CN117602950A - 一种柔性金属化陶瓷纳米纤维叉指电极的制备方法 - Google Patents

一种柔性金属化陶瓷纳米纤维叉指电极的制备方法 Download PDF

Info

Publication number
CN117602950A
CN117602950A CN202311575862.2A CN202311575862A CN117602950A CN 117602950 A CN117602950 A CN 117602950A CN 202311575862 A CN202311575862 A CN 202311575862A CN 117602950 A CN117602950 A CN 117602950A
Authority
CN
China
Prior art keywords
flexible
ceramic nanofiber
interdigital electrode
preparing
membrane material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202311575862.2A
Other languages
English (en)
Other versions
CN117602950B (zh
Inventor
郭永诗
闫建华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Donghua University
Original Assignee
Donghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Donghua University filed Critical Donghua University
Priority to CN202311575862.2A priority Critical patent/CN117602950B/zh
Publication of CN117602950A publication Critical patent/CN117602950A/zh
Application granted granted Critical
Publication of CN117602950B publication Critical patent/CN117602950B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62227Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
    • C04B35/62231Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on oxide ceramics
    • C04B35/6224Fibres based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62218Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic films, e.g. by using temporary supports
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/89Coating or impregnation for obtaining at least two superposed coatings having different compositions
    • C04B41/90Coating or impregnation for obtaining at least two superposed coatings having different compositions at least one coating being a metal
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Textile Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Fibers (AREA)

Abstract

本发明公开了一种柔性金属化陶瓷纳米纤维叉指电极的制备方法,包括以下步骤:S1、制备柔性杂化陶瓷纳米纤维膜材料:首先使用高分子聚合物为纺丝模板,制备有机‑无机溶胶纺丝液;再通过静电纺丝技术将有机‑无机溶胶纺丝液制备成柔性杂化陶瓷纳米纤维膜材料;S2、将柔性杂化陶瓷纳米纤维膜材料放置在马弗炉中进行分段式高温煅烧,获得纯柔性陶瓷纳米纤维膜材料;S3、通过化学沉积和喷墨打印技术在纯柔性陶瓷纳米纤维膜材料上打印金属图案,获得柔性金属化陶瓷纳米纤维叉指电极。本发明采用上述柔性金属化陶瓷纳米纤维叉指电极的制备方法,制备的柔性陶瓷纳米纤维膜材料和金属纳米颗粒复合,具有优异的机械性能、热稳定性和导电性。

Description

一种柔性金属化陶瓷纳米纤维叉指电极的制备方法
技术领域
本发明涉及柔性金属化陶瓷纳米纤维制备技术领域,尤其涉及一种柔性金属化陶瓷纳米纤维叉指电极的制备方法。
背景技术
陶瓷作为一种无机化合物,具有高熔点、耐高温性、轻质、耐磨性等优异性能,在工业、医疗和军事等领域广泛应用。由于陶瓷具有卓越的高温稳定性、抗氧化性和耐腐蚀性能,通常在工业领域中作为隔热耐火材料用作炉衬和隔热屏等;在军事和航天等高端领域中被广泛用作涂层材料和轻质耐火材料,例如用作航天飞机外壳的隔热层、火箭和导弹雷达的保护罩等,上述应用要求材料在极端条件下维持其稳定性和性能。
同时可知,陶瓷纤维由于具有大的长径比和连续性等优势,能够在受力的情况下应力沿轴向扩散,避免应力集中导致脆断,有望承受较大的外部应力,从而显著提高陶瓷材料的柔韧性。目前制备陶瓷纤维的方法包括离心法、干法纺丝、静电纺丝等技术。其中,静电纺丝技术可以制备纳米尺寸的陶瓷纳米纤维材料,基于尺寸效应可以进一步提高陶瓷纤维材料的强度、韧性和柔性,此外这种技术具有工艺简单、普适性强和能耗低等优势,在规模化生产中具有明显的优势,已经成为陶瓷纳米纤维制备的主要方法。
陶瓷金属化是在陶瓷表面涂覆一层金属涂层的过程,以赋予陶瓷材料金属的导电性和其他性质的一种技术,能够扩展陶瓷材料在电子、电器和其他领域的广泛应用。目前,陶瓷金属化的策略有:热喷涂、电镀、磁控溅射和化学沉积等。其中,化学沉积是以金属离子还原成金属,在材料表面形成连续的金属纳米颗粒或薄膜。
由于金属和陶瓷材料的热膨胀系数差异和硬度匹配的问题,使得制备的陶瓷金属化材料稳定性较低。此外,金属易在高温过程中氧化导致导电性能失效。
发明内容
为解决上述问题,本发明提供一种柔性金属化陶瓷纳米纤维叉指电极的制备方法,制备的柔性陶瓷纳米纤维膜材料和金属纳米颗粒复合,解决了异相材料的刚度不匹配问题,增加了两者的结合力,特别是在大形变的情况下,解决了金属和陶瓷材料因为刚度不匹配导致的脱落分离的问题。此外,通过化学沉积技术和喷墨打印技术实现金属化陶瓷和图案金属化,制备的柔性陶瓷基叉指电极,具有优异的机械性能、热稳定性和导电性。
为实现上述目的,本发明提供了一种柔性金属化陶瓷纳米纤维叉指电极的制备方法,包括以下步骤:
S1、制备柔性杂化陶瓷纳米纤维膜材料:
首先使用高分子聚合物为纺丝模板,制备有机-无机溶胶纺丝液;再通过静电纺丝技术将有机-无机溶胶纺丝液制备成柔性杂化陶瓷纳米纤维膜材料;
S2、将柔性杂化陶瓷纳米纤维膜材料放置在马弗炉中进行分段式高温煅烧,获得纯柔性陶瓷纳米纤维膜材料;
S3、通过化学沉积和喷墨打印技术在纯柔性陶瓷纳米纤维膜材料上打印金属图案,获得柔性金属化陶瓷纳米纤维叉指电极。
优选的,步骤S3后还包括S4、将柔性金属化陶瓷纳米纤维叉指电极进行高温预处理,以提高耐高温性能。
优选的,步骤S1所述的高分子聚合物包括聚环氧乙烷、聚乙烯醇、聚乙烯醇缩丁醛、聚乙烯吡咯烷酮中的一种及其任意组合;且高分子聚合物占有机-无机溶胶纺丝液的5~20wt%。
优选的,步骤S1所述的有机-无机溶胶纺丝液包括无机溶胶和有机溶胶;
无机溶胶包括硅源、钛源、钡源、铝源中的一种及其任意组合,其中无机溶胶占有机-无机溶胶纺丝液的20~50wt%。
优选的,步骤S1所述的静电纺丝参数设置如下:纺丝速度为0.5~3ml/h,收集速度为100~300r/min,电压为15~25kV,接收距离为10~25cm,湿度为20~50%,温度为25℃。
优选的,步骤S2所述的分段式高温煅烧过程为:首先从室温以5℃/min升温至200℃,然后以2~5℃升温至600~800℃,保温60~120min,自然降温。
步骤S3具体包括以下步骤:
S31、基于喷墨打印技术的金属图案化:
首先设计叉指电极图案,再导入到喷墨打印机中执行设计的叉指电极图案,其中以0.003mol/L氯钯酸铵催化剂和20wt%聚乙二醇混合水溶液为喷墨打印墨水;
S32、基于化学沉积技术的金属化陶瓷:
首先使用0.5~5wt%聚乙烯亚胺和多巴胺的0.01mol/L tris水溶液表面改性纯柔性陶瓷纳米纤维膜材料;取出改性后纯柔性陶瓷纳米纤维膜材料浸泡在0.003mol/L氯钯酸铵水溶液的催化剂中,放置在黑暗环境中30min进行反应;再依次置于铜离子和金离子的化学镀溶液中进行离子螯合和还原反应,在聚合物层上生成连续的金属纳米颗粒,获得柔性金属化陶瓷纳米纤维膜基叉指电极。
优选的,在步骤S31中,聚乙烯亚胺和多巴胺的质量比为1:1,改性处理时间为24h。
优选的,步骤S4所述的高温预处理过程为:将柔性金属化陶瓷纳米纤维叉指电极放置在马弗炉中进行高温煅烧,从室温以5℃/min升温至200~1000℃,保温60~120min,自然降温。
本发明具有以下有益效果:
1、通过静电纺丝技术制备柔性陶瓷纳米纤维,纳米尺寸效应可以使材料具有大的长径比、孔隙率和高力学模量,解决陶瓷材料脆性大和不易弯曲的问题。
2、使用化学沉积技术在陶瓷表面上原位制备金属纳米颗粒,可以使每根纤维表面都均匀且原位的沉积上金属材料,赋予陶瓷材料导电性。且柔性陶瓷与本征具有延展特性的金属材料复合,金属和陶瓷材料的硬度匹配,使两者之间的界面结合更牢固,避免两者材料在弯曲时的断裂破坏。
3、基于喷墨打印技术可以实现金属图案化,制备柔性陶瓷基叉指电极,从而能够应用在传感、电子和电器等领用中。
下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。
附图说明
图1为本发明所述的一种柔性金属化陶瓷纳米纤维叉指电极的制备方法的流程图;
图2为经本发明所述的一种柔性金属化陶瓷纳米纤维叉指电极的制备方法制备的柔性陶瓷纤维膜的外形图;
图3为经本发明所述的一种柔性金属化陶瓷纳米纤维叉指电极的制备方法制备的柔性金属化陶瓷纳米纤维叉指电极的外形图。
具体实施方式
为了使本发明实施例公开的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明实施例进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本发明实施例,并不用于限定本发明实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。
需要说明的是,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或服务器不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
如图1所示,一种柔性金属化陶瓷纳米纤维叉指电极的制备方法,包括以下步骤:
S1、制备柔性杂化陶瓷纳米纤维膜材料:
首先使用高分子聚合物为纺丝模板,制备有机-无机溶胶纺丝液;再通过静电纺丝技术将有机-无机溶胶纺丝液制备成如图2所示的柔性杂化陶瓷纳米纤维膜材料;
优选的,步骤S1所述的高分子聚合物包括聚环氧乙烷、聚乙烯醇、聚乙烯醇缩丁醛、聚乙烯吡咯烷酮中的一种及其任意组合;且高分子聚合物占有机-无机溶胶纺丝液的5~20wt%。步骤S1所述的有机-无机溶胶纺丝液包括无机溶胶和有机溶胶;无机溶胶包括硅源、钛源、钡源、铝源中的一种及其任意组合,其中无机溶胶占有机-无机溶胶纺丝液的20~50wt%。步骤S1所述的静电纺丝参数设置如下:纺丝速度为0.5~3ml/h,收集速度为100~300r/min,电压为15~25kV,接收距离为10~25cm,湿度为20~50%,温度为25℃。
S2、将柔性杂化陶瓷纳米纤维膜材料放置在马弗炉中进行分段式高温煅烧,获得纯柔性陶瓷纳米纤维膜材料;
优选的,步骤S2所述的分段式高温煅烧过程为:首先从室温以5℃/min升温至200℃,然后以2~5℃升温至600~800℃,保温60~120min,自然降温。
S3、通过化学沉积和喷墨打印技术在纯柔性陶瓷纳米纤维膜材料上打印金属图案,获得柔性金属化陶瓷纳米纤维叉指电极。
步骤S3具体包括以下步骤:
S31、基于喷墨打印技术的金属图案化:
首先设计叉指电极图案,再导入到喷墨打印机中执行设计的叉指电极图案,其中以0.003mol/L氯钯酸铵催化剂和20wt%聚乙二醇混合水溶液为喷墨打印墨水;
优选的,在步骤S31中,聚乙烯亚胺和多巴胺的质量比为1:1,改性处理时间为24h。
S32、基于化学沉积技术的金属化陶瓷:
首先使用0.5~5wt%聚乙烯亚胺和多巴胺的0.01mol/L tris(三羟甲基氨基甲烷)水溶液表面改性纯柔性陶瓷纳米纤维膜材料;取出改性后纯柔性陶瓷纳米纤维膜材料浸泡在0.003mol/L氯钯酸铵水溶液的催化剂中,放置在黑暗环境中30min进行反应;再依次置于铜离子和金离子的化学镀溶液中进行离子螯合和还原反应,在聚合物层上生成连续的金属纳米颗粒,获得柔性金属化陶瓷纳米纤维膜基叉指电极。
优选的,步骤S3后还包括S4、将柔性金属化陶瓷纳米纤维叉指电极进行高温预处理,以提高耐高温性能,最终获得如图3所示的耐高温的柔性金属化陶瓷纳米纤维叉指电极。
优选的,步骤S4所述的高温预处理过程为:将柔性金属化陶瓷纳米纤维叉指电极放置在马弗炉中进行高温煅烧,从室温以5℃/min升温至200~1000℃,保温60~120min,自然降温。
为解释公开本发明,公开了以下实施例:
实施例1所述的一种柔性金属化陶瓷纳米纤维叉指电极的制备方法,包括以下步骤:
第一步、首先选用正硅酸乙酯为硅源,水为溶剂,磷酸为催化剂(正硅酸乙酯:水:磷酸的质量比为1:1:0.1),并依次加入反应瓶中,然后对其进行密封,室温下快速搅拌8h,制备二氧化硅溶胶。在此过程中由磷酸提供的酸性环境能够加快TEOS(四乙氧基硅烷)的水解、缩聚反应,生成齐聚物并进一步缩聚形成均匀的二氧化硅溶胶;
然后配置浓度为15wt%的聚环氧乙烷水溶液,将瓶口密封后,水浴加热80℃搅拌5h后即制备完成,得到聚环氧乙烷水溶液;
再将配置好的二氧化硅溶胶和聚环氧乙烷水溶液按照1:1混合均匀4h,得到溶胶纺丝液;
而后设置静电纺丝参数:纺丝速度为1ml/h,收集速度为100r/min,电压为17kV,接收距离为18cm,湿度为40%,温度为25℃;
最后按照设定的静电纺丝参数,将溶胶纺丝液挤出得到柔性杂化陶瓷纳米纤维膜材料。
第二步、将柔性杂化陶瓷纳米纤维膜材料放置在马弗炉中进行分段式高温煅烧,从室温以5℃/min升温至600℃,保温60min,自然降温,获得纯柔性陶瓷纳米纤维膜材料;
第三步、基于喷墨打印技术,在软件中设计叉指电极图案,然后导入到喷墨打印机中执行程序绘制涉及的叉指电极图案,其中以0.003mol/L氯钯酸铵催化剂和20wt%聚乙二醇混合水溶液为喷墨打印墨水;
基于化学沉积技术,首先使用0.5~5wt%聚乙烯亚胺和多巴胺的0.01mol/L tris水溶液表面改性柔性陶瓷纳米纤维膜材料(聚乙烯亚胺和多巴胺的质量比为1:1),处理时间为24h;其次取出改性后纯柔性陶瓷纳米纤维膜材料浸泡在0.003mol/L氯钯酸铵水溶液的催化剂中,放置在黑暗环境中30min进行反应;陶瓷纳米纤维膜材料依次放置在五水合硫酸铜和氯金酸钾的化学镀溶液中进行离子螯合和还原反应,时间分别为20min和120min,在聚合物层上生成连续的金属铜和金纳米颗粒,以获得柔性金属化陶瓷纳米纤维膜基叉指电极;
第四步、将柔性金属化陶瓷纳米纤维膜基叉指电极进行高温预处理:将柔性金属化陶瓷纳米纤维叉指电极放置在马弗炉中进行高温煅烧,从室温以5℃/min升温至60℃,保温60min,自然降温,最终获得耐高温的柔性金属化陶瓷纳米纤维叉指电极。
实施例2所述的一种柔性金属化陶瓷纳米纤维叉指电极的制备方法,与实施例1的不同之处在于:陶瓷纳米纤维膜材料依次放置在五水合硫酸铜和氯金酸钾的化学镀溶液中进行离子螯合和还原反应,时间分别为60min和360min。
对比例1所述的一种柔性金属化陶瓷纳米纤维叉指电极的制备方法,与实施例1的不同之处在于:陶瓷纳米纤维膜材料依次放置在五水合硫酸铜和氯金酸钾的化学镀溶液中进行离子螯合和还原反应,时间分别为0min和120min。
对比例2所述的一种柔性金属化陶瓷纳米纤维叉指电极的制备方法,与实施例1的不同之处在于:陶瓷纳米纤维膜材料依次放置在五水合硫酸铜和氯金酸钾的化学镀溶液中进行离子螯合和还原反应,时间分别为20min和0min。
测试例
对实施例1、2和对比例1、2所制得的样品进行常温和高温下的电导率测试,其中使用四探针法测电导率。所得结果如表1所示。
表1实施例1、2和对比例1、2所得的二氧化硅纳米纤维纱线进行性能测试的结果
由表1可知,从实施例1和实施例2研究发现,经本发明所述的一种柔性金属化陶瓷纳米纤维叉指电极的制备方法所获得的叉指电极具有优异的热稳定性和导电性;从实施例1和对比例1研究发现,可实现化学沉积金在柔性陶瓷纳米纤维膜材料上;从实施例1和对比例2研究发现,在高温环境中表面没有金材料沉积只沉积铜金属纳米颗粒,导电性会消失,这是由于铜高温下易氧化。从而充分说明了本发明采用的依次在柔性陶瓷纳米纤维膜材料上镀铜和金的可行性。
因此,本发明采用上述柔性金属化陶瓷纳米纤维叉指电极的制备方法,制备的柔性陶瓷纳米纤维膜材料和金属纳米颗粒复合,具有优异的机械性能、热稳定性和导电性。
最后应说明的是:以上实施例仅用以说明本发明的技术方案而非对其进行限制,尽管参照较佳实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对本发明的技术方案进行修改或者等同替换,而这些修改或者等同替换亦不能使修改后的技术方案脱离本发明技术方案的精神和范围。

Claims (9)

1.一种柔性金属化陶瓷纳米纤维叉指电极的制备方法,其特征在于:包括以下步骤:
S1、制备柔性杂化陶瓷纳米纤维膜材料:
首先使用高分子聚合物为纺丝模板,制备有机-无机溶胶纺丝液;再通过静电纺丝技术将有机-无机溶胶纺丝液制备成柔性杂化陶瓷纳米纤维膜材料;
S2、将柔性杂化陶瓷纳米纤维膜材料放置在马弗炉中进行分段式高温煅烧,获得纯柔性陶瓷纳米纤维膜材料;
S3、通过化学沉积和喷墨打印技术在纯柔性陶瓷纳米纤维膜材料上打印金属图案,获得柔性金属化陶瓷纳米纤维叉指电极。
2.根据权利要求1所述的一种柔性金属化陶瓷纳米纤维叉指电极的制备方法,其特征在于:步骤S3后还包括S4、将柔性金属化陶瓷纳米纤维叉指电极进行高温预处理,以提高耐高温性能。
3.根据权利要求1所述的一种柔性金属化陶瓷纳米纤维叉指电极的制备方法,其特征在于:步骤S1所述的高分子聚合物包括聚环氧乙烷、聚乙烯醇、聚乙烯醇缩丁醛、聚乙烯吡咯烷酮中的一种及其任意组合;且高分子聚合物占有机-无机溶胶纺丝液的5~20wt%。
4.根据权利要求1所述的一种柔性金属化陶瓷纳米纤维叉指电极的制备方法,其特征在于:步骤S1所述的有机-无机溶胶纺丝液包括无机溶胶和有机溶胶;
无机溶胶包括硅源、钛源、钡源、铝源中的一种及其任意组合,其中无机溶胶占有机-无机溶胶纺丝液的20~50wt%。
5.根据权利要求1所述的一种柔性金属化陶瓷纳米纤维叉指电极的制备方法,其特征在于:步骤S1所述的静电纺丝参数设置如下:纺丝速度为0.5~3ml/h,收集速度为100~300r/min,电压为15~25kV,接收距离为10~25cm,湿度为20~50%,温度为25℃。
6.根据权利要求1所述的一种柔性金属化陶瓷纳米纤维叉指电极的制备方法,其特征在于:步骤S2所述的分段式高温煅烧过程为:首先从室温以5℃/min升温至200℃,然后以2~5℃升温至600~800℃,保温60~120min,自然降温。
7.根据权利要求1所述的一种柔性金属化陶瓷纳米纤维叉指电极的制备方法,其特征在于:步骤S3具体包括以下步骤:
S31、基于喷墨打印技术的金属图案化:
首先设计叉指电极图案,再导入到喷墨打印机中执行设计的叉指电极图案,其中以0.003mol/L氯钯酸铵催化剂和20wt%聚乙二醇混合水溶液为喷墨打印墨水;
S32、基于化学沉积技术的金属化陶瓷:
首先使用0.5~5wt%聚乙烯亚胺和多巴胺的0.01mol/L tris水溶液表面改性纯柔性陶瓷纳米纤维膜材料;取出改性后纯柔性陶瓷纳米纤维膜材料浸泡在0.003mol/L氯钯酸铵水溶液的催化剂中,放置在黑暗环境中30min进行反应;再依次置于铜离子和金离子的化学镀溶液中进行离子螯合和还原反应,在聚合物层上生成连续的金属纳米颗粒,获得柔性金属化陶瓷纳米纤维膜基叉指电极。
8.根据权利要求7所述的一种柔性金属化陶瓷纳米纤维叉指电极的制备方法,其特征在于:在步骤S31中,聚乙烯亚胺和多巴胺的质量比为1:1,改性处理时间为24h。
9.根据权利要求2所述的一种柔性金属化陶瓷纳米纤维叉指电极的制备方法,其特征在于:步骤S4所述的高温预处理过程为:将柔性金属化陶瓷纳米纤维叉指电极放置在马弗炉中进行高温煅烧,从室温以5℃/min升温至200~1000℃,保温60~120min,自然降温。
CN202311575862.2A 2023-11-23 2023-11-23 一种柔性金属化陶瓷纳米纤维叉指电极的制备方法 Active CN117602950B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311575862.2A CN117602950B (zh) 2023-11-23 2023-11-23 一种柔性金属化陶瓷纳米纤维叉指电极的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311575862.2A CN117602950B (zh) 2023-11-23 2023-11-23 一种柔性金属化陶瓷纳米纤维叉指电极的制备方法

Publications (2)

Publication Number Publication Date
CN117602950A true CN117602950A (zh) 2024-02-27
CN117602950B CN117602950B (zh) 2024-05-14

Family

ID=89957339

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311575862.2A Active CN117602950B (zh) 2023-11-23 2023-11-23 一种柔性金属化陶瓷纳米纤维叉指电极的制备方法

Country Status (1)

Country Link
CN (1) CN117602950B (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100237037A1 (en) * 2009-03-19 2010-09-23 Holy Stone Enterprise Co., Ltd. Ceramic substrate metalization process
CN105296977A (zh) * 2015-10-29 2016-02-03 陕西师范大学 一种基于溶菌酶二维纳米薄膜进行金属无电沉积的方法
KR20180015860A (ko) * 2016-08-04 2018-02-14 연세대학교 산학협력단 고분자 필름을 이용한 유연 전극의 제조방법 및 이에 의해 제조된 유연전극
KR20190118430A (ko) * 2018-04-10 2019-10-18 서울대학교산학협력단 생체 재료의 패터닝과 이의 전사를 통한 인공 혈관 내벽의 생체 특성 증진
CN110512354A (zh) * 2019-08-15 2019-11-29 东华大学 一种柔性钛酸钡陶瓷纳米纤维膜的制备方法
CN110970720A (zh) * 2019-12-03 2020-04-07 浙江清华柔性电子技术研究院 耐高温可调频柔性天线及其制作方法
CN113668139A (zh) * 2021-09-17 2021-11-19 厦门大学 一种柔性耐高温SiO2陶瓷纳米纤维膜的制备方法
CN114758844A (zh) * 2022-04-29 2022-07-15 厦门大学 一种基于液态金属的柔性导线及其制造方法
CN115020641A (zh) * 2022-05-11 2022-09-06 五邑大学 一种锂金属负极片及其制备方法和应用

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100237037A1 (en) * 2009-03-19 2010-09-23 Holy Stone Enterprise Co., Ltd. Ceramic substrate metalization process
CN105296977A (zh) * 2015-10-29 2016-02-03 陕西师范大学 一种基于溶菌酶二维纳米薄膜进行金属无电沉积的方法
KR20180015860A (ko) * 2016-08-04 2018-02-14 연세대학교 산학협력단 고분자 필름을 이용한 유연 전극의 제조방법 및 이에 의해 제조된 유연전극
KR20190118430A (ko) * 2018-04-10 2019-10-18 서울대학교산학협력단 생체 재료의 패터닝과 이의 전사를 통한 인공 혈관 내벽의 생체 특성 증진
CN110512354A (zh) * 2019-08-15 2019-11-29 东华大学 一种柔性钛酸钡陶瓷纳米纤维膜的制备方法
CN110970720A (zh) * 2019-12-03 2020-04-07 浙江清华柔性电子技术研究院 耐高温可调频柔性天线及其制作方法
CN113668139A (zh) * 2021-09-17 2021-11-19 厦门大学 一种柔性耐高温SiO2陶瓷纳米纤维膜的制备方法
CN114758844A (zh) * 2022-04-29 2022-07-15 厦门大学 一种基于液态金属的柔性导线及其制造方法
CN115020641A (zh) * 2022-05-11 2022-09-06 五邑大学 一种锂金属负极片及其制备方法和应用

Also Published As

Publication number Publication date
CN117602950B (zh) 2024-05-14

Similar Documents

Publication Publication Date Title
CN110820349B (zh) 多巴胺-聚乙烯亚胺-纳米颗粒联合改性聚四氟乙烯-芳纶混纺织物的方法
Yu et al. Preparation of electroless silver plating on aramid fiber with good conductivity and adhesion strength
EP2543650A1 (en) Method for manufacturing high-density fiber reinforced ceramic composite materials
WO2017035916A1 (zh) 一种增强型金属陶瓷耐磨复合材料及其制备方法
CN111825471B (zh) 一种电泳沉积制备连续碳纤维增韧超高温陶瓷基复合材料的方法
CN111155239B (zh) 一种静电纺聚酰亚胺/MXene电磁屏蔽膜的制备方法
CN105734720B (zh) 一种提高碳化硅纤维强度和模量的制备方法
JP2009523193A (ja) ナノファイバー材料の処理方法およびナノファイバー材料で作られる組成物
CN107354752B (zh) 一种表面覆银f-12导电纤维及其制备方法
WO2020222013A1 (en) Ceramic composite
CN114525048B (zh) 稀土增强氧化锆高温抗氧化涂料、涂层及其制备方法
CN108929049A (zh) 一种通过表面修饰提升玄武岩纤维耐高温性能的方法
CN108532293B (zh) 一种调节糖溶液pH制备碳纤维表面碳涂层的方法
CN117602950B (zh) 一种柔性金属化陶瓷纳米纤维叉指电极的制备方法
CN109281159B (zh) 一种具有导热各向异性的镀铜碳纤维及其制备方法
CN103898633A (zh) 含第ⅳb族金属的硅氧碳高温陶瓷纤维及其制备方法
CN101725037B (zh) 一种纤维材料的表面改性方法
CN109468846B (zh) 一种芳纶纤维表面接枝处理方法
CN101922065B (zh) 聚丙烯腈基碳纤维原丝的预氧化方法
KR100915394B1 (ko) 전기전도도 및 내마모성이 우수한 소재 및 그 제조방법
Liu et al. Preparation of silicon-nitride ceramic fibers with hafnium compounds loaded on the surface and the high temperature properties
CN102276280A (zh) 基于玻璃碳和碳添加物的复合薄板及其制备方法
CN108914554A (zh) 一种新型环保耐火玄武岩纤维布
CN109133653A (zh) 一种耐腐蚀高强度玻璃纤维材料
KR102537764B1 (ko) 내열수지 조성물 및 그 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant