CN118166010A - 一种n-乙酰神经氨酸的生物合成方法 - Google Patents

一种n-乙酰神经氨酸的生物合成方法 Download PDF

Info

Publication number
CN118166010A
CN118166010A CN202410313729.8A CN202410313729A CN118166010A CN 118166010 A CN118166010 A CN 118166010A CN 202410313729 A CN202410313729 A CN 202410313729A CN 118166010 A CN118166010 A CN 118166010A
Authority
CN
China
Prior art keywords
acetylneuraminic acid
plasmid
coli
escherichia coli
neub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202410313729.8A
Other languages
English (en)
Inventor
罗茂行
张逢敏
张超杰
王甜忆
刘迎宾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Xizhenglin Biotechnology Co ltd
Original Assignee
Zhejiang Xizhenglin Biotechnology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Xizhenglin Biotechnology Co ltd filed Critical Zhejiang Xizhenglin Biotechnology Co ltd
Priority to CN202410313729.8A priority Critical patent/CN118166010A/zh
Publication of CN118166010A publication Critical patent/CN118166010A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本发明公开了一种N‑乙酰神经氨酸的生物合成方法。本发明利用重组大肠杆菌进行N‑乙酰神经氨酸的生物合成,其中重组大肠杆菌通过以下方法构建:以质粒pETDuet为骨架,删除lacI基因,将原有的T7启动子用组成型启动子PJ23101进行替换,插入基因gna1和glmS,得到质粒pETDuet‑gna1‑glmS;以质粒pCDFDuet为骨架,删除lacI基因,将原有的T7启动子用来源于质粒pBV220的温敏启动子回路cIts‑pR‑pL进行替换,插入基因age和neuB,得到质粒pCDFDuet‑age‑neuB;将所得质粒导入大肠杆菌得到重组大肠杆菌。所得重组大肠杆菌以葡萄糖为底物,无需诱导剂,可发酵得到N‑乙酰神经氨酸,生产效率高,适用于工业化放大生产;所得发酵液经分离提纯可得高纯度的产品,满足原料质量要求。

Description

一种N-乙酰神经氨酸的生物合成方法
技术领域
本发明属于N-乙酰神经氨酸生物合成领域,具体涉及一种N-乙酰神经氨酸的生物合成方法。
背景技术
N-乙酰神经氨酸(Neu5Ac)通称唾液酸,因其含量在整个唾液酸种类里占据99%以上而得名。N-乙酰神经氨酸广泛存在于各类生物体内,通常以α-糖苷的形式位于非还原性寡聚糖末端,对生物体生理功能的发挥有重要作用。N-乙酰神经氨酸可以促进大脑发育、改善记忆力、促进肠道对矿物质和维生素的吸收、增强肠道抗菌解毒能力,尤其对婴幼儿发育有着明显作用。
N-乙酰神经氨酸因其对人体所有的特殊作用,故而在广大食品、药品、保健品中有着广阔的应用前景,主要是在婴幼儿食品上、预防老年人群的老年痴呆及记忆力衰退上以及对广大适龄人群的提高抵抗力、抗流感上都有着不俗的效果。
N-乙酰神经氨酸的生产方法主要分为:天然原料提取法、酶催化法、发酵法。天然原料提取法是从自然界原料如燕窝、禽蛋、猪血中提取,经过酸解、中和、层析、蒸发、浓缩、冻干等复杂步骤制备而成,因为天然产物中N-乙酰神经氨酸含量低,提取工艺复杂困难,成本较高。酶催化法主要通过以N-乙酰甘露糖胺和丙酮酸钠为底物,用N-乙酰神经氨酸醛缩酶来催化生产N-乙酰神经氨酸,其底物N-乙酰甘露糖胺成本较高使其应用受到限制。
大肠杆菌等微生物能够天然合成N-乙酰神经氨酸,目前发酵法以大肠杆菌作为主要生产菌株,因其发酵工艺简单、绿色环保是目前制备N-乙酰神经氨酸最常用的方法,也是国内研究人员关注最多的方法,主要缺点是目前的菌种产量较低,导致其大规模生产成本较高。如申请号为202211469338.2的中国专利——一种生产N-乙酰神经氨酸的大肠杆菌工程菌及其应用,公开了一株经过基因工程改造的大肠杆菌,以葡萄糖为碳源,通过诱导剂诱导合成路径相关基因表达,经过48h发酵获得2.360g/L的N-乙酰神经氨酸,实现了以廉价的葡萄糖为底物从头合成N-乙酰神经氨酸,但其发酵过程需添加成本昂贵、具有一定细胞毒性的诱导剂,针对工业化生产的需求,其产量和工艺仍有改进空间。
发明内容
为解决现有技术中的问题,本发明提出了一种N-乙酰神经氨酸的生物合成方法。本发明利用自行构建的高产N-乙酰神经氨酸的重组大肠杆菌进行N-乙酰神经氨酸的生物合成,所得重组大肠杆菌以葡萄糖为底物,无需诱导剂,可发酵得到N-乙酰神经氨酸,生产效率高,适用于工业化放大生产。
本发明首先提供了一种高产N-乙酰神经氨酸的重组大肠杆菌的构建方法,该方法包括如下步骤:
以质粒pETDuet为骨架,删除lacI基因,将质粒pETDuet原有的T7启动子用组成型启动子PJ23101进行替换,插入氨基葡萄糖-6-磷酸乙酰基转移酶编码基因gna1和果糖-6-磷酸氨基转移酶编码基因glmS,得到质粒pETDuet-gna1-glmS;
以质粒pCDFDuet为骨架,删除lacI基因,将质粒pCDFDuet原有的T7启动子用温敏启动子回路cIts-pR-pL进行替换,插入N-乙酰葡萄糖胺-2差向异构酶编码基因age和N-乙酰神经氨酸合成酶编码基因neuB,得到质粒pCDFDuet-age-neuB;
将所述质粒pETDuet-gna1-glmS和质粒pCDFDuet-age-neuB导入宿主大肠杆菌,构建得到高产N-乙酰神经氨酸的重组大肠杆菌。
本发明还提供了由上述构建方法构建的高产N-乙酰神经氨酸的重组大肠杆菌。
本发明还进一步公开了一种N-乙酰神经氨酸的生物合成方法,该方法为:在32-34℃、200-220rpm下培养所述的重组大肠杆菌10-14h得到种子液;
种子液以4%-6%的接种量转入发酵培养基,于32-34℃条件下发酵培养22-24h,当OD600=32-36时,提高发酵温度至38-42℃,继续发酵至66-72h,得到含N-乙酰神经氨酸的发酵液;所述发酵以葡萄糖为碳源。
进一步的,发酵所得含N-乙酰神经氨酸的发酵液先经陶瓷膜去除菌体细胞和不溶性杂质;再经加热搅拌过滤去除不溶性蛋白沉淀;再通过1000D有机膜去除小分子杂质,并收集滤液;
滤液继续经活性炭脱色得脱色液;将脱色液用阴离子树脂吸附,并用甲酸溶液解析,得解析液;将解析液浓缩;向浓缩液中加入乙酸,并置于2~8℃冷却结晶;将结晶液进行抽滤,用乙酸淋洗后干燥,得N-乙酰神经氨酸成品。
与现有技术相比,本发明具有如下有益效果:
(1)本发明提出了一株可以葡萄糖为底物合成N-乙酰神经氨酸的重组大肠杆菌SA及其构建方法以及该重组大肠杆菌SA合成N-乙酰神经氨酸的发酵方法。通过将常规的化学诱导型T7启动子分别替换为组成型启动子PJ23101和温敏启动子回路cIts-pR-pL,使得重组大肠杆菌SA具备高效合成N-乙酰神经氨酸的能力。具体来说,一方面,N-乙酰神经氨酸合成路径中的gna1和glmS基因可以伴随着重组大肠杆菌SA的生长进行表达;另一方面,发酵过程中首先使大肠杆菌细胞在低温培养条件下生长至一定生物量,随后提高发酵温度,使温敏抑制蛋白失活,进一步使N-乙酰神经氨酸合成路径中的关键酶基因age和neuB进行过表达,快速促进产物合成,发酵68h滴度可达60.32g/L,生产效率可达0.89g/L/h。所使用的底物葡萄糖价格低廉,且发酵过程无需添加成本昂贵、具有一定细胞毒性的诱导剂,仅通过调节发酵温度即可诱导N-乙酰神经氨酸的合成,相比现有的发酵工艺成本低、安全性高、操作简单,适合工业化放大生产。
(2)本发明还提出了从重组大肠杆菌SA的发酵液中分离纯化N-乙酰神经氨酸的方法,经提纯后的N-乙酰神经氨酸含量≥98.0%,满足原料质量要求,为其进一步工业化放大和市场应用奠定了良好的基础。
附图说明
图1为质粒pETDuet-gna1-glmS、pCDFDuet-age-neuB、pETDuet-1和pCDFDuet-1示意图;
图2为重组大肠杆菌SA中N-乙酰神经氨酸的合成路径;
图3为重组大肠杆菌SA的5L罐发酵过程曲线;
图4为N-乙酰神经氨酸标准品及重组大肠杆菌SA的5L罐发酵液的HPLC图谱。
具体实施方式
下面结合具体实施方式对本发明做进一步阐述和说明。所述实施例仅是本公开内容的示范且不圈定限制范围。本发明中各个实施方式的技术特征在没有相互冲突的前提下,均可进行相应组合。
实施例1质粒pETDuet-gna1-glmS的构建
以商品化质粒pETDuet为模板,使用表1中引物P1和P2进行扩增,获得删除lacI基因和T7启动子的线性化载体,命名为pETDuetΔlacI。
将来源于Saccharomyces cerevisiae的gna1基因(SEQ ID No.1)进行大肠杆菌密码子优化,优化后的序列(SEQ ID No.2)通过化学法合成,以合成的基因为模板DNA,使用表1中引物P3和P4扩增获得带有组成型启动子PJ23101的gna1基因片段(PJ23101的序列如SEQID No.22所示)。
使用细菌基因组DNA提取试剂盒,按照试剂盒操作说明书提取大肠杆菌K-12MG1655的基因组。以基因组为模板DNA,使用表1中引物P5和P6扩增获得带有组成型启动子PJ23101的glmS基因片段(SEQ ID No.3)。
将线性化载体pETDuetΔlacI、gna1基因片段、glmS基因片段进行重组反应,反应产物转化大肠杆菌DH5α感受态细胞,涂布含有100mg/L氨苄青霉素的LB固体培养基平板,37℃过夜培养。转化子使用表1中引物P3和P6进行菌落PCR,验证正确的转化子扩大培养提取质粒,进行测序验证,获得质粒pETDuet-gna1-glmS(5898bp),如图1中的(A)所示。
其中,PCR反应体系(DNA片段扩增):5×PrimeSTAR buffer 10μL,dNTP 4μL,上游引物和下游引物各1μL,DNA模板(含有目标基因的基因组或质粒DNA)0.5μL,HS PrimeStarDNA聚合酶0.5μL,用ddH2O补齐至总体积为50μL。
PCR反应条件(DNA片段扩增):95℃预变性5min;95℃变性30sec;55℃退火30sec;72℃延伸(延伸时长按1kb/min计算),循环32次;72℃延伸10mi n;4℃保存。
PCR反应体系(菌落PCR验证):2×Rapid Taq Master Mix 10μL,上游引物和下游引物各0.4μL,ddH2O 9.2μL,DNA模板适量,总体积为20μL。
PCR反应条件(菌落PCR验证):95℃预变性10min;95℃变性15sec;58℃退火15sec;72℃延伸(延伸时长按4kb/min计算),循环28次;72℃延伸2min;4℃保存。
重组反应体系:2×GenRec Assembly Master Mix 10μL,线性化载体0.03pmol,目的基因片段0.09pmol,ddH2O补齐至总体积为20μL。
重组反应条件:将配制好的反应液置于50℃水浴中反应50min。
表1实施例1所用引物序列
实施例2质粒pCDFDuet-age-neuB的构建
以商品化质粒pCDFDuet为模板,使用表2中引物P7和P8进行扩增,获得删除lacI基因和T7启动子的线性化载体,命名为pCDFDuetΔlacI。
以商品化质粒pBV220为模板DNA,使用表2中引物P9和P10进行扩增,获得带有温敏抑制蛋白CI和温度开关控制启动子pR-pL的温敏启动子回路cIts-pR-pL基因片段(温敏启动子回路cIts-pR-pL基因片段的序列如SEQ IDNo.21所示)。
将来源于Synechocystis sp.PCC 6803的age基因(SEQ ID No.4)进行大肠杆菌密码子优化,优化后的序列(SEQ ID No.5)通过化学法合成,以合成的基因为模板DNA,使用表2中引物P11和P12扩增获得age基因片段。
将来源于大肠杆菌K1的neuB基因(SEQ ID No.6)通过化学法合成,以合成的基因为模板DNA,使用表2中引物P13和P14扩增获得带有温度开关控制启动子pR的neuB基因片段。
将线性化载体pCDFDuetΔlacI、cIts-pR-pL基因片段、age基因片段、neuB基因片段进行重组反应,反应产物转化大肠杆菌DH5α感受态细胞,涂布含有50mg/L链霉素的LB固体培养基平板,37℃过夜培养。转化子使用表2中引物P9和P14进行菌落PCR,验证正确的转化子扩大培养提取质粒,进行测序验证,获得质粒pCDFDuet-age-neuB(5528bp),如图1中的(B)所示。质粒中的温敏启动子回路可以调控下游基因的表达,具体机制为32-34℃低温培养条件下,温敏抑制蛋白CI结合在启动子pR-pL上,阻止RNA聚合酶对下游基因的转录,38-42℃高温培养条件下,温敏抑制蛋白CI失活,从启动子pR-pL上脱离,RNA聚合酶可以正常转录下游基因。
其中,PCR反应体系(DNA片段扩增):5×PrimeSTAR buffer 10μL,dNTP 4μL,上游引物和下游引物各1μL,DNA模板(含有目标基因的基因组或质粒DNA)0.5μL,HS PrimeStarDNA聚合酶0.5μL,用ddH2O补齐至总体积为50μL。
PCR反应条件(DNA片段扩增):95℃预变性5min;95℃变性30sec;55℃退火30sec;72℃延伸(延伸时长按1kb/min计算),循环32次;72℃延伸10mi n;4℃保存。
PCR反应体系(菌落PCR验证):2×Rapid Taq Master Mix 10μL,上游引物和下游引物各0.4μL,ddH2O 9.2μL,DNA模板适量,总体积为20μL。
PCR反应条件(菌落PCR验证):95℃预变性10min;95℃变性15sec;58℃退火15sec;72℃延伸(延伸时长按4kb/min计算),循环28次;72℃延伸2min;4℃保存。
重组反应体系:2×GenRec Assembly Master Mix 10μL,线性化载体0.03pmol,目的基因片段0.09pmol,ddH2O补齐至总体积为20μL。
重组反应条件:将配制好的反应液置于50℃水浴中反应50min。
表2实施例2所用引物序列
实施例3重组大肠杆菌SA的制备
将-80℃冻存的大肠杆菌K-12MG1655在LB固体培养基平板上划线活化,置于37℃培养16~20h,接种装液量为10mL的LB液体培养基,置于37℃、220rpm振荡培养10~12h,按照1%接种量转接装液量为50mL的LB液体培养基,置于37℃、220rpm振荡培养至OD600=0.4~0.5,停止培养,将菌液冰浴30min。在超净工作台中,将菌液倒入50mL离心管内,4℃、4000rpm离心10min,弃去上清。加入10mL预冷的0.1M氯化钙溶液,轻轻重悬菌体并混匀,冰浴30min后,4℃、4000rpm离心10min,弃去上清。加入2.5mL预冷的0.1M氯化钙溶液和2.5mL预冷的50%甘油溶液,轻轻重悬菌体并混匀,按照200μL/支分装于离心管中,制得大肠杆菌K-12MG1655化学转化感受态细胞。
将质粒pETDuet-gna1-glmS和pCDFDuet-age-neuB各取1μL,加入大肠杆菌K-12MG1655化学转化感受态细胞中,轻轻混匀,冰浴30min。随后置于42℃金属浴中热激90sec,冰浴5min。向离心管中加入800μL LB液体培养基,置于37℃、100rpm培养1h,取100μL菌液,涂布于已添加100mg/L氨苄青霉素和50mg/L链霉素的LB固体培养基平板,置于37℃过夜培养。使用表1中引物P3和P6、表2中P9和P14对双抗平板上的转化子进行菌落PCR验证,验证正确后制备甘油菌保存备用,命名为重组大肠杆菌SA。本发明通过启动子特殊的设计,过表达基因gna1、glmS、age和neuB,实现了N-乙酰神经氨酸合成路径在重组大肠杆菌SA中的重构,重组大肠杆菌SA中N-乙酰神经氨酸的合成路径如图2所示。
实施例4重组大肠杆菌SA的摇瓶发酵
将重组大肠杆菌SA在LB固体培养基平板上划线活化,置于33℃培养20~24h,接种装液量为10mL并已添加氨苄青霉素和链霉素的LB液体培养基,置于33℃、220rpm振荡培养10~12h,按照4%接种量转接装液量为30mL并已添加氨苄青霉素和链霉素的摇瓶发酵培养基,置于33℃、220rpm振荡培养8~10h,改变培养温度为42℃,继续培养至48h。
其中培养基配方为:
(1)LB液体培养基:酵母提取物5g/L,胰蛋白胨10g/L,氯化钠10g/L;
(2)LB固体培养基:酵母提取物5g/L,胰蛋白胨10g/L,氯化钠10g/L,琼脂15g/L;
(3)发酵培养基:葡萄糖10g/L,酵母提取物7g/L,硫酸铵7g/L,磷酸二氢钾4g/L,一水合柠檬酸2g/L,七水合硫酸镁2g/L,七水合硫酸亚铁25mg/L,一水合硫酸锰1.2mg/L,维生素B1 0.5mg/L。
实施例5重组大肠杆菌SA的5L罐发酵
将重组大肠杆菌SA在LB固体培养基平板上划线活化,置于33℃培养20~24h,接种装液量为10mL并已添加氨苄青霉素和链霉素的LB液体培养基,置于33℃、220rpm振荡培养10~12h,按照4%接种量转接装液量为150mL并已添加氨苄青霉素和链霉素的LB液体培养基,置于33℃、220rpm振荡培养8~10h,按照6%接种量接种装液量为2.5L并已添加氨苄青霉素和链霉素的发酵培养基中,初始培养温度为33℃,初始转速为250rpm,通气量为2.5L/min(1vvm),pH用25%~28%氨水控制在6.90±0.02。接种后通过溶氧-搅拌关联控制溶氧在35%±2%。每隔4小时取样检测OD600和葡萄糖,发酵10h后开始流加补料培养基(600g/L葡萄糖),维持发酵液中葡萄糖浓度稳定在5g/L左右。OD600=35左右时,升温至42℃,直到发酵结束。
对比例1重组大肠杆菌SAP的构建及发酵
重组大肠杆菌SAP的构建:按照实施例1所述方法在质粒pETDuet中插入gna1和glmS基因,不同之处在于未进行lacI基因的删除和T7启动子的替换,构建所得质粒命名为pETDuet-1,如图1中的(C)所示。按照实施例2所述方法在质粒pCDFDuet中插入age和neuB基因,不同之处在于未进行lacI基因的删除和T7启动子的替换,构建所得质粒命名为pCDFDuet-1,如图1中的(D)所示。将质粒pETDuet-1和pCDFDuet-1按照实施例3所述方法转化大肠杆菌K-12MG1655化学转化感受态细胞,制备获得重组大肠杆菌SAP。将重组大肠杆菌SAP按照实施例4所述方法进行摇瓶发酵,并按照实施例5所述方法进行5L罐发酵。
实施例6发酵液中N-乙酰神经氨酸的检测
精密称取0.0500gN-乙酰神经氨酸标准样品(购于上海泰坦科技股份有限公司),用超纯水溶解,定容至50mL,配制为1g/L标准样品母液。分别取1mL、2mL、3mL、4mL、5mL母液,用超纯水定容至10mL,配制浓度为为0.1g/L、0.2g/L、0.3g/L、0.4g/L、0.5g/L的标准样品溶液,用0.22μm水相针式滤膜过滤,进行HPLC检测,以浓度为横坐标、峰面积为纵坐标,作标准曲线,计算标准曲线方程。
取实施例4和实施例5发酵液1mL,8000rpm离心5min,取适量上清液用超纯水稀释适当倍数,用0.22μm水相针式滤膜过滤,进行HPLC检测,通过色谱峰面积和标准曲线方程计算样品中N-乙酰神经氨酸的浓度,乘以稀释倍数,得发酵液中N-乙酰神经氨酸的滴度,如表3所示,发酵过程曲线及HPLC检测图谱分别如图3和图4所示。
表3
取对比例1发酵液1mL,8000rpm离心5min,取适量上清液用超纯水稀释适当倍数,用0.22μm水相针式滤膜过滤,进行HPLC检测,通过色谱峰面积和标准曲线方程计算样品中N-乙酰神经氨酸的浓度,乘以稀释倍数,得发酵液中N-乙酰神经氨酸的滴度,如表4所示。
表4
对比表3和表4数据,可以发现对比例1的摇瓶发酵液中N-乙酰神经氨酸的滴度远低于实施例4,对比例1的5L罐发酵液中N-乙酰神经氨酸的滴度远低于实施例5,说明本发明对于质粒pETDuet和pCDFDuet的T7启动子替换,能够大幅度提高N-乙酰神经氨酸的生产效率。
实施例7发酵液中N-乙酰神经氨酸的分离纯化
将重组大肠杆菌SA发酵液通过50nm陶瓷膜,去除菌体细胞和不溶性杂质,收集滤液;将滤液70℃加热搅拌1h,静置1h后过滤,去除不溶性蛋白沉淀,收集滤液;将滤液通过1000D有机膜,去除小分子杂质,收集滤液;将滤液使用YL-500型活性炭65℃脱色1h,得脱色液;将脱色液用HZ-201型阴离子树脂吸附,并用1M甲酸溶液解析,得解析液;将解析液用旋转蒸发仪浓缩至浓度达到130g/L;向浓缩液中加入3倍体积的乙酸,搅拌后置于2~8℃冷却结晶2天;将结晶液进行抽滤,用乙酸淋洗后50℃干燥至恒重,得N-乙酰神经氨酸成品。
实施例8N-乙酰神经氨酸的成品含量检测
精密称取0.0500g实施例7制得的N-乙酰神经氨酸成品,用超纯水溶解,定容至250mL,备用。按照实施例6测定标准样品溶液并制作标准曲线,计算标准曲线方程,再进行实施例7样品溶液检测。将实施例7样品溶液色谱峰面积代入标准曲线方程,计算样品溶液的浓度。样品中N-乙酰神经氨酸的含量计算公式如下:
ω=C1/C0
ω为样品中N-乙酰神经氨酸的含量,%(w/w);C1为根据标准曲线方程计算的样品溶液中N-乙酰神经氨酸的浓度,g/L;C0为样品溶液的配制浓度,g/L。
计算得实施例7制得的N-乙酰神经氨酸成品含量为98.88%。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。

Claims (10)

1.一种高产N-乙酰神经氨酸的重组大肠杆菌的构建方法,其特征在于:
以质粒pETDuet为骨架,删除lacI基因,将质粒pETDuet原有的T7启动子用组成型启动子PJ23101进行替换,插入氨基葡萄糖-6-磷酸乙酰基转移酶编码基因gna1和果糖-6-磷酸氨基转移酶编码基因glmS,得到质粒pETDuet-gna1-glmS;
以质粒pCDFDuet为骨架,删除lacI基因,将质粒pCDFDuet原有的T7启动子用温敏启动子回路cIts-pR-pL进行替换,插入N-乙酰葡萄糖胺-2差向异构酶编码基因age和N-乙酰神经氨酸合成酶编码基因neuB,得到质粒pCDFDuet-age-neuB;
将所述质粒pETDuet-gna1-glmS和质粒pCDFDuet-age-neuB导入宿主大肠杆菌,构建得到高产N-乙酰神经氨酸的重组大肠杆菌。
2.根据权利要求1所述的构建方法,其特征在于,所述的氨基葡萄糖-6-磷酸乙酰基转移酶编码基因gna1来源于Saccharomyces cerevisiae并经大肠杆菌密码子优化,其核苷酸序列如SEQ ID No.2所示;
所述果糖-6-磷酸氨基转移酶编码基因glmS来源于大肠杆菌K-12,其核苷酸序列如SEQID No.3所示。
3.根据权利要求1所述的构建方法,其特征在于,所述N-乙酰葡萄糖胺-2差向异构酶编码基因age来源于Synechocystis sp.PCC 6803并经大肠杆菌密码子优化,其核苷酸序列如SEQ ID No.5所示;
所述N-乙酰神经氨酸合成酶编码基因neuB来源于大肠杆菌K1,其核苷酸序列如SEQ IDNo.6所示。
4.根据权利要求1所述的构建方法,其特征在于,所述宿主大肠杆菌为大肠杆菌K-12MG1655。
5.根据权利要求4所述的构建方法,其特征在于,将所述质粒pETDuet-gna1-glmS和质粒pCDFDuet-age-neuB导入大肠杆菌的过程为:将大肠杆菌K-12MG1655制备化学转化感受态细胞,将构建得到的质粒pETDuet-gna1-glmS和质粒pCDFDuet-age-neuB通过热激转化,得到的转化子经菌落PCR验证后保存备用,即为高产N-乙酰神经氨酸的重组大肠杆菌。
6.根据权利要求1所述的构建方法,其特征在于,所述温敏启动子回路cIts-pR-pL来源于质粒pBV220,其核苷酸序列如SEQ ID No.21所示。
7.权利要求1-6任一项所述方法构建的高产N-乙酰神经氨酸的重组大肠杆菌。
8.权利要求7所述重组大肠杆菌在生物合成N-乙酰神经氨酸中的应用。
9.一种N-乙酰神经氨酸的生物合成方法,其特征在于,
在32-34℃、200-220rpm下培养权利要求7所述的重组大肠杆菌10-14h得到种子液;
种子液以4%-6%的接种量转入发酵培养基,于32-34℃条件下发酵培养22-24h,当OD600=32-36时,提高发酵温度至38-42℃,继续发酵至66-72h,得到含N-乙酰神经氨酸的发酵液;所述发酵以葡萄糖为碳源。
10.根据权利要求9所述的N-乙酰神经氨酸的生物合成方法,其特征在于,发酵所得含N-乙酰神经氨酸的发酵液先经陶瓷膜去除菌体细胞和不溶性杂质;再经加热搅拌过滤去除不溶性蛋白沉淀;再通过1000D有机膜去除小分子杂质,并收集滤液;
滤液继续经活性炭脱色得脱色液;将脱色液用阴离子树脂吸附,并用甲酸溶液解析,得解析液;将解析液浓缩;向浓缩液中加入乙酸,并置于2~8℃冷却结晶;将结晶液进行抽滤,用乙酸淋洗后干燥,得N-乙酰神经氨酸成品。
CN202410313729.8A 2024-03-19 2024-03-19 一种n-乙酰神经氨酸的生物合成方法 Pending CN118166010A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202410313729.8A CN118166010A (zh) 2024-03-19 2024-03-19 一种n-乙酰神经氨酸的生物合成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202410313729.8A CN118166010A (zh) 2024-03-19 2024-03-19 一种n-乙酰神经氨酸的生物合成方法

Publications (1)

Publication Number Publication Date
CN118166010A true CN118166010A (zh) 2024-06-11

Family

ID=91346655

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202410313729.8A Pending CN118166010A (zh) 2024-03-19 2024-03-19 一种n-乙酰神经氨酸的生物合成方法

Country Status (1)

Country Link
CN (1) CN118166010A (zh)

Similar Documents

Publication Publication Date Title
CN107267576B (zh) 微生物发酵生产n-乙酰-d-氨基葡萄糖和/或d-氨基葡萄糖盐的方法
CN110195036B (zh) 一种高产乙酰氨基葡萄糖的重组谷氨酸棒杆菌及其应用
US20230265411A1 (en) Strain Producing D-allulose 3-epimerase and Application thereof
CN112852796A (zh) 一种纤维二糖差向异构酶突变体及其在制备乳果糖中的应用
CN116333956A (zh) 一种谷氨酸棒状杆菌及采用谷氨酸棒状杆菌发酵生产l-缬氨酸的方法
CN116064345A (zh) 高效生产岩藻糖基乳糖的无抗基因工程菌及其应用
CN114717237B (zh) 一种ep6启动子与其相关生物材料及应用
CN118166010A (zh) 一种n-乙酰神经氨酸的生物合成方法
CN114107158B (zh) 一种高产高纯度异麦芽酮糖的重组谷氨酸棒杆菌及其应用
CN105779522A (zh) 一种微生物酶转化法生产l-4-羟基异亮氨酸的方法
CN116769808A (zh) 一种专一生产2′-岩藻糖基乳糖的菌株及应用
CN113234108B (zh) 一种提高混合糖液中d-阿洛酮糖占比的方法及其应用
CN113957073B (zh) 一种tkt基因启动子突变体及其在生产L-赖氨酸中的应用
CN111363018B (zh) 重组菌株及其在l-色氨酸制备中的应用
CN113832090B (zh) 一种高产维生素k2的重组纳豆枯草芽孢杆菌,制备方法和用途
CN113957065B (zh) 一种高转化率的蔗糖异构酶及其应用
CN116286575B (zh) 一种利用枯草芽孢杆菌高效表达生淀粉α-淀粉酶的方法
CN114891712B (zh) 一种提高n-乙酰神经氨酸产量的重组大肠杆菌
CN118222649A (zh) Ncg11859蛋白及其突变体蛋白在促进L-赖氨酸合成中的应用
CN116042684B (zh) 大肠杆菌及其在催化合成阿洛酮糖中的应用
CN113897322B (zh) 一种3-甲基-4-硝基苯甲酸的工程菌及其制备方法
CN114874967B (zh) 一种产n-乙酰神经氨酸的重组大肠杆菌及其构建方法
CN118147035A (zh) 重组微生物及其在制备l-赖氨酸中的应用
CN117904215A (zh) 一种生产酪醇的方法及其工程菌株和应用
CN115786219A (zh) 一种高产四氢嘧啶的重组谷氨酸棒杆菌及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination