CN117517753B - 采用电阻采样且兼容p、n型功率管的电流采样电路 - Google Patents

采用电阻采样且兼容p、n型功率管的电流采样电路 Download PDF

Info

Publication number
CN117517753B
CN117517753B CN202410005161.3A CN202410005161A CN117517753B CN 117517753 B CN117517753 B CN 117517753B CN 202410005161 A CN202410005161 A CN 202410005161A CN 117517753 B CN117517753 B CN 117517753B
Authority
CN
China
Prior art keywords
transistor
sampling
tube
resistor
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202410005161.3A
Other languages
English (en)
Other versions
CN117517753A (zh
Inventor
林潇垄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Dior Microelectronics Co ltd
Original Assignee
Jiangsu Dior Microelectronics Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Dior Microelectronics Co ltd filed Critical Jiangsu Dior Microelectronics Co ltd
Priority to CN202410005161.3A priority Critical patent/CN117517753B/zh
Publication of CN117517753A publication Critical patent/CN117517753A/zh
Application granted granted Critical
Publication of CN117517753B publication Critical patent/CN117517753B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0092Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring current only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/20Modifications of basic electric elements for use in electric measuring instruments; Structural combinations of such elements with such instruments
    • G01R1/203Resistors used for electric measuring, e.g. decade resistors standards, resistors for comparators, series resistors, shunts

Abstract

本发明公开了一种采用电阻采样且兼容P、N型功率管的电流采样电路,包含功率管M1、比例管M2、采样电阻R1、采样电阻R2、采样电阻R3、电阻R4、晶体管M3、晶体管M4、晶体管M5、晶体管M6、晶体管M7、晶体管M8、晶体管M9、晶体管M10和晶体管M11。本发明采样精度对钳位运放的Vos不敏感,且采样精度与输出电流无关,具有很好的兼容性。

Description

采用电阻采样且兼容P、N型功率管的电流采样电路
技术领域
本发明涉及一种电流采样电路,特别是一种采用电阻采样且兼容P、N型功率管的电流采样电路,属于半导体集成电路技术领域。
背景技术
随着科技的不断发展和进步,许多便携式电子产品对功耗的要求越来越高,例如智能手机、相机等,因此对于输出电流的检测精度要求越来越高。
如图3所示,现有技术的电流采样电路包含功率管M1、采样管M14、调整管M15和运算放大器,功率管M1和采样管M14的栅极连接,用于提供相同的栅极电压,功率管M1和采样管M14的漏端与电源电压VS连接,用于接收输入电压;功率管M1的源端提供输出电流IOUT,采样管M14的源端提供与IOUT成比例的检测电流ISEN,运算放大器和调整管M15构成负反馈,钳位采样管M14的源端电压和功率管M1的源端电压。
现有的电流检测电路具有以下的不足:运算放大器的输入失调电压随着电源电压、输入共模电压、工艺、温度等外界环境的变化而变化,从而引起钳位误差,进而影响电流检测精度。工作在线性区的晶体管的I-V特性为
其中,I表示晶体管漏端至源端的沟道电流,VDS表示晶体管漏源电压,VGS表示晶体管栅源电压,VT表示晶体管阈值电压;
其中,Cox表示单位面积栅电容;un表示电子迁移率;W/L表示晶体管宽长比;
假设运算放大器的输入失调电压为Vos,功率管M1宽长比是采样管M14宽长比的K倍,则功率管M1的电流IOUT以及采样管M14的电流ISEN可以表示为
其中β1、β2分别是功率管M1和采样管M14的β值;
因此,采样电流可以表示为
由于Vos2相较于其他项小很多,可忽略不计,化简得
由于工作在线性区的功率管VGS-VT往往比VDS大很多(至少大10倍),因此可继续化简为
结果显示,采样电流ISEN的精度与Vos/VDS相关,该比值越大,精度越差。工作在线性区的功率管往往导通电阻较小,导致VDS较小,这将恶化采样电流精度;另外,VDS与功率管的输出电流也相关,具体为VDS = VIN - IOUT*Ron,这将导致不同的输出电流下引起不同的采样误差。
发明内容
本发明所要解决的技术问题是提供一种采用电阻采样且兼容P、N型功率管的电流采样电路,采样精度不受输出电流的影响。
为解决上述技术问题,本发明所采用的技术方案是:
一种采用电阻采样且兼容P、N型功率管的电流采样电路,包含功率管M1、比例管M2、采样电阻R1、采样电阻R2、采样电阻R3、电阻R4、晶体管M3、晶体管M4、晶体管M5、晶体管M6、晶体管M7、晶体管M8、晶体管M9、晶体管M10和晶体管M11,功率管M1的漏极与采样电阻R1的一端和采样电阻R2的一端连接并连接电源VIN,采样电阻R1的另一端与比例管M2的漏极和采样电阻R3的一端连接,功率管M1的栅极与比例管M2的栅极连接,功率管M1的源极与比例管M2的源极连接并输出信号VOUT,采样电阻R2的另一端与晶体管M3的源极和晶体管M4的源极连接,采样电阻R3的另一端与晶体管M5的源极和晶体管M10的漏极连接,晶体管M4的栅极与晶体管M5的栅极、晶体管M4的漏极和晶体管M6的漏极连接,晶体管M5的漏极与晶体管M7的漏极和晶体管M3的栅极连接,晶体管M3的漏极与电阻R4的一端连接,电阻R4的另一端输出采样电流ISEN,晶体管M6的栅极与晶体管M7的栅极和晶体管M1O的栅极连接并连接第一偏置电压,晶体管M6的源极与晶体管M8的漏极连接,晶体管M7的源极与晶体管M9的漏极连接,晶体管M10的源极与晶体管M11的漏极连接,晶体管M8的栅极与晶体管M9的栅极和晶体管M11的栅极连接并连接第二偏置电压,晶体管M8的源极与晶体管M9的源极和晶体管M11的源极连接并接地。
进一步地,还包含偏置电路。
进一步地,所述偏置电路包含电流源IB、电阻R5、晶体管M12和晶体管M13,电流源IB的一端连接电源VCC,电流源IB的另一端与电阻R5的一端和晶体管M12的栅极连接并输出第一偏置电压,电阻R5的另一端与晶体管M12的漏极和晶体管M13的栅极连接并输出第二偏置电压,晶体管M12的源极与晶体管M13的漏极连接,晶体管M13的源极接地。
进一步地,所述晶体管M12和晶体管M13为N型MOS管。
进一步地,所述采样电阻R2的另一端为节点VA,采样电阻R3的另一端为节点VB。
进一步地,所述晶体管M3、晶体管M4和晶体管M5为P型MOS管,晶体管M6、晶体管M7、晶体管M8、晶体管M9、晶体管M10和晶体管M11为N型MOS管。
进一步地,所述功率管M1和比例管M2为N型MOS管或P型MOS管。
进一步地,所述功率管M1和比例管M2为N型MOS管,功率管M1的栅极和比例管M2的栅极与电荷泵的一端连接,电荷泵的另一端连接电源VIN。
进一步地,所述功率管M1和比例管M2为P型MOS管,功率管M1的栅极和比例管M2的栅极接地。
本发明与现有技术相比,具有以下优点和效果:本发明提供了一种采用电阻采样且兼容P、N型功率管的电流采样电路,采样精度对钳位运放的Vos不敏感,且采样精度与输出电流无关,具有很好的兼容性。
附图说明
图1是本发明的一种采用电阻采样且兼容P、N型功率管的电流采样电路的实施例1的示意图。
图2是本发明的一种采用电阻采样且兼容P、N型功率管的电流采样电路的实施例2的示意图。
图3是现有技术的采样电路的示意图。
具体实施方式
为了详细阐述本发明为达到预定技术目的而所采取的技术方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清晰、完整地描述,显然,所描述的实施例仅仅是本发明的部分实施例,而不是全部的实施例,并且,在不付出创造性劳动的前提下,本发明的实施例中的技术手段或技术特征可以替换,下面将参考附图并结合实施例来详细说明本发明。
如图1所示,本发明的一种采用电阻采样且兼容P、N型功率管的电流采样电路,包含功率管M1、比例管M2、采样电阻R1、采样电阻R2、采样电阻R3、电阻R4、晶体管M3、晶体管M4、晶体管M5、晶体管M6、晶体管M7、晶体管M8、晶体管M9、晶体管M10和晶体管M11。
功率管M1的漏极与采样电阻R1的一端和采样电阻R2的一端连接并连接电源VIN,采样电阻R1的另一端与比例管M2的漏极和采样电阻R3的一端连接,功率管M1的栅极与比例管M2的栅极连接,用于提供相同的栅极电压。功率管M1的源极与比例管M2的源极连接并输出信号VOUT以及电流IOUT。采样电阻R2的另一端与晶体管M3的源极和晶体管M4的源极连接,采样电阻R3的另一端与晶体管M5的源极和晶体管M10的漏极连接,晶体管M4的栅极与晶体管M5的栅极、晶体管M4的漏极和晶体管M6的漏极连接,晶体管M5的漏极与晶体管M7的漏极和晶体管M3的栅极连接,晶体管M3的漏极与电阻R4的一端连接,电阻R4的另一端输出采样电流ISEN,晶体管M6的栅极与晶体管M7的栅极和晶体管M1O的栅极连接并连接第一偏置电压,晶体管M6的源极与晶体管M8的漏极连接,晶体管M7的源极与晶体管M9的漏极连接,晶体管M10的源极与晶体管M11的漏极连接,晶体管M8的栅极与晶体管M9的栅极和晶体管M11的栅极连接并连接第二偏置电压,晶体管M8的源极与晶体管M9的源极和晶体管M11的源极连接并接地。
本发明的采用电阻采样且兼容P、N型功率管的电流采样电路还包含偏置电路。偏置电路包含电流源IB、电阻R5、晶体管M12和晶体管M13,电流源IB的一端连接电源VCC,电流源IB的另一端与电阻R5的一端和晶体管M12的栅极连接并输出第一偏置电压,电阻R5的另一端与晶体管M12的漏极和晶体管M13的栅极连接并输出第二偏置电压,晶体管M12的源极与晶体管M13的漏极连接,晶体管M13的源极接地。其中,晶体管M12和晶体管M13为N型MOS管。
采样电阻R2的另一端为节点VA,采样电阻R3的另一端为节点VB。晶体管M3、晶体管M4和晶体管M5为P型MOS管,晶体管M6、晶体管M7、晶体管M8、晶体管M9、晶体管M10和晶体管M11为N型MOS管。
晶体管M3、晶体管M4、晶体管M5、晶体管M6、晶体管M7、晶体管M8、晶体管M9和电阻R4构成负反馈,钳位节点VA和节点VB的电压。具体地,当节点VA电压高于节点VB电压时,晶体管M4栅端电压升高,晶体管M3栅端电压降低,从而降低M3源端电压(即节点VA电压),构成负反馈。
晶体管M10和晶体管M11构成电流源,提供可灵活配置采样电流ISET。
功率管M1和比例管M2为N型MOS管或P型MOS管。
如图1所示,功率管M1和比例管M2为N型MOS管,功率管M1的栅极和比例管M2的栅极与电荷泵的一端连接,电荷泵的另一端连接电源VIN。
如图2所示,功率管M1和比例管M2为P型MOS管,功率管M1的栅极和比例管M2的栅极接地。
采样电阻R1、采样电阻R2、采样电阻R3构成带电流采样网络,由于功率管M1的尺寸相比比例管M2大很多,因此导通阻抗比比例管小很多,比例系数K一般几千的数量级,因此输出电流可以近似认为全部从功率管M1经过。假设功率管M1导通阻抗为Ron,则比例管导通阻抗为K*Ron。功率管两端压降为IOUT*Ron。
假设晶体管M8和晶体管M9提供相同的偏置电流,即I1 = I2 = I,则
其中VA是节点VA的电压,VB是节点VB的电压,VIN是电源VIN的电压,ISEN是采样电流,R1、R2、R3分别是采样电阻R1、采样电阻R2、采样电阻R3的阻值;
假设节点VA和节点VB的失调电压为Vos,则由VA = VB + Vos可得
为方便设计,一般取R1 = R2 = R3=R(因为电阻的相对精度很高,因此此处误差可以忽略),因此
由于比例管尺寸较小,导致K*Ron很大,因此可通过设计使得K*Ron远大于R,同时保证Vos/R不引入较大误差,进而等效可得
通过设计可将配置电流ISET设置为0,可得一般的电流采样公式
相比传统的MOS管采样加运放钳位结构,其优势在于钳位电路的失调电压对采样电流的影响被衰减了R倍,通过合理的设计K和R,可以在PVT下均实现较高的采样精度,并且采样精度不受输出电流的影响。
本发明提供了一种采用电阻采样且兼容P、N型功率管的电流采样电路,采样精度对钳位运放的Vos不敏感,且采样精度与输出电流无关,具有很好的兼容性。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,当可利用上述揭示的技术内容做出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案内容,依据本发明的技术实质,在本发明的精神和原则之内,对以上实施例所作的任何简单的修改、等同替换与改进等,均仍属于本发明技术方案的保护范围之内。

Claims (9)

1.一种采用电阻采样且兼容P、N型功率管的电流采样电路,其特征在于:包含功率管M1、比例管M2、采样电阻R1、采样电阻R2、采样电阻R3、电阻R4、晶体管M3、晶体管M4、晶体管M5、晶体管M6、晶体管M7、晶体管M8、晶体管M9、晶体管M10和晶体管M11,功率管M1的漏极与采样电阻R1的一端和采样电阻R2的一端连接并连接电源VIN,采样电阻R1的另一端与比例管M2的漏极和采样电阻R3的一端连接,功率管M1的栅极与比例管M2的栅极连接,功率管M1的源极与比例管M2的源极连接并输出信号VOUT,采样电阻R2的另一端与晶体管M3的源极和晶体管M4的源极连接,采样电阻R3的另一端与晶体管M5的源极和晶体管M10的漏极连接,晶体管M4的栅极与晶体管M5的栅极、晶体管M4的漏极和晶体管M6的漏极连接,晶体管M5的漏极与晶体管M7的漏极和晶体管M3的栅极连接,晶体管M3的漏极与电阻R4的一端连接,电阻R4的另一端输出采样电流ISEN,晶体管M6的栅极与晶体管M7的栅极和晶体管M1O的栅极连接并连接第一偏置电压,晶体管M6的源极与晶体管M8的漏极连接,晶体管M7的源极与晶体管M9的漏极连接,晶体管M10的源极与晶体管M11的漏极连接,晶体管M8的栅极与晶体管M9的栅极和晶体管M11的栅极连接并连接第二偏置电压,晶体管M8的源极与晶体管M9的源极和晶体管M11的源极连接并接地。
2.根据权利要求1所述的一种采用电阻采样且兼容P、N型功率管的电流采样电路,其特征在于:还包含偏置电路。
3.根据权利要求2所述的一种采用电阻采样且兼容P、N型功率管的电流采样电路,其特征在于:所述偏置电路包含电流源IB、电阻R5、晶体管M12和晶体管M13,电流源IB的一端连接电源VCC,电流源IB的另一端与电阻R5的一端和晶体管M12的栅极连接并输出第一偏置电压,电阻R5的另一端与晶体管M12的漏极和晶体管M13的栅极连接并输出第二偏置电压,晶体管M12的源极与晶体管M13的漏极连接,晶体管M13的源极接地。
4.根据权利要求3所述的一种采用电阻采样且兼容P、N型功率管的电流采样电路,其特征在于:所述晶体管M12和晶体管M13为N型MOS管。
5.根据权利要求1所述的一种采用电阻采样且兼容P、N型功率管的电流采样电路,其特征在于:所述采样电阻R2的另一端为节点VA,采样电阻R3的另一端为节点VB。
6.根据权利要求1所述的一种采用电阻采样且兼容P、N型功率管的电流采样电路,其特征在于:所述晶体管M3、晶体管M4和晶体管M5为P型MOS管,晶体管M6、晶体管M7、晶体管M8、晶体管M9、晶体管M10和晶体管M11为N型MOS管。
7.根据权利要求1所述的一种采用电阻采样且兼容P、N型功率管的电流采样电路,其特征在于:所述功率管M1和比例管M2为N型MOS管或P型MOS管。
8.根据权利要求7所述的一种采用电阻采样且兼容P、N型功率管的电流采样电路,其特征在于:所述功率管M1和比例管M2为N型MOS管,功率管M1的栅极和比例管M2的栅极与电荷泵的一端连接,电荷泵的另一端连接电源VIN。
9.根据权利要求7所述的一种采用电阻采样且兼容P、N型功率管的电流采样电路,其特征在于:所述功率管M1和比例管M2为P型MOS管,功率管M1的栅极和比例管M2的栅极接地。
CN202410005161.3A 2024-01-03 2024-01-03 采用电阻采样且兼容p、n型功率管的电流采样电路 Active CN117517753B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202410005161.3A CN117517753B (zh) 2024-01-03 2024-01-03 采用电阻采样且兼容p、n型功率管的电流采样电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202410005161.3A CN117517753B (zh) 2024-01-03 2024-01-03 采用电阻采样且兼容p、n型功率管的电流采样电路

Publications (2)

Publication Number Publication Date
CN117517753A CN117517753A (zh) 2024-02-06
CN117517753B true CN117517753B (zh) 2024-03-29

Family

ID=89749714

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202410005161.3A Active CN117517753B (zh) 2024-01-03 2024-01-03 采用电阻采样且兼容p、n型功率管的电流采样电路

Country Status (1)

Country Link
CN (1) CN117517753B (zh)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102832797A (zh) * 2012-08-24 2012-12-19 电子科技大学 高压电流源复用采样电路和开关电源
CN104977450A (zh) * 2014-04-03 2015-10-14 深圳市中兴微电子技术有限公司 一种电流采样电路及方法
CN109274344A (zh) * 2018-08-30 2019-01-25 华南理工大学 一种四输入运算放大器及其应用的采样电路和采样方法
CN110739835A (zh) * 2018-07-18 2020-01-31 圣邦微电子(北京)股份有限公司 限流保护电路
CN111900974A (zh) * 2020-07-24 2020-11-06 深圳市麦积电子科技有限公司 一种高边电流采样电路
CN114252684A (zh) * 2021-12-28 2022-03-29 新际芯(北京)科技有限公司 基于降压转换器的高速电流采样电路
CN114268224A (zh) * 2021-12-28 2022-04-01 新际芯(北京)科技有限公司 基于降压转换器的高速电流采样电路
CN114384304A (zh) * 2021-12-13 2022-04-22 宜矽源半导体南京有限公司 一种高压高精度的电流采样电路
CN115733116A (zh) * 2022-10-08 2023-03-03 西安电子科技大学 一种过流保护电路
CN116136563A (zh) * 2021-11-17 2023-05-19 圣邦微电子(北京)股份有限公司 功率管的电流采样电路
CN116742920A (zh) * 2023-05-25 2023-09-12 江苏帝奥微电子股份有限公司 一种nmos功率开关管驱动电路及其控制方法
CN117111665A (zh) * 2023-01-03 2023-11-24 苏州喻芯半导体有限公司 一种高电源抑制比ldo电路及其应用
CN117130421A (zh) * 2023-10-20 2023-11-28 江苏帝奥微电子股份有限公司 适用于双轨输入的nldo功率管电流采样电路及方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102832797A (zh) * 2012-08-24 2012-12-19 电子科技大学 高压电流源复用采样电路和开关电源
CN104977450A (zh) * 2014-04-03 2015-10-14 深圳市中兴微电子技术有限公司 一种电流采样电路及方法
CN110739835A (zh) * 2018-07-18 2020-01-31 圣邦微电子(北京)股份有限公司 限流保护电路
CN109274344A (zh) * 2018-08-30 2019-01-25 华南理工大学 一种四输入运算放大器及其应用的采样电路和采样方法
CN111900974A (zh) * 2020-07-24 2020-11-06 深圳市麦积电子科技有限公司 一种高边电流采样电路
CN116136563A (zh) * 2021-11-17 2023-05-19 圣邦微电子(北京)股份有限公司 功率管的电流采样电路
CN114384304A (zh) * 2021-12-13 2022-04-22 宜矽源半导体南京有限公司 一种高压高精度的电流采样电路
CN114268224A (zh) * 2021-12-28 2022-04-01 新际芯(北京)科技有限公司 基于降压转换器的高速电流采样电路
CN114252684A (zh) * 2021-12-28 2022-03-29 新际芯(北京)科技有限公司 基于降压转换器的高速电流采样电路
CN115733116A (zh) * 2022-10-08 2023-03-03 西安电子科技大学 一种过流保护电路
CN117111665A (zh) * 2023-01-03 2023-11-24 苏州喻芯半导体有限公司 一种高电源抑制比ldo电路及其应用
CN116742920A (zh) * 2023-05-25 2023-09-12 江苏帝奥微电子股份有限公司 一种nmos功率开关管驱动电路及其控制方法
CN117130421A (zh) * 2023-10-20 2023-11-28 江苏帝奥微电子股份有限公司 适用于双轨输入的nldo功率管电流采样电路及方法

Also Published As

Publication number Publication date
CN117517753A (zh) 2024-02-06

Similar Documents

Publication Publication Date Title
US6844772B2 (en) Threshold voltage extraction circuit
CN108845175B (zh) 一种工作在亚阈区的高精度电流检测电路
CN114705904B (zh) 一种高精度过电流检测电路
CN111478687B (zh) 一种高精度的限流负载开关电路
CN109116904B (zh) 一种偏置电路
US20090184752A1 (en) Bias circuit
CN114062765B (zh) 一种低功耗高精度电压检测电路
CN110752834A (zh) 一种双电流偏置的cmos伪电阻
Yang et al. All-CMOS subbandgap reference circuit operating at low supply voltage
CN114679040A (zh) 一种限流保护电路
CN117517753B (zh) 采用电阻采样且兼容p、n型功率管的电流采样电路
CN111813177A (zh) 一种带有负反馈的高性能cmos电压基准源
CN113008410B (zh) 用于集成电路的温度传感器
CN115390611A (zh) 带隙基准电路、基极电流补偿方法及芯片
CN212276289U (zh) 一种带有负反馈的高性能cmos电压基准源
CN114356016A (zh) 低功耗cmos超宽温度范围瞬态增强型ldo电路
CN110082584B (zh) 低电压宽带宽高速电流采样电路
CN113804319A (zh) 温度传感器及集成电路
CN112504494A (zh) 一种超低功耗cmos温度感应电路
CN112558672A (zh) 基准电流源及包含基准电流源的芯片
CN219871521U (zh) 一种基于cmos结构的宽电压范围采样电路
CN216310233U (zh) 低功耗电源检测电路
CN114167125B (zh) 一种电流检测电路
WO2004063827A1 (en) Apparatus and method for making a constant current source
CN115955221B (zh) 高侧电压比较电路及其控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant