CN116555147A - 一种高产n-乙酰神经氨酸的重组大肠杆菌的构建方法及应用 - Google Patents

一种高产n-乙酰神经氨酸的重组大肠杆菌的构建方法及应用 Download PDF

Info

Publication number
CN116555147A
CN116555147A CN202310598341.2A CN202310598341A CN116555147A CN 116555147 A CN116555147 A CN 116555147A CN 202310598341 A CN202310598341 A CN 202310598341A CN 116555147 A CN116555147 A CN 116555147A
Authority
CN
China
Prior art keywords
gene
acetylneuraminic acid
recombinant
escherichia coli
coli
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310598341.2A
Other languages
English (en)
Inventor
沐万孟
朱莺莺
赵明利
张文立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangnan University
Original Assignee
Jiangnan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangnan University filed Critical Jiangnan University
Priority to CN202310598341.2A priority Critical patent/CN116555147A/zh
Publication of CN116555147A publication Critical patent/CN116555147A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/24Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Enterobacteriaceae (F), e.g. Citrobacter, Serratia, Proteus, Providencia, Morganella, Yersinia
    • C07K14/245Escherichia (G)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • C12N9/1029Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1085Transferases (2.) transferring alkyl or aryl groups other than methyl groups (2.5)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1096Transferases (2.) transferring nitrogenous groups (2.6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1205Phosphotransferases with an alcohol group as acceptor (2.7.1), e.g. protein kinases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1241Nucleotidyltransferases (2.7.7)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/78Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/01Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • C12Y203/01157Glucosamine-1-phosphate N-acetyltransferase (2.3.1.157)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y205/00Transferases transferring alkyl or aryl groups, other than methyl groups (2.5)
    • C12Y205/01Transferases transferring alkyl or aryl groups, other than methyl groups (2.5) transferring alkyl or aryl groups, other than methyl groups (2.5.1)
    • C12Y205/01056N-acetylneuraminate synthase (2.5.1.56)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y206/00Transferases transferring nitrogenous groups (2.6)
    • C12Y206/01Transaminases (2.6.1)
    • C12Y206/01016Glutamine-fructose-6-phosphate transaminase (isomerizing) (2.6.1.16), i.e. glucosamine-6-phosphate-synthase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/01Phosphotransferases with an alcohol group as acceptor (2.7.1)
    • C12Y207/0106N-Acylmannosamine kinase (2.7.1.60)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/07Nucleotidyltransferases (2.7.7)
    • C12Y207/07023UDP-N-acetylglucosamine diphosphorylase (2.7.7.23)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01183UDP-N-acetylglucosamine 2-epimerase (hydrolysing) (3.2.1.183)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y305/00Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5)
    • C12Y305/99Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5) in other compounds (3.5.99)
    • C12Y305/99006Glucosamine-6-phosphate deaminase (3.5.99.6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y401/00Carbon-carbon lyases (4.1)
    • C12Y401/03Oxo-acid-lyases (4.1.3)
    • C12Y401/03003N-Acetylneuraminate lyase (4.1.3.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y504/00Intramolecular transferases (5.4)
    • C12Y504/02Phosphotransferases (phosphomutases) (5.4.2)
    • C12Y504/0201Phosphoglucosamine mutase (5.4.2.10)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/10Plasmid DNA
    • C12N2800/101Plasmid DNA for bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/185Escherichia
    • C12R2001/19Escherichia coli
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明公开了一种高产N‑乙酰神经氨酸的重组大肠杆菌的构建方法及应用,属于微生物代谢工程技术领域。本发明以大肠杆菌为出发菌株,通过敲除基因nanA,基因nanT,基因nanK和基因nagB,游离表达外源基因neuC和基因neuB,并过表达UDP‑GlcNAc合成途径基因glmM,glmU和GlmS突变体基因glmS*获得的一种高产N‑乙酰神经氨酸的重组大肠杆菌。在摇瓶发酵实验过程中,N‑乙酰神经氨酸的产量可以达到7.02g/L。分批补料条件下,在5L发酵罐中N‑乙酰神经氨酸的产量达到46.92g/L,产率达到0.82g/L/h和1.05g/gDCW,具备工业化应用的潜力。

Description

一种高产N-乙酰神经氨酸的重组大肠杆菌的构建方法及应用
技术领域
本发明涉及一种高产N-乙酰神经氨酸的重组大肠杆菌的构建方法及应用,属于微生物基因工程领域。
背景技术
唾液酸(SA)是一类具有9碳骨架的α-酮酸糖家族,广泛存在于动物组织,特别是脊椎动物的细胞表面糖链和糖链的末端成分中,参与许多生物学事件,包括细胞识别、通讯、黏附和聚集,在免疫识别和受精中发挥关键作用,还介导病毒入侵和癌症转移。N-乙酰神经氨酸(NeuAc)是最常见的唾液酸分子之一,并且通常作为其他唾液酸的生物合成前体。N-乙酰神经氨酸天然存在于许多生物体,包括病毒、细菌、真菌、原生动物和高等动物。在人类细胞中,N-乙酰神经氨酸主要与蛋白质、脂质和寡糖结合,形成复杂的唾液酸化结构。此外,N-乙酰神经氨酸是唾液酸化母乳寡糖(HMOs)的关键单糖,大约14%-33%的母乳寡糖与N-乙酰神经氨酸交联。N-乙酰神经氨酸在促进大脑发育和认知、抗粘附、抗菌、抗病毒、免疫调节、心血管保护和抗氧化等方面具有重要作用,已被美国FDA、欧盟和中国食品药品监督管理局批准用作一种新型食品原料。因此,N-乙酰神经氨酸在制药、化妆品和食品行业具有巨大的商业潜力。
N-乙酰神经氨酸可以通过从自然资源中提取或通过化学法合成,但这些方法存在生产过程复杂、生产效率低、立体选择性差、环境污染大和成本高等缺点。目前,N-乙酰神经氨酸主要通过全细胞催化生产,依赖于所需酶的高效表达纯化,并以较昂贵的N-乙酰葡糖胺(GlcNAc)和丙酮酸为底物,因此不适于大规模生产。基于代谢工程策略的细胞工厂化方法以甘油和葡萄糖等更廉价的物质为底物从头合成N-乙酰神经氨酸,容易放大生产,是一种更有前景的高效生产策略。大肠杆菌的遗传背景清晰,能高效表达外源基因,相关技术操作简单,培养周期短,是最常被用于工程化生产化学品的模式底盘微生物之一。目前,细胞工厂法生产N-乙酰神经氨酸一般通过过表达外源N-乙酰葡萄糖胺-2-异构酶AGE以合成关键前体N-乙酰甘露糖胺(ManNAc),但AGE催化的反应过程存在着一定的热力学瓶颈,且代谢流强度不能满足现阶段大规模工业化生产的需求。因此,寻找合适大肠杆菌的N-乙酰神经氨酸合成途径并优化关键途径酶表达水平是有效的解决办法之一。
发明内容
针对目前已报道的合成途径不能满足N-乙酰神经氨酸工业化生产需求的问题,本发明提供了一种高产N-乙酰神经氨酸的重组大肠杆菌及其构建方法。
本发明构建的重组大肠杆菌是以大肠杆菌BL21(DE3)为出发菌株,通过在基因组上敲除竞争途径基因N-乙酰神经氨酸醛缩酶基因nanA,唾液酸转运体基因nanT,N-乙酰甘露糖胺激酶基因nanK和氨基葡萄糖-6-磷酸脱氨酶基因nagB,并游离表达外源的UDP-N-乙酰甘露糖胺差向异构酶基因neuC和N-乙酰神经氨酸合酶基因neuB,并通过同源过表达UDP-GlcNAc合成途径基因glmM,glmU和GlmS突变体基因glmS*增强UDP-GlcNAc供应,而获得的一种高产N-乙酰神经氨酸的重组大肠杆菌,具备工业化应用的潜力。
本发明的第一个目的是提供一种可高效生产N-乙酰神经氨酸的重组大肠杆菌,其特征在于,所述重组大肠杆菌敲除了大肠杆菌基因组上的N-乙酰神经氨酸醛缩酶基因nanA(Gene ID:947742),唾液酸转运体基因nanT(Gene ID:47740),N-乙酰甘露糖胺激酶基因nanK(Gene ID:947757)以及葡萄糖胺-6-磷酸脱氨酶基因nagB(Gene ID:45290),表达了UDP-N-乙酰甘露糖胺差向异构酶基因neuC、N-乙酰神经氨酸合酶基因neuB,并过表达了内源基因glmM(Gene ID:947692),glmU(Gene ID:948246)和氨基葡萄糖-6-磷酸合成酶GlmS突变体基因glmS*。
在一种实施方式中,所述neuC基因来源于Neisseria meningitidis、Campylobacterjejuni或能表达相同功能酶的微生物,所述neuB基因来源于Neisseriameningitidis、Campylobacterjejuni或能表达相同功能酶的微生物。优选的,所述基因neuC的核苷酸序列如SEQ ID NO.1所示,所述基因neuB的核苷酸序列如SEQ ID NO.3所示。
在一种实施方式中,所述内源基因glmM的核苷酸序列如SEQ ID NO.7所示,基因glmU的核苷酸序列如SEQ ID NO.8所示。
在一种实施方式中,所述氨基葡萄糖-6-磷酸合成酶GlmS突变体编码基因glmS*的核苷酸序列如SEQ ID NO.9所示。
在一种实施方式中,利用pRSFDuet-1载体表达基因glmM,glmU和glmS*。
在一种实施方式中,利用Duet-1系列载体表达基因neuC、neuB。优选地,所述Duet-1载体为pCOLADuet-1。
在一种实施方式中,Neisseria meningitidis来源的基因neuB和neuC串联表达的核苷酸序列如SEQ ID NO.5所示,Campylobacterjejuni来源的基因neuB和neuC串联表达的核苷酸序列如SEQ ID NO.6所示。
在一种实施方式中,所述大肠杆菌包括但不限于大肠杆菌BL21(DE3)。
本发明的第二个目的是提供了一种生产N-乙酰神经氨酸的方法,所述方法是利用所述重组大肠杆菌发酵生产N-乙酰神经氨酸。
在一种实施方式中,所述方法为在含有20~40g/L甘油的培养基中,利用所述重组大肠杆菌,在35~38℃发酵培养至OD6000.6~0.8后,22~25℃诱导培养至少72h。
在一种实施方式中,所述方法为在含有20~40g/L甘油的培养基中,利用所述重组大肠杆菌,在35~38℃发酵培养至OD60012~16后,22~25℃诱导培养至少57h。
在一种实施方式中,维持甘油浓度不低于1g/L,且不超过10g/L。
在一种实施方式中,甘油采取一定速率的流加,在甘油不足时提高流加补料频率,在甘油过多时降低流加频率,以此来维持菌体的生长。
在一种实施方式中,所述培养基中还含有4.0g/L磷酸氢二氨,13.5g/L磷酸二氢钾,1.4g/L七水硫酸镁,1.7g/L柠檬酸和10ml/L微量金属元素;微量金属元素包括:0.35g/L一水硫酸锰,10g/L硫酸亚铁,1.0g/L无水硫酸铜,2.25g/L七水硫酸锌,2.0g/L二水氯化钙,0.23g/L十水硼酸钠和0.11g/L钼酸铵。
本发明的第三个目的是提供了上述重组大肠杆菌在医药、食品和化工领域中的应用,优选地,上述重组大肠杆菌在生产含有N-乙酰神经氨酸的产品中的应用。
有益效果:
本发明以大肠杆菌BL21(DE3)为出发菌株,通过敲除竞争途径基因N-乙酰神经氨酸醛缩酶基因nanA,唾液酸转运体基因nanT,N-乙酰甘露糖胺激酶基因nanK和葡萄糖胺-6-磷酸脱氨酶基因nagB,并游离表达外源的UDP-N-乙酰甘露糖胺差向异构酶基因neuC和N-乙酰神经氨酸合酶基因neuB,并通过同源过表达UDP-GlcNAc合成途径基因glmM,glmU和GlmS突变体基因glmS*增强UDP-GlcNAc供应(图1),最终得到的重组大肠杆菌在摇瓶发酵条件下N-乙酰神经氨酸的产量可以达到7.02g/L;分批补料条件下,在5L发酵罐中N-乙酰神经氨酸的产量达到46.92g/L,产率达到0.82g/L/h和1.05g/g DCW,具备工业化应用的潜力。
附图说明
图1为重组大肠杆菌中N-乙酰神经氨酸生物合成的代谢途径。
图2为重组大肠杆菌中N-乙酰神经氨酸的产量比较图。
图3为不同碳源发酵生产N-乙酰神经氨酸的产量比较图。
具体实施方式
以下实施例中所使用的质粒,内切酶,PCR酶,柱式DNA抽提试剂盒和DNA凝胶回收试剂盒等商用产品,具体操作按照试剂盒说明书进行。菌落PCR,核酸琼脂糖凝胶电泳,热激转化,电转化和感受态细胞的制备和细菌基因组的提取保存等常规操作方法根据Molecular Cloning:ALaboratory Manual(Fourth Edition)进行。质粒和DNA产物的测序工作交予(苏州)金唯智完成。
(一)培养基
(1)LB液体培养基:酵母提取物5g/L,蛋白胨10g/L,氯化钠10g/L。
(2)LB固体培养基:10g/L蛋白胨,5g/L酵母提取物,10g/L氯化钠,15g/L琼脂粉。
(3)发酵培养基:20g/L甘油,13.5g/L磷酸二氢钾,4.0g/L磷酸氢二氨,1.7g/L柠檬酸,1.4g/L七水硫酸镁和10ml/L微量金属元素;微量金属元素包括:10g/L硫酸亚铁,2.25g/L七水硫酸锌,1.0g/L无水硫酸铜,0.35g/L一水硫酸锰,0.23g/L十水硼酸钠,0.11g/L钼酸铵,2.0g/L二水氯化钙。
(4)发酵罐培养基:30g/L甘油,13.5g/L磷酸二氢钾,4.0g/L磷酸氢二氨,1.7g/L柠檬酸,1.4g/L七水硫酸镁和10ml/L微量金属元素;微量金属元素包括:10g/L硫酸亚铁,2.25g/L七水硫酸锌,1.0g/L无水硫酸铜,0.35g/L一水硫酸锰,0.23g/L十水硼酸钠,0.11g/L钼酸铵,2.0g/L二水氯化钙。
(5)抗生素浓度:氨苄青霉素100mg/L(液体培养基),氨苄青霉素200mg/L(固体培养基),卡那霉素50mg/L,链霉素50mg/L,氯霉素34mg/L。
(6)分批补料发酵补料液:甘油600g/L、七水硫酸镁20g/L、硫胺素0.2g/L、氨苄青霉素100mg/L、卡那霉素50mg/L。pH调控:14%氨水(w/v)。
(二)N-乙酰神经氨酸发酵生产
(1)N-乙酰神经氨酸摇瓶发酵过程:将构建的菌株接种于含有氨苄青霉素和卡那霉素的4mL LB液体培养基,37℃,200rpm,过夜培养12h,得到种子液,取400μL种子液接入20mL发酵培养基,37℃,200rpm,培养至OD600为0.6~0.8,加入终浓度为0.5mM IPTG,25℃,200rpm继续诱导培养72h。
(2)N-乙酰神经氨酸分批补料发酵过程:从平板上挑取重组大肠杆菌的单菌落接种到含有氨苄青霉素和卡那霉素的4mL LB培养基中过夜培养,作为一级种子液;将1.5mL一级种子液接种到150mL发酵培养基中在37℃,200rpm条件下扩大培养,培养至OD600约为2后转移至5L发酵罐培养。分批补料发酵在含有1.5L发酵罐培养基的5L发酵罐中进行。初始温度保持在37℃。当OD600达到约13时,降温至25℃,并加入终浓度0.2mM的IPTG进行基因的诱导表达。后续通过流加分批补料发酵补料液保证甘油维持在终浓度1-10g/L,pH全程保持在6.8±0.2,并通过添加消泡剂控制泡沫。通过调节搅拌速度(100~900rpm)和通气量(2~8vvm)控制溶氧。
(三)N-乙酰神经氨酸:
取1mL发酵液,10,000rpm,离心10min,取上清,用于HPLC测定。
HPLC检测条件:通过高效液相色谱(HPLC)系统(Waters e2695);色谱柱:ZorbaxNH2;检测器:Waters 2414RI Detector示差检测器;流动相:50%乙腈,2mM MgCl2,10mM H3PO4;流速:0.8mL/min;柱温:35℃;进样量:10μL。
(四)质粒和菌株
CRISPR/Cas9双质粒基因编辑系统已公开于文献:Jiang,Y.,Chen,B.,Duan,C.,Sun,B.,Yang,J.,Yang,S.Multigene Editing in the Escherichia Coli Genome viathe CRISPR/Cas9 System[J].Applied and Environmental Microbiology,2015,81(7),2506-2514.
表1下述实施例中涉及的菌株
(五)相关引物序列表
表2下述实施例中所需引物
实施例1:重组菌株中N-乙酰神经氨酸合成竞争途径基因的敲除
利用CRISPR-Cas9双质粒基因敲除系统敲除大肠杆菌BL21(DE3)中的基因nanA、nanT、nanK和nagB,具体步骤如下(所涉及到的引物序列见表2):
(1)以原始pTargetF质粒为模板,nanA-N20-F/R为引物,采用PCR扩增将原始pTargetF质粒上的N20序列分别替换为与nanA序列互补的N20序列,得到带有靶向基因nanA的pTargetF质粒。PCR产物采用DpnI去除模板DNA后,转化大肠杆菌DH5α感受态,涂布LB平板(含壮观霉素),37℃扩大培养提取质粒并测序。
(2)以大肠杆菌BL21基因组为模板,使用引物nanA-UP-F/R和nanA-DH-F/R,通过PCR分别扩增出nanA的上下游片段;以pTargetF质粒为模板,使用引物nanA-V-F/R通过PCR扩增出pTargetF载体片段。
(3)通过Gibson组装将pTargetF载体片段与nanA的上下游同源片段进行组装质粒pTargetT-nanA。
(4)取pCas质粒转入大肠杆菌BL21(DE3)的化转感受态中,将转化好的菌液涂布于到含有卡那霉素的LB平板,在37℃培养箱中过夜培养,成为BL21(DE3)-pCas。
(5)挑取步骤(4)的BL21(DE3)-pCas单菌落于LB培养基中,30℃培养1.0h,加入终浓度为10mM的L-阿拉伯糖以诱导pCas-λ-red系统表达。当OD600达到0.5-0.6时,制备BL21(DE3)-pCas感受态。
(6)将300ng步骤(3)的pTargetT-nanA质粒,电转至步骤(5)的BL21(DE3)-pCas感受态,涂布于LB平板(卡那霉素和壮观霉素),30℃培养24h,PCR验证基因nanA敲除效果,nanA敲除的即为阳性克隆菌落。
(7)将步骤(6)得到的阳性克隆菌落挑至4mLLB液体试管,加入终浓度为1mM的IPTG和50mg/L卡那霉素,30℃培养8-16h,以去除pTargetT-nanA质粒,再在42℃培养12h,去除pCas质粒。得到敲除基因nanA的EA菌株。
(8)利用相同的方法,依次将菌株中的基因nanT、nanK、nagB敲除,得到相应的EAT、EAK、EATK、EATKN四种大肠杆菌BL21(DE3)敲除菌株。
实施例2:重组表达载体的构建
重组表达载体构建具体步骤如下:
将密码子优化后的Campylobacterjejuni来源的基因CjneuBC(核苷酸序列如SEQID NO.6所示)构建至表达载体pETDuet-1的多克隆位点二号位的NdeI和MfeI位点之间形成重组质粒pET-2CjBC;将密码子优化后的Neisseria meningitidis来源的基因NmneuBC(核苷酸序列如SEQ ID NO.5所示)构建至表达载体pETDuet-1的多克隆位点二号位的NdeI和MfeI位点之间形成重组质粒pET-2NmBC。
为了与pRSF-MUS*在同一株大肠杆菌中共存,利用引物Amp-F/Amp-R扩增氨苄青霉素抗性基因,利用引物CO-V-F/CO-V-R全质粒扩增获得pCOLADuet-1线性化载体,将氨苄青霉素抗性基因和pCOLADuet-1线性化载体连接,制备得到成功将抗性基因替换为氨苄青霉素抗性基因的载体pCOLADuet-1。分别以pET-2CjBC和pET-2NmBC为模板,利用引物Cj-F/Cj-R和Nm-F/Nm-R分别扩增得到基因片段neuB和neuC,将基因片段分别构建到经引物Cj-V-F/Cj-V-R或Nm-V-F/Nm-V-R扩增得到的pCOLADuet-1,pCDFDuet-1和pACYCDuet-1线性载体的多克隆位点二号位的NdeI和MfeI位点之间,形成重组质粒pCO-2CjBC、pCD-2CjBC、pAC-2CjBC、pCO-2NmBC、pCD-2NmBC和pAC-2NmBC。
质粒pRSF-MUS*公开于文献Zhu Y,Wan L,Meng J,et al.Metabolic EngineeringofEscherichia coli for Lacto-N-triose II Production with High Productivity[J].Journal ofAgricultural andFood Chemistry,2021,69(12):3702–3711.
实施例3:重组菌株发酵生产N-乙酰神经氨酸
(1)摇瓶发酵生产N-乙酰神经氨酸
将实施例2中构建的pET-2CjBC导入大肠杆菌BL21(DE3)和实施例1中构建的宿主EA、EAT、EAK、EATK、EATKN得到重组菌株EM1、EM2、EM3、EM4、EM5。
将实施例2中构建的pET-2CjBC、pCO-2CjBC、pCD-2CjBC、pAC-2CjBC、pET-2NmBC、pCO-2NmBC、pCD-2NmBC或pAC-2NmBC中的任一一个分别和质粒pRSF-MUS*同时导入实施例1中构建的宿主EATKN得到重组菌株EM6、EM7、EM8、EM9、EM10、EM11、EM12、EM13。
将EM1~EM13重组菌株分别接种于含有相应抗生素的LB液体培养基,37℃,200rpm,过夜培养12h,得到种子液,取400μL种子液接入20mL发酵培养基,37℃,200rpm,培养至OD600为0.8,加入终浓度为0.5mM IPTG,25℃,200rpm继续诱导培养72h。取1mL发酵液,10,000rpm,离心10min,取上清,用于HPLC测定,结果如表3所示,N-乙酰神经氨酸的最高产量为4.96g/L(图2)。
表3不同重组大肠杆菌摇瓶发酵详细信息
(2)优化碳源
将发酵培养基的碳源设置为不同组成和含量的三组碳源,包括100%甘油,100%葡萄糖,50%甘油+50%葡萄糖,并设置为三种不同的总浓度,包括20,25和30g/L。将EM11接种于LB液体培养基,37℃,200rpm,过夜培养12h,得到种子液,400μL种子液接入20mL不同碳源的发酵培养基,探究碳源对N-乙酰神经氨酸产量的影响,其他培养条件保持不变。
结果如表4所示,重组菌株EM11在30g/L甘油为碳源的发酵培养基中培养可获得更高的N-乙酰神经氨酸产量,摇瓶培养72h达到7.02g/L(图3)。
表4不同重组大肠杆菌摇瓶发酵详细信息
实施例4:发酵罐分批补料培养生产N-乙酰神经氨酸
选取菌株EM11进行5L发酵罐的N-乙酰神经氨酸的分批补料发酵实验。
从平板上挑取重组大肠杆菌EM11的单菌落接种到含有氨苄青霉素和卡那霉素的4mLLB培养基中过夜培养,作为一级种子液;将1.5mL一级种子液接种到150mL发酵培养基中在37℃,200rpm条件下扩大培养,培养至OD600约为2后转移至5L发酵罐培养。分批补料发酵在含有1.5L发酵罐培养基的5L发酵罐中进行。初始温度保持在37℃。当OD600达到约13时,降温至25℃,并加入终浓度0.2mM的IPTG进行基因的诱导表达。后续通过流加分批补料发酵补料液保证甘油维持在终浓度1-10g/L,pH全程保持在6.8±0.2,并通过添加消泡剂控制泡沫。通过调节搅拌速度(100~900rpm)和通气量(2~8vvm)控制溶氧。
在经过了57h的发酵后N-乙酰神经氨酸产量达到46.92g/L,OD600最高达到了127.4。
虽然本发明已以较佳实施例公开如上,但其并非用以限定本发明,任何熟悉此技术的人,在不脱离本发明的精神和范围内,都可做各种的改动与修饰,因此本发明的保护范围应该以权利要求书所界定的为准。

Claims (10)

1.一种高产N-乙酰神经氨酸的重组大肠杆菌,其特征在于,以大肠杆菌为宿主,敲除基因组上的N-乙酰神经氨酸醛缩酶基因nanA,唾液酸转运体基因nanT,N-乙酰甘露糖胺激酶基因nanK以及氨基葡萄糖-6-磷酸脱氨酶基因nagB,游离表达UDP-N-乙酰甘露糖胺差向异构酶基因neuC,N-乙酰神经氨酸合酶基因neuB,过表达内源基因glmM,glmU和氨基葡萄糖-6-磷酸合成酶GlmS突变体基因glmS*;
所述neuC基因来源于Neisseriameningitidis、Campylobacterjejuni或能表达相同功能酶的微生物,所述neuB基因来源于Neisseriameningitidis、Campylobacterjejuni或能表达相同功能酶的微生物。
2.根据权利要求1所述的重组大肠杆菌,其特征在于,所述N-乙酰神经氨酸醛缩酶基因nanA的Gene ID为947742;唾液酸转运体基因nanT的GeneID为947740;所述N-乙酰甘露糖胺激酶基因nanK的Gene ID为947757;所述氨基葡萄糖-6-磷酸脱氨酶基因nagB的GeneID为945290。
3.根据权利要求1~2所述的重组大肠杆菌,其特征在于,所述基因neuC的核苷酸序列如SEQ ID NO.1所示,所述基因neuB的核苷酸序列如SEQ ID NO.3所示。
4.根据权利要求1~3任一所述的重组大肠杆菌,其特征在于,所述基因glmM的GeneID为947692,基因glmU的GeneID为948246,所述基因glmS*的核苷酸序列如SEQ ID NO.9所示。
5.根据权利要求1~4任一所述的重组大肠杆菌,其特征在于,利用pRSFDuet-1载体表达基因glmM,glmU和glmS*,利用Duet-1系列载体表达基因neuC、neuB。
6.根据权利要求1~5任一所述的重组大肠杆菌,其特征在于,所述大肠杆菌包括但不限于大肠杆菌BL21(DE3)。
7.一种生产N-乙酰神经氨酸的方法,其特征在于,采用权利要求1~6任一所述的重组大肠杆菌生物合成N-乙酰神经氨酸。
8.根据权利要求7所述的方法,其特征在于,在含有20~40g/L甘油的培养基中,利用权利要求1~6任一所述的重组大肠杆菌,在35~38℃发酵培养至OD6000.6~0.8后,22~25℃诱导培养至少72h。
9.根据权利要求7所述的方法,其特征在于,在含有20~40g/L甘油的培养基中,利用权利要求1~6任一所述的重组大肠杆菌,在35~38℃发酵培养至OD60012~16后,22~25℃诱导培养至少57h,维持甘油浓度不低于1g/L,且不超过10g/L。
10.权利要求1~6任一所述重组大肠杆菌或权利要求7~9任一所述方法在制备含有N-乙酰神经氨酸的产品中的应用。
CN202310598341.2A 2023-05-25 2023-05-25 一种高产n-乙酰神经氨酸的重组大肠杆菌的构建方法及应用 Pending CN116555147A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310598341.2A CN116555147A (zh) 2023-05-25 2023-05-25 一种高产n-乙酰神经氨酸的重组大肠杆菌的构建方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310598341.2A CN116555147A (zh) 2023-05-25 2023-05-25 一种高产n-乙酰神经氨酸的重组大肠杆菌的构建方法及应用

Publications (1)

Publication Number Publication Date
CN116555147A true CN116555147A (zh) 2023-08-08

Family

ID=87487890

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310598341.2A Pending CN116555147A (zh) 2023-05-25 2023-05-25 一种高产n-乙酰神经氨酸的重组大肠杆菌的构建方法及应用

Country Status (1)

Country Link
CN (1) CN116555147A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118166010A (zh) * 2024-03-19 2024-06-11 浙江熙正霖生物科技有限公司 一种n-乙酰神经氨酸的生物合成方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118166010A (zh) * 2024-03-19 2024-06-11 浙江熙正霖生物科技有限公司 一种n-乙酰神经氨酸的生物合成方法

Similar Documents

Publication Publication Date Title
CN104059872B (zh) 高产n-乙酰氨基葡萄糖代谢工程菌及其构建方法和应用
CN113684164B (zh) 一种高产乳酰-n-新四糖的微生物的构建方法及应用
CN108753669B (zh) 一种腺嘌呤生产菌株及其构建方法和应用
US12049655B2 (en) Construction method and application of microorganism capable of realizing high production of lacto-N-tetrose
CN107815446B (zh) 一种重组腈水合酶大肠杆菌基因工程菌的高密度发酵方法
CN114874964B (zh) 一种高产2′-岩藻糖基乳糖的重组大肠杆菌的构建方法及应用
CN111394292B (zh) 一种多途径复合产神经氨酸枯草芽孢杆菌及其应用
CN114107152B (zh) 一种高产3-岩藻糖基乳糖微生物的构建方法及应用
CN114990037B (zh) 一种高产乳酰-n-四糖的重组大肠杆菌的构建方法及应用
CN110373370A (zh) 一种耦合atp再生系统的催化体系及其在生产谷胱甘肽过程中的应用
CN110387379A (zh) 一种用于生产谷胱甘肽的重组大肠杆菌的混合培养工艺及其应用
CN116555147A (zh) 一种高产n-乙酰神经氨酸的重组大肠杆菌的构建方法及应用
CN115960812A (zh) 一种高产l-岩藻糖的重组大肠杆菌的构建方法及应用
CN113151133B (zh) 一种产唾液酸乳糖的重组宿主菌及其构建方法和应用
CN108913737B (zh) 使用重组大肠杆菌发酵制备环二核苷酸的方法
CN117305211A (zh) 一种高效合成2′-岩藻糖基乳糖的基因工程菌的构建及其应用
CN114277068B (zh) 一种r-3-羟基丁酸乙酯微生物发酵制备方法
CN114990174B (zh) 一种从头合成壳寡糖的多酶催化体系及其全细胞生产方法
CN116769808A (zh) 一种专一生产2′-岩藻糖基乳糖的菌株及应用
CN113717886B (zh) 一种凝结芽孢杆菌及其催化生产2’-脱氧腺苷的方法
CN114806991A (zh) 一种提高岩藻糖基乳糖产量的工程大肠杆菌及生产方法
CN118028202A (zh) 一种高效合成乳酰-n-二糖的重组大肠杆菌的构建方法及应用
CN116925993B (zh) 用于酶催化生产胞苷酸的基因工程改造菌株和方法
CN117965484A (zh) 高效合成乳酰-n-岩藻糖基五糖-ⅴ的工程大肠杆菌的构建方法及应用
CN118813573A (zh) 用于合成LNFP Ⅰ的α-1,2-岩藻糖基转移酶、重组工程菌株及其构建方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination