漏极电极,20平坦化绝缘膜,21第2接触孔,22显示电极,23定向膜,24定向液晶,30对向电极基板,31对向电极,32定向膜,100突起部,101表面氧化膜去除后的p-Si膜的微小突起部。
具体实施方式
以下,说明在具备有TFT的液晶显示装置中采用本发明的半导体装置的制造方法的情况。
图1是表示本发明的TFT的制造过程的剖面图,图2是表示采用本发明的半导体装置的制造方法而制造的液晶显示装置的剖面图。
步骤1(图1(a)):在玻璃、石英玻璃等构成的绝缘性基板10上,采用CVD法等而形成SiO2膜单体、或由SiN膜及SiO2膜的层积膜所构成的绝缘膜11。这是为了防止来自由玻璃构成的绝缘性基板10的钠(Na)离子等的不纯物,浸入在其上形成的半导体膜(p-Si膜)。如果采用无浸入不纯物之虑的无碱玻璃基板等情况,则未必需要。
另外,在本发明中,绝缘性基板10,也包含表面呈绝缘性的基板。即,也可以是在半导体基板上堆积由SiO2膜单体、或是SiN膜及SiO2膜等层积膜所构成的绝缘性膜。
在绝缘性膜11上面,采用CVD法而形成a-Si膜12。该a-Si膜12的膜厚,为30nm~100nm,在本实施例中设为55nm。
步骤2(图1(b)):对于该a-Si膜12,以波长308nm线状的准分子激光,由一方向另一方(图中是朝向左方向)扫描照射并进行退火处理,而将a-Si膜12溶融再结晶化并使其多结晶化而成为p-Si膜。
此时,对于a-Si膜的表面通过准分子激光照射,而使a-Si膜溶融并进行再结晶化。即,由激光照射而加热的a-Si膜在溶融后虽被冷却并再结晶化,但此时各结晶的粒子因互撞、而在该互撞处隆起并产生突起100。
就激光来说,也可使用上述波长λ=308nm的XeCl准分子激光,而且也可使用波长λ=193nm的ArF准分子激光。
步骤3(图1(c)):将形成p-Si膜13的基板10放入高压氧化装置内进行高压氧化。例如,就高压氧化的条件来说,以压力200MPa、装置内环境温度为570℃进行70分钟高压氧化。
结果,在p-Si膜13的表面即形成作为氧化硅膜的表面氧化膜13a。该表面氧化膜的厚度约为30nm。
此时,p-Si膜13的氧化,因从该表面开始进行一致化,故与其它平坦部相比较,受氧化的表面的面积较宽广的突起100的部分与平坦部相比较,将有更多受到氧化。
步骤4(图1(d)):将p-Si膜13的表面进行氧化后,采用氟化氢(HF)将该表面氧化膜13a蚀刻去除,并使p-Si膜13露出。
结果,产生于p-Si膜13的突起部100即去除,而p-Si膜13的表面成为微小突起101,并大致平坦化。
步骤5(图1(e)):在p-Si膜13上,以CVD法全面形成由SiO2膜所构成的栅极绝缘膜14。然后,采用溅镀法形成由Cr、Mo等高熔点金属所构成金属膜,并采用来自微影技术及RIE法的干式蚀刻技术加工成预定形状,而形成栅极电极15。
然后,将栅极电极15作为屏蔽,隔着栅极绝缘膜14,而将P型或N型的离子注入至p-Si膜13。即,按照应该形成的TFT的类型,将P型或N型的离子注入至未被栅极电极15覆盖的p-Si膜13。
在形成P通道型的TFT时,注入硼(B)等的P型离子,而形成N通道型的TFT时,则注入磷(P)等的N型离子。由此,在作为主动层的p-Si膜13中以栅极电极15覆盖的部份成为通道区13c,该两侧的部分成为源极区13s以及漏极区13d。
之后,采用CVD法,形成SiO2膜单体、或是由SiO2膜与SiN膜的2层所构成的层间绝缘膜16。
在与漏极区13d对应的位置,使贯通层间绝缘膜16的第1接触孔17,形成到达p-Si膜13,并于该第1接触孔17部分,形成由铝等金属构成的漏极电极19。该漏极电极19的形成,例如在形成有第1接触孔17的层间绝缘膜16上,溅镀而堆积的同时,并以将填充于第1接触孔17的铝进行图案化的方式而形成。
接着,在形成漏极电极19的层间绝缘膜16及漏极电极19上形成平坦化绝缘膜20,以使表面平坦化。该平坦化绝缘膜20,涂布丙烯树脂溶液并进行烧成而形成丙烯树脂层,该丙烯树脂层,可填埋栅极电极15、漏极电极19引起的凹凸以使表面平坦化。
而且,在源极区13s上,形成贯通平坦化绝缘膜20、层间绝缘膜16以与栅极绝缘膜14的第2接触孔21,并在该第2接触孔21部分,与源极13s连接而形成扩展于丙烯树脂层上的显示电极22。该显示电极22,在形成有第2接触孔21的平坦化绝缘膜20上,层积透明导电膜,例如ITO(Indium thin Oxide:氧化铟锡),然后,在其透明导电膜上涂布光阻膜之后,形成预定的电极图案,并利用HBr气体以及Cl2以作为蚀刻气体,并通过干式蚀刻法、例如RIE法而蚀刻透明导电膜,形成显示电极22。
然后,在显示电极22及平坦化绝缘膜20上,以印刷法或是旋镀(spinner)法形成由聚亚酰胺(polyimide)或SiO2膜等构成,以使液晶24定向的定向膜23。
结果,以驱动液晶的TFT作为开关元件的液晶显示装置的单侧的TFT基板10即完成。
其次,在由无碱玻璃等所构成的作为绝缘基板的对向电极基板30上,从该基板30侧面依次在基板全面形成ITO膜等透明导电膜所构成的对向电极31之后,在其上形成由用于定向液晶24的聚亚酰胺、SiO2膜等所构成的定向膜32。
如此,与上述TFT基板10相对向设置对向电极基板30,并在TFT基板10与对向电极基板30之间的周边,采用由具有粘合性的树脂所构成的密封剂,将两基板10、30粘合,并在两基板间10、30填充液晶24,即完成如图2所示的液晶显示装置。
在此,图3是表示高压氧化装置的剖面图。
高压氧化装置200,是由耐压容器201与设置于其内部的反应管210所构成。
由SUS制成的圆筒状的耐压容器201,在其两端设置耐压容器盖202、203,由其保持气密。在耐压容器盖203中,设有氢气导入口204与氧气导入口205。
另外,反应管210呈圆筒状,在其两端设有反应管盖211、212,由此使反应管210的内部保持气密。另在反应管210的周围,设有用于加热反应管210内的加热器213。而且,来自设置于耐压容器盖203的气体导入口204、205的气体导入配管,被设置于反应管210的内部。
在该反应管210中,具有:由氢气导入口204导入的氢气、与由氧气导入口205导入的氧气混合燃烧以产生水蒸汽的燃烧部220;以及通过该水蒸汽及加热而氧化的氧化膜生成部230。在该氧化膜生成部230上承载有形成p-Si膜13的绝缘性基板10。
另外,反应管210内,由来自高压加气阀214的高压气体而变为高压。并且,耐压容器201内,也通过高压气阀206而由高压气体变为高压力。
在此,说明高压氧化装置的动作。
将耐压容器201的耐压容器盖202打开并卸除反应管盖211,而将形成p-Si膜13的绝缘基板10导入至氧化膜生成部230。然后装上反应管盖211,并将耐压容器盖202关闭。然后,通过导入自气阀206及气阀214的高压气体,以使耐压容器201内以及反应管210内变为高压。
然后,在由氢气导入口204以约为3立升/分的流量导入氢气至燃烧部220的同时,由氧气导入口205以约为3立升/分的流量导入氧气至燃烧部220。由此,在燃烧部220燃烧两气体而产生水蒸汽。通过该水蒸汽,反应管210内将成为高压水蒸汽环境,在导入至氧化膜生成部230中的在绝缘性基板10上成膜的p-Si膜13的表面被氧化,而使作为表面氧化膜的SiO2膜产生。
反应管210内的燃烧部220与氧化膜生成部230,由各加热器213加热至约570℃。
在p-Si膜13的表面形成表面氧化膜13a之后,打开反应管210的气阀215及耐压容器201的气阀207,将高压水蒸汽排出至外部,并打开耐压容器盖202及反应管盖211,以取出绝缘性基板10。如此一来,形成于绝缘性基板10上的表面氧化膜13a,如上述制造步骤所示,通过以HF蚀刻去除而作成表面平坦的p-Si膜13。
在此,作为主动层的p-Si膜的突起,一旦突出穿过在其上形成的绝缘膜,则非但无法获得绝缘性,且将与其绝缘膜上的导电层产生短路,故不希望其突起过高。
图4是表示经高压氧化的p-Si膜的突起部附近的扩大剖面图。在该图中,t0为形成于绝缘性基板10的氧化前的p-Si膜13的膜厚,t1为p-Si膜13与氧化膜13a的膜厚,t2为表面氧化膜13a的突起部的厚度(高度),t3为氧化膜去除后的p-Si膜13的突起部的厚度(高度),t4为p-Si膜的突起部的膜厚(高度),t5为形成于p-Si膜表面的氧化膜的厚度。另外,图中虚线表示氧化前的p-Si膜。在本实施例中,t0=55nm、t1=70nm、t2=30nm、t3=10nm、t4=30nm、t5=30nm。
如该图所示,与p-Si膜形成时的突起的高度t4相比较,将表面高压氧化形成表面氧化膜并去除其表面氧化膜后的p-Si膜的凹凸101的厚度(高度)t3,将变为极小。
就表面氧化膜去除后的p-Si膜的突起部的残余的厚度来说,以约略保持形成于上层的绝缘膜的绝缘性程度的厚度约25nm以下为最理想。
如上所示,以高压氧化法将p-Si膜的表面所产生的突起形成表面氧化膜,并将其去除的方式,而使p-Si膜的表面平坦,由此,可使p-Si膜13与栅极电极15之间获得充分的绝缘。另外,在突起部100的高度较栅极绝缘膜14的厚度更大时,也以去除所产生的表面氧化膜13a而进行平坦化的方式,而不会发生p-Si膜13与栅极电极15短路的情况。
另外,也不会发生因施加于突起100的电压、而使电场集中的情况。
而且,也不会发生对于施加于栅极电极15的电压的p-Si膜13所施加的电压,在绝缘性基板内产生变异,其结果使得特性不一致的TFT形成。然后,在将其TFT采用于液晶显示装置等的显示装置时,也不会有在显示画面内产生变异的情况发生。
而且,由于采用高压氧化时的加热温度,较形成p-Si膜的绝缘性基板(例如玻璃基板)的耐热温度600℃程度为低,故无须采用高温耐热的基板(例如石英基板)。即,包含其它步骤在内大约以在600℃以下的处理温度,即可形成半导体装置。
另外,在上述实施例中,虽针对将本发明应用于栅极电极在多晶半导体膜的上侧的所谓顶栅极型TFT的情况进行了说明,但本发明不局限于此,也可应用于栅极电极在多晶半导体膜的下侧的所谓底栅极型TFT等,可以达到本发明的效果。
根据本发明,由于可采用高压氧化法,有效地去除p-Si膜的表面产生的突起,而使表面平坦,故可获得良好特性的半导体装置。

Claims (4)

1.一种半导体膜的形成方法,其特征在于:包括:
通过高压氧化将表面具有凹凸的半导体膜的表面氧化、而形成表面氧化膜的步骤;以及
通过氟化氢去除该表面氧化膜、而使所述半导体膜的表面露出且使凹凸减少的步骤。
2.一种半导体膜的形成方法,其特征在于:包括:
在基板上形成非晶质半导体膜的步骤;
对该非晶质半导体膜照射激光、而将非晶质半导体膜重整成多晶半导体膜的步骤;
在高压环境中将该多晶半导体膜的表面进行氧化的步骤;以及
将该经氧化的氧化多晶半导体膜去除的步骤。
3.一种半导体装置的制造方法,其特征在于:包括:
在基板上形成非晶质半导体膜的步骤;
对该非晶质半导体膜照射激光、而将非晶质半导体膜重整成多晶半导体膜的步骤;
在高压氧化环境中将该多晶半导体膜的表面进行氧化的步骤;
将该经氧化的氧化多晶半导体膜去除、而露出所述多晶半导体膜的步骤;
在该多晶半导体膜形成源极及漏极之后、形成覆盖该多晶半导体膜的绝缘膜的步骤;以及
在该绝缘膜上形成栅极电极的步骤。
4.一种半导体装置的制造方法,其特征在于:包括:
在基板上形成栅极电极的步骤;
形成覆盖该栅极电极的栅极绝缘膜的步骤;
在所述栅极电极的上方、形成非晶质半导体膜的步骤;
对该非晶质半导体膜照射激光、而将非晶质半导体膜重整成多晶半导体膜的步骤;
在高压氧化环境中、将该多晶半导体膜的表面进行氧化的步骤;
将该经氧化的氧化多晶半导体膜去除、而露出所述多晶半导体膜的步骤;以及
在该多晶半导体膜上形成源极和漏极的步骤。
CNB021251622A 2001-06-29 2002-06-28 半导体膜以及半导体装置的制造方法 Expired - Fee Related CN1182565C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001198929 2001-06-29
JP2001198929A JP2003017408A (ja) 2001-06-29 2001-06-29 半導体膜、半導体膜の形成方法、半導体装置の製造方法

Publications (2)

Publication Number Publication Date
CN1395287A CN1395287A (zh) 2003-02-05
CN1182565C true CN1182565C (zh) 2004-12-29

Family

ID=19036286

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB021251622A Expired - Fee Related CN1182565C (zh) 2001-06-29 2002-06-28 半导体膜以及半导体装置的制造方法

Country Status (5)

Country Link
US (1) US6875675B2 (zh)
JP (1) JP2003017408A (zh)
KR (1) KR100479402B1 (zh)
CN (1) CN1182565C (zh)
TW (1) TWI295740B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6916744B2 (en) * 2002-12-19 2005-07-12 Applied Materials, Inc. Method and apparatus for planarization of a material by growing a sacrificial film with customized thickness profile
KR100611219B1 (ko) * 2003-03-05 2006-08-09 삼성에스디아이 주식회사 박막 트랜지스터 및 그의 제조방법
CN102655089B (zh) * 2011-11-18 2015-08-12 京东方科技集团股份有限公司 一种低温多晶硅薄膜的制作方法
CN106744659B (zh) * 2016-12-13 2018-09-07 杭州电子科技大学 基于激光控制纳米结构硅基表面形态的研究方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4772566A (en) * 1987-07-01 1988-09-20 Motorola Inc. Single tub transistor means and method
JPH09213630A (ja) * 1996-02-05 1997-08-15 Semiconductor Energy Lab Co Ltd 半導体装置の作製方法
JPH1092745A (ja) * 1996-09-13 1998-04-10 Toshiba Corp 結晶半導体の製造方法および製造装置
JPH1174536A (ja) * 1997-01-09 1999-03-16 Sanyo Electric Co Ltd 半導体装置の製造方法
JP2000357798A (ja) 1998-06-30 2000-12-26 Matsushita Electric Ind Co Ltd 薄膜トランジスタ及びその製造方法
TW454260B (en) 1998-06-30 2001-09-11 Matsushita Electric Ind Co Ltd Thin film transistor and manufacturing method thereof
JP2000294789A (ja) 1999-04-02 2000-10-20 Seiko Epson Corp 薄膜トランジスタ
JP4101409B2 (ja) 1999-08-19 2008-06-18 シャープ株式会社 半導体装置の製造方法

Also Published As

Publication number Publication date
KR100479402B1 (ko) 2005-03-28
KR20030003059A (ko) 2003-01-09
JP2003017408A (ja) 2003-01-17
US20030015706A1 (en) 2003-01-23
US6875675B2 (en) 2005-04-05
TWI295740B (zh) 2008-04-11
CN1395287A (zh) 2003-02-05

Similar Documents

Publication Publication Date Title
US7323368B2 (en) Method for manufacturing semiconductor device and heat treatment method
CN1156015C (zh) Mis半导体器件及其制造方法
TW515101B (en) Method for fabrication of field-effect transistor
CN103839825A (zh) 一种低温多晶硅薄膜晶体管、阵列基板及其制作方法
CN103839826A (zh) 一种低温多晶硅薄膜晶体管、阵列基板及其制作方法
CN1172352C (zh) 半导体装置及其制造方法
CN1182565C (zh) 半导体膜以及半导体装置的制造方法
CN101939829A (zh) 薄膜晶体管制造方法以及薄膜晶体管
CN1251331C (zh) 半导体器件
JP2005123563A (ja) ポリシリコン結晶化の制御方法
JP4239744B2 (ja) 薄膜トランジスタの製造方法
JP3361670B2 (ja) 半導体装置およびその製造方法
CN106206745B (zh) 一种高迁移率金属氧化物tft的制作方法
JP3925085B2 (ja) 半導体装置の製造方法、光変調素子の製造方法、および表示装置の製造方法
JP2003173967A (ja) 半導体装置の作製方法
JP2000068518A (ja) 薄膜トランジスタの製造方法
CN113611720B (zh) 一种显示面板及显示装置
US11094540B2 (en) Manufacturing method of a pair of different crystallized metal oxide layers
KR20110075518A (ko) 어레이 기판의 제조방법
JP4689155B2 (ja) 半導体装置の作製方法
JP3612017B2 (ja) アクティブマトリクス型表示装置
JP4112451B2 (ja) 半導体装置の作製方法
JP3560929B2 (ja) 半導体装置の作製方法
JP4199166B2 (ja) 半導体装置の作製方法
JPH05335337A (ja) 薄膜トランジスタの製造方法

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20041229

Termination date: 20100628