CN118028202A - 一种高效合成乳酰-n-二糖的重组大肠杆菌的构建方法及应用 - Google Patents

一种高效合成乳酰-n-二糖的重组大肠杆菌的构建方法及应用 Download PDF

Info

Publication number
CN118028202A
CN118028202A CN202410169332.6A CN202410169332A CN118028202A CN 118028202 A CN118028202 A CN 118028202A CN 202410169332 A CN202410169332 A CN 202410169332A CN 118028202 A CN118028202 A CN 118028202A
Authority
CN
China
Prior art keywords
gene
disaccharide
escherichia coli
lactoyl
wbgo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202410169332.6A
Other languages
English (en)
Inventor
沐万孟
朱莺莺
陶梦婷
杨龙浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangnan University
Original Assignee
Jiangnan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangnan University filed Critical Jiangnan University
Priority to CN202410169332.6A priority Critical patent/CN118028202A/zh
Publication of CN118028202A publication Critical patent/CN118028202A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • C12N9/1029Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • C12N9/1051Hexosyltransferases (2.4.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1096Transferases (2.) transferring nitrogenous groups (2.6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/01Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • C12Y203/01004Glucosamine-phosphate N-acetyltransferase (2.3.1.4)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y204/00Glycosyltransferases (2.4)
    • C12Y204/01Hexosyltransferases (2.4.1)
    • C12Y204/01056Lipopolysaccharide N-acetylglucosaminyltransferase (2.4.1.56)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y206/00Transferases transferring nitrogenous groups (2.6)
    • C12Y206/01Transaminases (2.6.1)
    • C12Y206/01016Glutamine-fructose-6-phosphate transaminase (isomerizing) (2.6.1.16), i.e. glucosamine-6-phosphate-synthase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/0114Lacto-N-biosidase (3.2.1.140)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y504/00Intramolecular transferases (5.4)
    • C12Y504/02Phosphotransferases (phosphomutases) (5.4.2)
    • C12Y504/0201Phosphoglucosamine mutase (5.4.2.10)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/185Escherichia
    • C12R2001/19Escherichia coli

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本发明公开了一种高效合成乳酰‑N‑二糖的重组大肠杆菌的构建方法及应用,属于微生物基因工程领域。公开了一种新的、更简单的微生物合成乳酰‑N‑二糖的策略,通过引入双歧杆菌LnbB基因,对产生LNT的大肠杆菌BL21(DE3)基因工程菌株进行改造,构建高产乳酰‑N‑二糖的工程菌株。乳酰‑N‑二糖产生的同时伴随着乳糖的再生,对乳酰‑N‑三糖II和乳酰‑N‑四糖合成相关的关键途径基因进行基因组整合,以提高乳酰‑N‑二糖的产量。最终的工程菌株通过摇瓶和补料分批培养分别产生3.54和26.88g/L的乳酰‑N‑二糖,具有良好的产业化前景。

Description

一种高效合成乳酰-N-二糖的重组大肠杆菌的构建方法及 应用
技术领域
本发明涉及一种高效合成乳酰-N-二糖的重组大肠杆菌的构建方法及应用,属于微生物基因工程领域。
背景技术
母乳低聚糖(Human milk oligosaccharides,HMOs)是母乳特有的一系列复杂的混合低聚糖。近年来,它们在营养科学、生物合成和商业应用等各个领域引起了广泛关注。由于对婴儿的健康有不可替代的影响,HMOs已被商业添加到婴儿配方奶粉中,并显示出巨大的商业价值。所有HMOs在还原端都包含一个乳糖基团,乳糖基团可以通过两种不同数量的二糖单元的延伸来修饰,产生十几个中性核心结构,这些结构可以通过岩藻糖基化和/或唾液酸化来进一步修饰,产生200多个结构不同的HMOs。这两种类型的二糖单元是乳酰-N-二糖I(Galβ1,3GlcNAc,LNB)和N-乙酰氨基乳糖(Galβ1,4GlcNAc,LacNAc),它们在HMOs中分别被称为1型和2型二糖,且LNB比LacNAc更丰富。LNB可以通过β1,3-键与乳糖基团连接,产生乳酰-N-四糖(Galβ1,3GlcNAcβ1,3Galβ1,4Glc,LNT),这是HMOs最主要的核心结构。
LNT已在商业上添加到婴儿配方奶粉中,其对婴儿健康的影响已被广泛研究,特别是其显著的益生元活性。LNT可被一些婴儿肠道相关双歧杆菌有效吸收,以刺激其增殖,其中一个重要途径是将其降解为LNB和乳糖。2009年,Kiyohara等人发现,LNB促进了母乳喂养的婴儿肠道中许多主要双歧杆菌的生长,如双歧杆菌、短双歧杆菌和长双歧杆菌。随后,在各种双歧杆菌菌株中评估了LNB的体外发酵能力,表明其作为益生元在婴儿食品或补充剂中具有潜在用途。LNB在许多双歧杆菌中的吸收途径已得到明确证实。LNB通过半乳糖-N-二糖(GNB)/LNB特异性ATP结合盒(ABC)型摄取系统(GNB/LNB-BP)导入,然后通过GNB/LNB磷酸化酶(LnpA)进行细胞内磷解,产生半乳糖-1-磷酸(Gal-1-P)和N-乙酰-D-葡糖胺(GlcNAc)。
LNB的生物合成已通过酶或微生物方法进行了研究。D'Almeida等人使用获得的嗜热菌β-糖苷酶变体从两种单糖以酶法生产LNB,但制备过程需要底物衍生和产物脱保护。同样,Ohnuma等人报告了利用环状芽孢杆菌β-1,3-半乳糖苷酶的转糖活性将GlcNAc转化为LNB,这种方法使用不容易大量获得的4,6-二甲氧基-1,3,5-三嗪-2-基β-半乳糖吡喃糖苷作为糖基供体。LNB还可以采用多酶级联反应的策略来合成。Nishimoto和Kitaoka利用四种双歧杆菌酶开发了一种由蔗糖和GlcNAc产生LNB的一锅反应方法。Machida等人使用显示出四种关键酶的所有活性的双歧杆菌细胞的粗提取物对该方法进行了修改。Chen等人开发了由麦芽糊精和GlcNAc生物合成LNB的四酶系统。Yu等人构建了由半乳糖和GlcNAc合成LNB的双酶级联反应,进一步,Du等人通过构建ATP再生系统对该策略进行了修改。然而,所有这些级联策略都通过LNB磷酸化酶(LnbP)将Gal-1-P和GlcNAc转化为LNB。此外,Li等人最近构建了一种工程化的乳酸克鲁维酵母在体内生物合成LNB,LnbP是最后一种途径酶。LNB的生物合成包括三个模块,包括Gal-1-P合成、GlcNAc供应增强和通过LnbP生产LNB,然而,LNB的有效生物合成显著依赖于GlcNAc的补救途径。
综上,目前已报道的LNB生物合成中的步骤繁琐且产量较低,不能满足其进一步的工业化生产。
发明内容
针对上述现有技术的不足,本发明使用了一种新的、更简单的LNB生物合成策略,即将双歧杆菌乳酰-N-二糖苷酶(LnbB)引入生产LNT的大肠杆菌工程菌中,使用乳酰-N-二糖苷酶降解合成的LNT,并通过逐步优化途径实现了LNB的高效生物合成。
本发明提供的第一个技术方案为一种生产乳酰-N-二糖的重组大肠杆菌,所述重组大肠杆菌以过表达有编码β-1,3-乙酰葡萄糖胺转移酶的基因lgtA的大肠杆菌基因工程菌为底盘菌株,在所述底盘菌株的基因组上同时整合表达有一个或多个拷贝数的β1,3-半乳糖基转移酶编码基因wbgO、内源基因glmM、glmU和氨基葡萄糖-6-磷酸合成酶GlmS突变体基因glmS*,且游离表达有β1,3-半乳糖基转移酶编码基因wbgO和乳酰-N-二糖苷酶编码基因LnbB。
在一种实施方式中,所述底盘菌株为工程菌株ENP4L2,所述工程菌株ENP4L2为以大肠杆菌为出发菌株,在所述大肠杆菌的基因组敲除了编码β-半乳糖苷酶的基因lacZ、编码尿苷二磷酸-N-乙酰葡萄糖胺-2-差向异构酶的基因wecB、编码葡萄糖胺-6-脱氨酶的基因nagB和编码尿苷-葡萄糖-6-脱氢酶的基因ugD;同时所述大肠杆菌基因组的染色体IS186基因座多拷贝整合表达有编码β-1,3-乙酰葡萄糖胺转移酶的基因lgtA。工程菌株ENP4L2已公开于公开号为CN116536232A的中国专利申请文件中。
在一种实施方式中,在所述底盘菌株的基因组上整合表达有1~3个拷贝数的wbgO基因。
进一步,在所述底盘菌株基因组上的pta、poxB、wecBC三个位点依次整合β1,3-半乳糖基转移酶编码基因wbgO。
在一种实施方式中,所述pta位点的Gen ID为8181272,poxB位点的Gen ID为8182261,wecBC位点的Gen ID为8182212和8182213。
在一种实施方式中,在nagB位点整合内源基因glmM,在iclR位点整合内源基因glmU,在yghWX位点整合氨基葡萄糖-6-磷酸合成酶GlmS突变体基因glmS*。
在一种实施方式中,所述nagB位点的Gen ID为8180191,iclR位点的Gen ID为8182459,yghWX位点的Gen ID为8180486和8180487。
在一种实施方式中,所述基因glmM的核苷酸序列如SEQ ID NO.1所示;所述基因glmU的核苷酸序列如SEQ ID NO.2所示;所述基因glmS*的核苷酸序列如SEQ ID NO.3所示。
在一种实施方式中,利用表达载体pCDFDuet-1游离表达基因wbgO,利用表达载体pCOLADuet-1过表达基因lnbB。
在一种实施方式中,所述编码β1,3-半乳糖基转移酶的基因wbgO来源于大肠杆菌O55:H7,编码乳酰-N-二糖苷酶的基因LnbB来源于双歧杆菌JCM1254。
在一种实施方式中,所述基因wbgO的核苷酸序列如SEQ ID NO.4所示;所述基因lnbB的核苷酸序列如SEQ ID NO.5所示。
本发明提供的第二个技术方案为一种生产乳酰-N-二糖的重组大肠杆菌的构建方法,所述方法为在底盘菌株的基因组上整合表达一个或多个拷贝数的β1,3-半乳糖基转移酶编码基因wbgO、内源基因glmM、glmU和氨基葡萄糖-6-磷酸合成酶GlmS突变体基因glmS*,并游离表达了β1,3-半乳糖基转移酶编码基因wbgO和乳酰-N-二糖苷酶编码基因LnbB,所述底盘菌株为过表达有编码β-1,3-乙酰葡萄糖胺转移酶的基因lgtA大肠杆菌基因工程菌。
在一种实施方式中,所述底盘菌株为工程菌株ENP4L2,所述工程菌株ENP4L2为以大肠杆菌为出发菌株,在所述大肠杆菌的基因组敲除了编码β-半乳糖苷酶的基因lacZ、编码尿苷二磷酸-N-乙酰葡萄糖胺-2-差向异构酶的基因wecB、编码葡萄糖胺-6-脱氨酶的基因nagB和编码尿苷-葡萄糖-6-脱氢酶的基因ugD;同时所述大肠杆菌基因组的染色体IS186基因座多拷贝整合表达有编码β-1,3-乙酰葡萄糖胺转移酶的基因lgtA。工程菌株ENP4L2已公开于公开号为CN116536232A的中国专利申请文件中。
在一种实施方式中,在所述底盘菌株的基因组上整合表达有1~3个拷贝数的wbgO基因。
进一步,在所述底盘菌株基因组上的pta、poxB、wecBC三个位点依次整合β1,3-半乳糖基转移酶编码基因wbgO。
在一种实施方式中,所述pta位点的Gen ID为8181272,poxB位点的Gen ID为8182261,wecBC位点的Gen ID为8182212和8182213。
在一种实施方式中,在nagB位点整合内源基因glmM,在iclR位点整合内源基因glmU,在yghWX位点整合氨基葡萄糖-6-磷酸合成酶GlmS突变体基因glmS*。
在一种实施方式中,所述nagB位点的Gen ID为8180191,iclR位点的Gen ID为8182459,yghWX位点的Gen ID为8180486和8180487。
在一种实施方式中,所述基因glmM的核苷酸序列如SEQ ID NO.1所示;所述基因glmU的核苷酸序列如SEQ ID NO.2所示;所述基因glmS*的核苷酸序列如SEQ ID NO.3所示。
在一种实施方式中,利用表达载体pCDFDuet-1过表达基因wbgO,利用表达载体pCOLADuet-1过表达基因lnbB。
在一种实施方式中,所述编码β1,3-半乳糖基转移酶的基因wbgO来源于大肠杆菌O55:H7,编码乳酰-N-二糖苷酶的基因LnbB来源于双歧杆菌JCM1254。
在一种实施方式中,所述基因wbgO的核苷酸序列如SEQ ID NO.4所示;所述基因lnbB的核苷酸序列如SEQ ID NO.5所示。
本发明提供的第三个技术方案为一种生产乳酰-N-二糖的方法,利用第一个技术方案所述的重组大肠杆菌为发酵菌株生产乳酰-N-二糖。
在一种实施方式中,以甘油为碳源,乳糖为底物合成乳酰-N-二糖。
在一种实施方式中,在摇瓶或/和发酵罐中发酵生产乳酰-N-二糖。
在一种实施方式中,将第一个技术方案所述重组大肠杆菌的种子液以2%的接种量接种于含有30g/L甘油的发酵体系中,在37℃,200rpm的条件下培养至OD600 0.6~0.8后,加入终浓度为3~8g/L的乳糖,并加入0.5mM的IPTG,25℃继续培养72h。
或者将第一个技术方案所述重组大肠杆菌的种子液以10%的接种量接种于含有30g/L甘油的发酵体系中,在37℃的条件下培养至OD600达到12~15,添加0.2mM的IPTG并同时添加乳糖至终浓度为5g/L,向发酵体系中补加甘油将所述发酵体系中的甘油浓度维持在6~15g/L,当乳糖浓度低于2g/L时,添加2~3g/L的乳糖驱动乳酰-N-二糖的生产,培养时间不少于50h。
在一种实施方式中,所述重组大肠杆菌的种子液的制备方法如下:将所述重组大肠杆菌在35~38'C、180~220rpm条件下培养10~15h得到种子液。
在一种实施方式中,所述发酵体系中还含有4.0g/L磷酸氢二氨,13.5g/L磷酸二氢钾,1.4g/L七水硫酸镁,1.7g/L柠檬酸和10ml/L微量金属元素;所述微量金属元素包括:0.35g/L一水硫酸锰,10g/L硫酸亚铁,1.0g/L无水硫酸铜,2.25g/L七水硫酸锌,2.0g/L二水氯化钙,0.23g/L十水硼酸钠和0.11g/L钼酸铵。
本发明提供的第四个技术方案为第一个技术方案所述的重组大肠杆菌、第二个技术方案所述的方法或第三个技术方案所述的方法在医药、食品和化工领域中的应用。
本发明提供的第五个技术方案为第一个技术方案所述的重组大肠杆菌、第二个技术方案所述的方法或第三个技术方案所述的方法在制备含乳酰-N-二糖及其衍生物的产品中的应用。
相比于现有技术,本发明具有如下有益效果:
本发明开发了一种新的、更简单的微生物合成LNB的方法,合成途径为“Lactose→LNTri II→LNT→LNB”(图1)。向底盘菌株中引入外源的编码β1,3-半乳糖基转移酶的基因wbgO,以及过表达内源基因glmM、glmU和氨基葡萄糖-6-磷酸合成酶GlmS突变体基因glmS*,作用在于将前体LNTri II和LNT的生物合成通过通路基因的基因组整合得到加强。通过引入双歧杆菌LnbB,将产生的LNT进行降解,实现LNB的生物合成。最终的工程菌株通过摇瓶和补料分批培养分别产生3.54和26.88g/L的LNB,具备良好的工业化应用前景。
附图说明
图1为重组大肠杆菌中乳酰-N-二糖生物合成的代谢路径。
图2为不同乳糖浓度发酵生产乳酰-N-二糖的产量比较图。
图3为强化通路基因对乳酰-N-二糖生产的影响。
具体实施方式
下面通过具体实施例子对本发明进行更加详细地说明。
1、以下实例中所使用的内切酶、PCR酶、质粒抽提试剂盒和DNA凝胶回收试剂盒等商用产品,具体操作按照试剂盒说明书进行。另外,菌落PCR、核酸琼脂糖凝胶电泳、感受态细胞的制备、热激转化、电转化和细菌基因组的提取保存等常规操作方法根据MolecularCloning:A Laboratory Manual(Fourth Edition)进行。质粒和DNA产物的测序工作交予苏州金唯智生物科技有限公司完成。
lnbB基因交由苏州金唯智公司合成,后将其构建在pCOLADuet-1载体上,获得质粒pCO-lnbB。
大肠杆菌BL21(DE3)、质粒pCOLADuet-1为商业化菌株、质粒。
2、在乳酰-N-二糖的发酵过程中涉及到的培养基如下:
(1)Luria-Bertani(LB)液体培养基:酵母提取物5g/L,蛋白胨10g/L,氯化钠10g/L。
(2)Luria-Bertani(LB)固体培养基:10g/L蛋白胨,5g/L酵母提取物,10g/L氯化钠,15g/L琼脂粉。
(3)发酵培养基(Defined medium,DM):20g/L甘油,5g/L酵母提取物,13.5g/L磷酸二氢钾,4.0g/L磷酸氢二氨,1.7g/L柠檬酸,1.4g/L七水硫酸镁和10ml/L微量金属元素(10g/L硫酸亚铁,2.25g/L七水硫酸锌,1.0g/L无水硫酸铜,0.35g/L一水硫酸锰,0.23g/L十水硼酸钠,0.11g/L钼酸铵,2.0g/L二水氯化钙),用氢氧化钠将培养基pH调至6.8,于115℃灭菌30min,在使用前需加入4.5mg/L的硫胺素。
抗生素浓度:氨苄青霉素100mg/L(液体培养基),氨苄青霉素200mg/L(固体培养基),卡那霉素50mg/L,链霉素50mg/L,氯霉素34mg/L。
分批补料发酵补料液:甘油600g/L、七水硫酸镁20g/L、硫胺素0.2g/L、链霉素50mg/L、卡那霉素50mg/L。pH调控:50%氨水(v/v)。
摇瓶发酵生产:将在固体LB平板上正常转化生长的大肠杆菌工程菌株接种于含有链霉素和卡那霉素的4mL LB液体培养基中,在37℃和200rpm的条件下培养10-12h,将种子液按2%的接种量接种至20mL发酵培养基中,37℃和200rpm培养,当OD600增长至0.6~0.8时,加入终浓度为5g/L的乳糖和0.5mM的IPTG,在25℃继续培养72h。
补料分批发酵生产:在5L的生物反应器中加入2L DM培养基,将准备好的种子液以10%的接种量接种至生物反应器中,初始培养温度为37℃,将发酵培养基的pH调节至约6.8,通过调整搅拌转速和通气量使生物反应器内的溶氧水平维持在25%-35%之间。当OD600达到12~15时,开始缓慢将发酵罐的培养温度降至25℃,加入IPTG至终浓度为0.2mM和5g/L的乳糖,间隔一定时间取样,监测剩余的碳源浓度和乳糖浓度,添加甘油和乳糖补料使甘油浓度维持在6~15g/L,乳糖浓度维持在2~5g/L。通过恒流泵补加50%氨水(v/v)使罐内培养基pH维持在6.6~6.8。
3、发酵液中各物质含量的检测:取1mL发酵液,10,000rpm,离心10min,取上清,将上清液用0.22μm的水系过滤器过滤后,用HPLC测定LNB、LNT、LNTri II、乳糖和甘油的细胞外浓度。
HPLC检测条件:高效液相色谱(HPLC)系统(Waters e2695);色谱柱:RezexROAorganic acid H+(8%);检测器:Waters 2414RIDetector示差检测器;流动相:5mMH2SO4;流速:0.6mL/min;柱温:60℃;进样量:10μL。
实施例1:关键通路基因的基因组整合
工程菌株ENP4L2构建方法如下:敲除了大肠杆菌BL21(DE3)的基因组上的编码β-半乳糖苷酶的基因lacZ(NCBI序列号为NP 414878.1)、编码尿苷二磷酸-N-乙酰葡萄糖胺-2-差向异构酶的基因wecB(NCBI序列号为YP 026253.1)、编码葡萄糖胺-6-脱氨酶的基因nagB(NCBI序列号为NP 415204.1)和编码尿苷-葡萄糖-6-脱氢酶的基因ugD(NCBI序列号为为WP 000704860.1);同时在大肠杆菌BL21(DE3)的基因组的染色体IS186基因座1(GeneID:8180773)、2(Gene ID:8180306)、4(Gene ID:8180040)、5(Gene ID:8183431)位点各整合表达有编码β-1,3-乙酰葡萄糖胺转移酶的基因lgtA(SEQ ID NO.6)。工程菌株ENP4L2已公开在公开号为CN116536232A中国发明专利申请文件中。
使用双质粒基因编辑系统pEcCpf1/pcrEG将关键通路基因wbgO、glmM、glmU和glmS*整合到ENP4L2的基因组上,所用基因编辑系统已公开于文献:Zhu X,Wu Y,LvX.Combining CRISPR–Cpf1 and Recombineering Facilitates Fast and EfficientGenome Editing in Escherichia coli[J].ACS Synthetic Biology,2022(5):11。涉及到的引物如表1所示。
表1关键通路基因整合实例中用到的构建引物
具体步骤如下:
(1)采用热激转化的方式将pEcCpf1质粒转入工程菌株ENP4L2中,待在平板上长出单菌落后,将其接种到含有4mL含卡那霉素抗性的LB培养基的试管中培养12h后,制备电转感受态细胞,制备电转感受态细胞时加入30mM的阿拉伯糖以诱导λ-Red重组酶系统的表达。
(2)使用引物HP-pta-N23-F/R对pcrEG质粒进行PCR扩增,得到的线性DNA通过单片段一步克隆环化成靶向pta的pcrEG-pta质粒。
(3)以大肠杆菌BL21(DE3)的基因组为模板,使用引物Pta-up-F/R和Pta-down-F/R分别扩增出pta位点的上下游片段,之后再胶回收纯化扩增出来的片段。以wbgO基因为模板,使用引物WbgO(pta)-F/R通过PCR扩增出wbgO基因片段后使用胶回收纯化片段,通过重叠延伸PCR的方式连接上下游片段和目的基因片段,最终得到的片段作为基因组整合的供体DNA。
(4)取制备好的含pEcCpf1质粒的电转感受态于冰上,解冻后加入pcrEG-pta质粒和供体DNA片段,采用电转的方式将其转入ENP4L2中,之后立即加入1mL充分预冷的LB培养基。轻轻吹吸混匀并移至无菌的1.5mL ep管后,在37℃和200r/min条件下,培养2h。随后将菌体全部涂布于双抗平板(终浓度为50μg/L卡那霉素和50μg/L壮观霉素),于37℃培养箱倒置培养12~15h。
(5)利用菌落PCR对长出的单菌落进行验证。挑选一定数量的单菌落用引物YZ-pta-F和WbgO-IN-R进行菌P内部验证,之后进行核酸电泳,在目标位置有条带的单菌为可能整合成功的候选菌;用引物YZ-pta-F/R对内部验证成功的菌落进行外部验证,PCR产物送至苏州金唯智生物科技有限公司测序,与理论序列匹配的菌落即为整合wbgO成功的菌落。
(6)接种上述验证成功的菌于4mL试管中培养12h(接种时加入50μg/L的卡那霉素和终浓度为10mM的鼠李糖)去除pcrEG-pta质粒,进一步将目标菌接种到含有5g/L葡萄糖的液体LB培养基中并进一步取菌液划线在含5g/L葡萄糖和15g/L蔗糖的平板上以去除pEcCpf1质粒,最终获得菌株ENP4L2Δpta::wbgO。
另外,wbgO在poxB和wecBC位点的整合与上述步骤(1)~(6)一致,glmM、glmU和glmS*的整合基本步骤与wbgO一致,glmM、glmU和glmS*基因片段以质粒pRSF-MUS*为模板通过PCR获得。质粒pRSF-MUS*公开于文献Zhu Y,Wan L,Meng J,et al.MetabolicEngineering of Escherichia coli for Lacto-N-triose IIProduction with HighProductivity[J].Journal of Agricultural and Food Chemistry,2021,69(12):3702–3711。
pCO-lnbB质粒的构建:lnbB基因片段(SEQ ID NO.5)亚克隆到pCOLADuet-1质粒载体的NcoⅠ位点上。
pCD-wbgO质粒的构建:将来源于大肠杆菌055:H7的编码白-1,3-半乳糖基转移酶的基因wbgO经密码子优化后的基因片段(核昔酸序列如SEQ ID NO.4所示)连接到pCOLADuet-1载体上,获得质粒pCD-wbgO。质粒pCD-wbgO公开于公开号为CN116536232A的中国发明专利申请文件中。
将质粒pCD-wbgO和pCO-lnbB转入ENP4L2后获得的菌株命名为ENP05L,在ENP05L基础上分别整合1~3个wbgO拷贝的菌株被命名为ENP05L1、ENP05L2、ENP05L3(具体方法参考上述步骤(1)~(6)),接着在整合2个wbgO拷贝的宿主菌(菌株ENP05L2)上继续整合glmM、glmU和glmS*,整合glmM和glmU的菌株被命名为ENP05L4,整合glmM和glmS*的菌株被命名为ENP05L5,整合glmM、glmU和glmS*的宿主被命名为ENP05L6。
实施例2:重组菌株摇瓶发酵产乳酰-N-二糖
(1)乳糖浓度对乳酰-N-二糖生产的影响
将实施例1获得的ENP05L在抗性琼脂LB平板上过夜生长后,接种入带有对应抗生素的4mL LB培养基中作为初始种子液,在37℃,200rpm的条件下培养10~12h。将400μL种子液接种于20mL发酵培养基中,37℃,200rpm,培养至OD600为0.6~0.8,加入终浓度为0.5mMIPTG,同时分别加入3、5、8g/L的乳糖,25℃,200rpm继续诱导培养72h。发酵结束后,取1mL发酵液,12,000rpm离心10min,之后取上清用于测定各物质的含量。结果如表2所示,添加的乳糖浓度几乎不影响LNB产量以及残留的LNTri II和LNT的浓度。但整个发酵过程中消耗了一定量的乳糖,并且存在一定量的LNTri II和LNT残留物。当3、5或8g/L的初始乳糖用于微生物合成LNB时,最终残留乳糖浓度分别为2.00、4.02和7.15g/L,表明在所有条件下消耗了约1g/L的乳糖。另一方面,在所有条件下都保留了大约0.7~0.8g/L的LNT和0.8~0.9g/L的LNTri II。消耗的乳糖与生成的LNTri II和LNT的摩尔比正好对应(图2)。
表2乳糖浓度对乳酰-N-二糖生产的影响
(2)关键前体基因的整合对乳酰-N-二糖生产的影响
将ENP05L1~6按照上述步骤进行发酵,探究前体基因整合对乳酰-N-二糖生产的影响。结果如表3所示。
在最初的菌株ENP05L中,通过载体pCDFDuet-1引入了编码β1,3-GalT的基因wbgO,该基因负责将LNTri II转化为LNT。在此,将wbgO基因通过一个、两个和三个拷贝额外整合到菌株ENP05L的基因组中,分别产生菌株ENP05L1、ENP05L2和ENP05L3。具有一个和两个拷贝wbgO整合的菌株ENP05L1和ENP05L2分别产生3.04和3.17g/L的LNB,略高于对照菌株ENP05L产生的LNB。然而,具有三个拷贝的wbgO整合的菌株ENP05L3产生2.89g/L的LNB,这与对照菌株ENP05L的LNB几乎相同(图3)。
此外,通过UDP-GlcNAc途径基因的基因组整合,进一步改造了菌株ENP05L2,产生了三个工程菌株,分别为ENP05L4、ENP05L5和ENP05L6。整合了glmS*和glmM的菌株ENP05L5产生了最高产量的LNB,为3.54g/L,同时培养基中有1.29g/L的LNTri II和0.53g/L的LNT残留(图3)。
表3整合前体基因生产乳酰-N-二糖的工程菌株摇瓶发酵信息
实施例3:分批补料发酵生产乳酰-N-二糖
本实施例将菌株ENP05L5用于5L发酵罐进行分批补料发酵实验。
将重组工程菌株ENP05L5在含有链霉素和卡那霉素的琼脂LB平板上过夜生长后,从平板上挑取重组大肠杆菌的单菌落接种到含有对应抗生素的4mL LB培养基中过夜培养,作为一级种子液;将1mL一级种子液接种到100mL发酵培养基中在37℃,200rpm条件下扩大培养10~12h,得到二级种子液。之后将准备好的二级种子液按照10%的接种量接种到含有2L发酵罐培养基的5L发酵罐中。具体参数控制如上所述。当发酵进行到47小时,乳酰-N-二糖在上清液中的最大产量为26.88g/L,是摇瓶培养的7.57倍。
虽然本发明已以较佳实施例公开如上,但其并非用以限定本发明,任何熟悉此技术的人,在不脱离本发明的精神和范围内,都可做各种的改动与修饰,因此本发明的保护范围应该以权利要求书所界定的为准。

Claims (10)

1.一种生产乳酰-N-二糖的重组大肠杆菌,其特征在于,所述重组大肠杆菌以过表达有编码β-1,3-乙酰葡萄糖胺转移酶的基因lgtA的大肠杆菌基因工程菌为底盘菌株,在所述底盘菌株的基因组上同时整合表达有一个或多个拷贝数的β1,3-半乳糖基转移酶编码基因wbgO、内源基因glmM、glmU和氨基葡萄糖-6-磷酸合成酶GlmS突变体基因glmS*,且游离表达有β1,3-半乳糖基转移酶编码基因wbgO和乳酰-N-二糖苷酶编码基因LnbB。
2.根据权利要求1所述的重组大肠杆菌,其特征在于,所述底盘菌株为工程菌株ENP4L2。
3.根据权利要求1或2所述的重组大肠杆菌,其特征在于,在所述底盘菌株的基因组上整合表达有1~3个拷贝数的wbgO基因。
4.根据权利要求1~3任一项所述的重组大肠杆菌,其特征在于,在nagB位点整合内源基因glmM,在iclR位点整合内源基因glmU,在yghWX位点整合氨基葡萄糖-6-磷酸合成酶GlmS突变体基因glmS*。
5.根据权利要求1~4任一项所述的重组大肠杆菌,其特征在于,所述基因glmM的核苷酸序列如SEQ ID NO.1所示;所述基因glmU的核苷酸序列如SEQ ID NO.2所示;所述基因glmS*的核苷酸序列如SEQ ID NO.3所示;所述基因wbgO的核苷酸序列如SEQ ID NO.4所示;所述基因lnbB的核苷酸序列如SEQ ID NO.5所示;所述基因lgtA的核苷酸序列如SEQ IDNO.6所示。
6.一种生产乳酰-N-二糖的重组大肠杆菌的构建方法,其特征在于,所述方法为在底盘菌株的基因组上整合表达了一个或多个拷贝数的β1,3-半乳糖基转移酶编码基因wbgO、内源基因glmM、glmU和氨基葡萄糖-6-磷酸合成酶GlmS突变体基因glmS*,并游离表达了β1,3-半乳糖基转移酶编码基因wbgO和乳酰-N-二糖苷酶编码基因LnbB,所述底盘菌株为过表达有编码β-1,3-乙酰葡萄糖胺转移酶的基因lgtA的大肠杆菌基因工程菌。
7.一种生产乳酰-N-二糖的方法,其特征在于,利用权利要求1~5任一项所述的重组大肠杆菌为发酵菌株生产乳酰-N-二糖。
8.根据权利要求7所述的方法,其特征在于,以甘油为碳源,乳糖为底物合成乳酰-N-二糖。
9.根据权利要求7或8所述的方法,其特征在于,将权利要求1~5任一项所述重组大肠杆菌的种子液以2%的接种量接种于含有30g/L甘油的发酵体系中,在37℃,200rpm的条件下培养至OD600 0.6~0.8后,加入终浓度为3~8g/L的乳糖,并加入0.5mM的IPTG,25℃继续培养72h;
或者将权利要求1~5任一项所述重组大肠杆菌的种子液以10%的接种量接种于含有30g/L甘油的发酵体系中,在37℃的条件下培养至OD600达到12~15,添加0.2mM的IPTG并同时添加乳糖至终浓度为5g/L,向发酵体系中补加甘油将所述发酵体系中的甘油浓度维持在6~15g/L,当乳糖浓度低于2g/L时,添加2~3g/L的乳糖驱动乳酰-N-二糖的生产,培养时间不少于50h。
10.权利要求1~5任一项所述的重组大肠杆菌、权利要求6所述的方法或权利要求7~9任一项所述的方法在医药、食品和化工领域中制备含乳酰-N-二糖及其衍生物的产品的应用。
CN202410169332.6A 2024-02-06 2024-02-06 一种高效合成乳酰-n-二糖的重组大肠杆菌的构建方法及应用 Pending CN118028202A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202410169332.6A CN118028202A (zh) 2024-02-06 2024-02-06 一种高效合成乳酰-n-二糖的重组大肠杆菌的构建方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202410169332.6A CN118028202A (zh) 2024-02-06 2024-02-06 一种高效合成乳酰-n-二糖的重组大肠杆菌的构建方法及应用

Publications (1)

Publication Number Publication Date
CN118028202A true CN118028202A (zh) 2024-05-14

Family

ID=91001657

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202410169332.6A Pending CN118028202A (zh) 2024-02-06 2024-02-06 一种高效合成乳酰-n-二糖的重组大肠杆菌的构建方法及应用

Country Status (1)

Country Link
CN (1) CN118028202A (zh)

Similar Documents

Publication Publication Date Title
CN114480240B (zh) 一种产岩藻糖基乳糖的基因工程菌及生产方法
WO2022228169A1 (zh) 一种产乳酰-n-新四糖的基因工程菌及生产方法
CN113684164B (zh) 一种高产乳酰-n-新四糖的微生物的构建方法及应用
US12049655B2 (en) Construction method and application of microorganism capable of realizing high production of lacto-N-tetrose
CN114874964B (zh) 一种高产2′-岩藻糖基乳糖的重组大肠杆菌的构建方法及应用
CN113832092B (zh) 一种提高乳酰-n-岩藻五糖产量的基因工程菌及其生产方法
CN117305211A (zh) 一种高效合成2′-岩藻糖基乳糖的基因工程菌的构建及其应用
CN116555147A (zh) 一种高产n-乙酰神经氨酸的重组大肠杆菌的构建方法及应用
CN116426452A (zh) 合成2’-岩藻糖基乳糖的重组大肠杆菌菌株及其应用
CN114806991B (zh) 一种提高岩藻糖基乳糖产量的工程大肠杆菌及生产方法
CN116769808A (zh) 一种专一生产2′-岩藻糖基乳糖的菌株及应用
CN115927148A (zh) 一种无乳糖添加的高效生产乳酰-n-新四糖的基因工程菌及其应用
CN102199644B (zh) 胞苷三磷酸的基因工程制备方法
CN118028202A (zh) 一种高效合成乳酰-n-二糖的重组大肠杆菌的构建方法及应用
CN113403239A (zh) 一株谷氨酸棒杆菌株及其应用
WO2023169200A1 (zh) 重组酵母菌及其应用
CN116948928B (zh) 种子培养基及无抗生素、无iptg诱导剂的2’-岩藻糖基乳糖的发酵生产方法
CN118344445B (zh) 一种骆驼刺泛菌转录因子ihfB及其应用
CN117586937B (zh) 一种提高乳酰-n-四糖产量的重组大肠杆菌构建及应用
CN116042684B (zh) 大肠杆菌及其在催化合成阿洛酮糖中的应用
CN118028129A (zh) 一种合成乳酰-n-新四糖的重组大肠杆菌的构建方法及应用
DK202170552A1 (en) Combined fermentation process for producing one or more human milk oligosaccharide(s) (hmo(s))
CN116536232A (zh) 一种高产乳酰-n-岩藻糖基五糖ⅰ的重组大肠杆菌的构建方法及应用
CN117343888A (zh) 一种高效合成乳糖-n-二岩藻四糖的基因工程菌及生产方法
CN117004625A (zh) 一种氧调控基因及其过表达突变株和用于维生素b12工业生产中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination