CN1174494C - 玻璃的二氧化硅膜织构化 - Google Patents

玻璃的二氧化硅膜织构化 Download PDF

Info

Publication number
CN1174494C
CN1174494C CNB998130346A CN99813034A CN1174494C CN 1174494 C CN1174494 C CN 1174494C CN B998130346 A CNB998130346 A CN B998130346A CN 99813034 A CN99813034 A CN 99813034A CN 1174494 C CN1174494 C CN 1174494C
Authority
CN
China
Prior art keywords
layer
substrate
particle
silicon
texturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB998130346A
Other languages
English (en)
Other versions
CN1325550A (zh
Inventor
季静佳
施正荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Csg Sun AG
Original Assignee
Pacific Solar Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pacific Solar Pty Ltd filed Critical Pacific Solar Pty Ltd
Publication of CN1325550A publication Critical patent/CN1325550A/zh
Application granted granted Critical
Publication of CN1174494C publication Critical patent/CN1174494C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3636Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer one layer at least containing silicon, hydrogenated silicon or a silicide
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3642Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating containing a metal layer
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3668Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having electrical properties
    • C03C17/3678Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having electrical properties specially adapted for use in solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02363Special surface textures of the semiconductor body itself, e.g. textured active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03921Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/056Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means the light-reflecting means being of the back surface reflector [BSR] type
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/73Anti-reflective coatings with specific characteristics
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/31Pre-treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Sustainable Development (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Surface Treatment Of Glass (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Glass Compositions (AREA)

Abstract

一种薄膜硅太阳能电池被形成在涂敷有织构化层(32)的玻璃基底(11)上,该层包括混合有织构颗粒(34)的SiO2膜(33),织构颗粒的直径约为1-2μm,由此形成织构表面(39)。SiO2膜比织构颗粒的平均直径薄,使得石英穿过甩涂玻璃突出出来。此时电介质层提供势垒层功能,然而,可以选择采用具有与织构化表面(39)共形的上表面(35)的独立的抗反射膜(38)。如图所示,然后在抗反射膜(38)的织构化表面(35)上面形成硅膜(15)。该硅膜的厚度最好是0.5-2μm(也就是,厚度类似于SiO2层表面上提供的织构零件的尺寸)。尽管用这种方法制作的硅膜松散地与其下方的织构化表面共形,但该膜的相反表面至少在小尺度上基本上不平行,使得光通常以一定角度穿过硅膜到硅表面。更重要的是,光将时常以与表面(36)法线成较大角度,撞击硅膜的后表面(图中是上表面),使得对于大量的入射光,会发生内部全反射。表面(36)也可以用反射材料(40)(比如后部接触)来涂敷,以协助内部反射到达这个表面的光。

Description

玻璃的二氧化硅膜织构化
技术领域
本发明一般涉及到薄膜光电器件,特别是本发明提供一种薄膜电池的结构和形成该结构的方法,以便在这些电池中获得光捕集。
背景技术
光捕集的使用在单晶硅电池中是众所周知的,其中电池表面中的光捕集零件的尺寸比器件的硅基底厚度小得多,而比空气中光的波长大得多。
在太阳能电池中,光散射被用来在电池的有源区中捕集光。电池中捕捉的光越多,能产生的光电流越高,导致获得更高的效率。因此,当设法提高太阳能电池效率时,光捕集是一个重要的问题,并且在薄膜电池设计中特别重要。
然而广泛认为,在有源硅层是形成在比如玻璃基底上的薄膜的薄膜器件中,光捕集不太可能或至少显示出效率会降低。这是因为薄膜厚度为已知单晶器件中光捕集零件尺寸的相同数量级或更薄。随着薄膜器件的薄膜厚度减少,它们趋向同形涂覆,在玻璃基底的刻蚀表面上具有占主导的平行表面,习惯的想法是这样一种安排不会在光捕集上获得大的利益。再者随着薄膜厚度减少到波长(空气中)量级或更薄,常规的想法是现有技术中提供光捕集的机制将失效。
这是被现有技术薄膜无定形硅太阳能电池器件证实了的,其中没有在织构化上作精心的努力。目前无定形硅器件典型地包括玻璃上基底,其上面是一层透明导电氧化物(TCO)接触层和包括p-n结的薄无定形硅膜(1μm)有源层,以及作为反射器和背面接触的背面金属层。当这样的结构开始设计出来时,注意到在一些情况下(当TCO的表面模糊的时候),电池性能比期望的更好,但是文献没有提供解释来说明这样意外的性能的原因。
发明内容
现在对本发明人来说,显然光捕集在薄膜器件中是可能的,并且现有技术无定形硅器件技术实际上展示了一种本发明人现在已经证实并使其适合于晶体硅薄膜电池的特性。本发明的中心是实现给定频率的光波长在硅和空气中是不同的。
本发明人现在已经证实光捕集能在薄膜中实现的情况,特别是本发明人已经设计了表现光捕集特性的薄膜晶体硅太阳能电池结构的制作方法。
本发明人设计的获得光捕集的方法,一般包括对其上形成薄膜的基底表面进行织构化。传统上,玻璃的织构通过化学织构和喷砂得到。近来,在基底表面上已经用金属晶体淀积物来形成非常细的晶体,以产生织构效果。
然而,化学织构和喷砂引起玻璃表面上的裂纹和不均匀的零件尺寸,其中每一个都能负面影响太阳能电池制造和/或性能,比如在器件中引起分流。多半因为这个原因而显然没有在化学织构化或喷砂的基底上实现高效太阳能电池制造的报道。而且,用于进行化学织构的方法也产生有环境危险的废物,因此表现出严重的污染风险。另一方面,使用细金属晶体来形成织构化表面是一种昂贵的方法,使用该技术大大增加了太阳能电池的制作成本。
按照第一方面,本发明提供了一种在制作于玻璃基底或上基底上的薄膜硅太阳能电池中形成光捕集结构的方法,该方法包括下列步骤:a)将织构层涂敷到玻璃基底或上基底的表面,该织构层包括束缚在粘接材料中的织构颗粒;和b)在织构化表面上形成硅膜,并在硅膜内形成光电器件结构,硅膜小于10μm厚。
其中薄膜硅器件形成在晶体硅薄膜中。
其中薄膜硅器件形成在TCO层上的无定形硅薄膜中。
其中在织构表面上形成的薄硅层的厚度在被织构表面的零件的平均高度的0.5-20倍范围内。
其中织构层被涂敷到基底或上基底的表面,其方法是:制备含有织构化颗粒的凝胶玻璃,将该凝胶玻璃涂敷到基底或上基底的表面,使得涂敷后玻璃膜的厚度小于织构化颗粒的平均直径,以及加热凝胶玻璃使它烧结,从而成为电介质层。其中从凝胶玻璃层产生的电介质层是SiO2层。
其中织构层被涂敷到基底或上基底的表面,其方法是:制备含有织构化颗粒的凝胶玻璃,将该凝胶玻璃涂敷到基底或上基底的表面,使得涂敷后玻璃膜的厚度小于织构化颗粒的平均直径,以及加热凝胶玻璃使它烧结,从而成为TCO层,并且在形成于TCO层上的无定形硅薄膜内形成薄膜硅器件。其中织构化颗粒是单一球形SiO2颗粒。其中SiO2颗粒的直径范围在0.2-1.5μm。或者,其中SiO2颗粒的直径范围在0.5-0.9μm。SiO2颗粒的直径范围也可以在0.65-0.75μm。
其中织构化颗粒是粉碎的石英。其中石英颗粒的直径主要在0.5-3.0μm范围内。或者,石英颗粒的直径主要在1.0-2.0μm范围内。
其中粘结材料的厚度范围是织构化颗粒的平均直径的0.2-0.8倍。
其中粘结材料的厚度范围是织构化颗粒的平均直径的0.35-0.5倍。
其中粘结材料的厚度范围在0.25-0.35μm,而织构化颗粒的平均直径范围在0.65-0.75μm。
其中在涂敷织构层的步骤完成之后,形成薄硅膜之前,形成薄的共形势垒层。其中势垒层被涂敷成厚度等于势垒层材料中光波长的四分之一±20%。其中势垒层材料是厚度为70nm±20%的氮化硅。
其中形成在织构化表面上面的薄硅膜的厚度范围是表面织构零件平均高度的1-10倍。
优选地,其中形成在织构化表面上面的薄硅膜的厚度范围是表面织构零件平均高度的2-3倍。
其中形成在织构化表面上面的薄硅膜的厚度范围在1-2μm。
其中在硅膜形成之后,反射材料层被形成在远离基底或上基底的硅膜表面上。其中在反射材料层形成之前,在远离基底或上基底的硅膜表面上形成绝缘层。其中在所述反射材料层被形成之前,在远离基底或上基底的硅膜表面上形成一个绝缘层。所述反射材料层也形成一个金属化结构以与所述器件的有源区接触。
其中反射材料层也形成金属化结构以接触电池的有源区。
按照第二方面,本发明提供了一种组合有光捕集结构的薄膜光电器件,其中光电器件形成在玻璃基底或上基底的织构化表面上,光电器件包括薄硅膜,其中形成至少一个pn光电结,硅膜小于10μm厚,以及位于基底或上基底表面上的织构化层提供的织构化结构,并包括束缚在粘接材料中的织构颗粒。
其中薄硅膜是晶体硅薄膜。或者,其中薄硅膜是形成在TCO层上的无定形硅薄膜。
其中在所述织构层的织构化表面上形成的薄硅膜的厚度是所述织构表面上的表面零件的平均高度的0.5-20。
其中织构层是形成为含有织构颗粒的硬化凝胶玻璃的电介质层,该凝胶玻璃的厚度小于织构颗粒的平均直径。
其中织构层是形成为含有织构颗粒的硬化TCO凝胶膜的TCO层,该凝胶膜的厚度小于织构颗粒的平均直径,并且薄硅膜是形成于TCO膜上的无定形硅薄膜。
其中电介质层是SiO2层。
其中织构化颗粒是单一球形SiO2颗粒。
其中SiO2颗粒的直径范围在0.2-1.5μm。或者,SiO2颗粒的直径范围在0.5-0.9μm。或者,SiO2颗粒的直径范围在0.65-0.75μm。
其中织构化颗粒是粉碎的石英。其中石英颗粒的直径主要在0.5-3μm范围内。或者,石英颗粒的直径主要在1.0-2μm范围内。
其中粘结材料的厚度范围在织构化颗粒的平均直径的0.2-0.8倍。优选地,其中粘结材料的厚度范围在织构化颗粒的平均直径的0.35-0.5倍。或者,其中粘结材料的厚度范围在0.25-0.35μm,而织构化颗粒的平均直径范围在0.65-0.75μm。
其中薄共形势垒层位于织构层和薄硅膜之间。其中势垒层的厚度等于势垒层材料中光波长的四分之一±20%。
其中势垒层材料是厚度为70nm±20%的氮化硅。
其中薄硅膜的厚度范围在表面织构零件平均高度的1-10倍。
其中薄硅膜的厚度范围在表面织构零件平均高度的2-3倍。其中薄硅膜的厚度范围在1-2μm。
其中反射材料层位于远离基底或上基底的硅膜表面上。
其中绝缘层位于硅膜和反射材料层之间。
其中反射材料层也形成金属化结构以接触电池的有源区。
其中一个反射材料层位于所述硅膜的远离基底或上基底的表面上。
其中一个绝缘层位于所述硅膜和所述反射材料层之间。
其中所述反射材料层也形成一个金属化结构以与所述器件的有源区接触。
本发明可应用到晶体和无定形硅太阳能电池中。如果是无定形硅电池,薄硅膜形成在TCO层之上,或作为变通,含有织构化颗粒的织构化膜自身可以作为TCO材料。
在本发明的实施方案中,织构化层的表面零件的尺寸范围最好是使得形成在织构化表面上的薄硅膜的厚度是被表面织构的表面零件的平均高度的0.5-20倍。尤其是形成在织构表面的零件的平均高度的0.1-1倍,和例如在2-3倍的范围内。
硅膜的典型厚度在0.5-5μm,例如可以是1-2μm。典型地,织构化表面零件的数值范围在0.01-10μm。可使用的零件尺寸的下限是晶体硅中的光波长量级,而典型可使用的下限是0.05μm。织构化也可以包括大尺度零件,具有比硅膜厚度更大的尺寸。
在一组实施方案中,织构化层被应用到玻璃表面,借助于将颗粒尺寸在0.5-3μm范围,优选在1-2μm范围的粉碎石英混合到玻璃溶胶中,将此混合物涂敷到玻璃表面,并加热以便将玻璃溶胶烧结形成电介质层。注意在此情况下,最终表面零件尺寸包括非常小的尺度,由粉碎石英的表面粗糙度和电介质层的厚度以及石英的颗粒尺寸决定。
在本发明的优选实施方案中,基底或上基底的织构化通过一种SiO2层实现,该层包括单一球形SiO2颗粒,直径范围为0.1-2μm。单一球形颗粒最好在0.5-0.9μm范围,在特别优选实施方案中,颗粒大约为0.7μm(例如0.65-0.75μm)。这些颗粒位于光滑的SiO2膜中,该膜厚度为单一球形颗粒直径的0.2-0.8倍。SiO2层最好在颗粒直径的0.35-0.5倍范围,在特别优选实施方案中,大约是0.3μm(例如0.25-0.35μm)。颗粒尺寸和膜厚度之间的差别导致织构化的表面,然而在此情况下,零件能被更大地隔开,因为差别更大。SiO2颗粒和膜都是用凝胶工艺制作。
SiO2层在玻璃基底和硅膜之间也提供势垒层。独立的势垒层也可以作为抗反射层,并调整厚度等于四分之一波长±20%,在氮化硅的情况下是70nm±20%。
在本发明的典型实施方案中,在硅膜结构的背面(也就是远离玻璃)上形成有反射材料。典型地,反射材料是金属化结构,用于接触电池的有源区。在一些实施方案中,金属化结构用绝缘层与大部分硅的背面隔开。
本发明的实施方案将用举例子的方法参照附图描述。
附图说明
图1和2示意描述本发明第一实施方案形成过程中的两个阶段,其中织构化层被加到基底上;
图3,4和5示意描述本发明第二实施方案形成过程中的三个阶段,其中不同的织构化层被加到基底;
图6是依照参考图3、4和5描述的方法的织构化表面的透视图;
图7是通过参考图3,4和5描述的方法制造的器件的截面照片;
图8是玻璃基底的侧截面视图,该基底具有织构化电介质(SiO2)层和形成在其表面上的硅薄膜,描述了入射光子穿过玻璃基底、织构化层和硅层的代表性路径。
具体实施方式
薄膜硅太阳能电池形成在涂敷有织构化层32的玻璃基底11上,此织构层包含混合有直径约为1-2μm的织构化颗粒34的SiO2膜33,由此形成织构化表面39。此SiO2膜比织构化颗粒的平均直径薄,以使石英穿过甩涂玻璃突出出来。
在此情况下,电介质层提供了势垒层功能,然而,也可以采用具有与织构化表面39共形的上表面35的独立的抗反射涂层38。如图2所示,然后在抗反射涂层38的织构化的上表面35上面形成硅膜15。硅膜的厚度最好在范围0.5-2μm内(也就是与SiO2层表面上织构零件尺寸相似的厚度)。尽管用这种方法制作的硅膜粗略地与它所形成于其上的织构化表面共形,但膜的正反面基本上不平行,至少在小尺度上光将一般以一定角度穿过硅膜到达硅表面。
更重要的是,光将时常以与表面的法线成大角度撞到硅膜的背表面36(在图1和2中为上表面),以使大量入射发生内部全反射。背表面36也可以用反射材料(比如后金属接触)涂敷,以帮助内部反射光撞击这个表面。反射层上可以在涂覆另一个介质封装层40。在一些实施方案中,金属化结构用绝缘层与大部分硅的背面隔开。
参考图3、4和5,描述了另一个实施方案,其中SiO2膜33组成的织构化层32被涂敷到基底11的表面,织构化层32包括SiO2单一球体37,导致甩涂层的织构化表面。
形成图3、4和5的实施方案的步骤包括,用凝胶工艺形成SiO2溶胶,SiO2溶胶制备期间在其中形成SiO2单一球体颗粒,并且SiO2溶胶被涂敷到基底和上基底11,使得到的织构化层32产生织构化表面39,用于薄膜太阳能电池制造。也可以涂敷具有上表面35的抗反射涂层38。在优选实施方案中,织构化层32包括直径约为0.7μm的SiO2单一球体37和大约0.3μm厚的覆盖SiO2单一球体37的光滑SiO2膜33。第一球体的尺寸和膜厚度之间的差别导致织构化的表面。然而,范围在0.5-2μm的颗粒,能和厚度是单一球体直径的0.2-0.8倍的SiO2膜一起使用。
参考图4,当使用制作方法比如等离子体增强化学气相淀积技术(PECVD)将硅膜15淀积在势垒层的抗反射涂层38的织构化上表面35上面时,该膜将以基本相同的恒定速率,沿各个点上垂直于表面的方向从表面上所有点同时生长。这导致类似于图5所示的膜,其中基底表面上(也就是抗反射涂层38的织构化上表面35上)小的相对稀疏的织构化零件,导致在硅膜的背表面36上互相合并为较大的零件。这导致在硅膜的表面之间有相当大的非平行性,并当膜被透过基底照明时,产生良好的光捕集。也注意到,当晶体结构直接形成和当晶体结构通过结晶无定形硅(例如通过固相结晶化)形成时,这个方法对无定形硅器件和晶体硅器件都是有用的。
最后,在硅已经形成以及任何需要对整个硅层进行的处理,比如电介质层19的形成已经完成之后,金属层40被涂敷到硅膜15的背表面36上面,以提供背部反射器和被处理成与形成在硅膜中的半导体器件的接触。电介质层19位于硅15和金属层40之间,以便隔离金属和半导体膜的上边区域,使金属部分能通过半导体膜的下边区域被连接而不会使结短路。
被涂敷的SiO2单一球体37和SiO2膜33,都用凝胶工艺制造。凝胶工艺涉及到把金属有机化合物与作为水解剂的水和作为溶剂的乙醇进行混合。金属有机化合物在溶液中和水反应,形成金属氧化物聚合物。聚合物颗粒的尺寸取决于溶液的pH值。反应后的溶液称作溶胶。当溶剂蒸发时,溶胶转变为凝胶。进一步烧结使凝胶成为坚硬的金属氧化物(也就是SiO2电介质层)。
凝胶工艺有一定的优点,比如高的纯度、浓度很好控制和制作简单。这些优点决定了该方法有广泛的用途。例如,被称作甩涂玻璃(SOG)的凝胶工艺已经用在半导体工业中多年。然而,通常不希望如本案例中那样制作包含任何大尺寸的颗粒的凝胶。
在用凝胶工艺形成的金属氧化物中间,SiO2溶胶已经被应用在各种工业中。在半导体工业中,这种方法形成的SiO2层已经用来形成电介质层和整平层。如果掺杂剂被添加到SiO2溶胶中,则也能用来形成掺杂源。SiO2膜也已经被用作抗反射层、势垒层、强化层、化学稳定层等等。
如上提到,聚合物SiO2单一球体37的尺寸能通过溶液的pH值调节。一般来说,随着溶液的pH值降低到7以下,颗粒尺寸减小到小于100nm。大多数甩涂玻璃有这种行为。随着pH值增加到7以上,颗粒尺寸增加到大于1.0μm。
本实施方案有下列明显的优点,甚至超过本发明的其他所希望的实施方案:
i)SiO2颗粒能制作成单一尺寸和单一形状(球形)。因此在织构零件的高度方面,与SiO2膜一起,形成的织构能非常光滑和均匀。这个特征对于高效薄膜太阳能电池的制造是重要的,因为它减少了任何尖锐沟槽/裂纹,从而减少分流问题而无需进一步的织构化处理。
ii)不是通过化学织构化或喷砂方法在玻璃表面形成裂纹,而是凝胶织构层实际上是填充裂纹,使得玻璃可以在织构化之后被强化;
iii)凝胶织构提供了额外的势垒层,阻止杂质从玻璃到Si膜的迁移;
iv)织构能承受非常高的温度(例如高到Si的熔点)而不会引起对织构零件的破坏,因为该织构由SiO2构成,SiO2比玻璃基底有更高的熔点。另一方面,化学织构零件可能在高温下熔化,从而降低光捕集的效果;
v)它是一种对环境无害的工艺。唯一潜在有问题的步骤是在工艺过程中可能释放乙醇到空气中,尽管回收乙醇是相对简单的事情。化学织构比较起来会产生大量HF废物;
vi)涂敷织构层的过程不难按比例放大;
vii)本方法如果废物处理成本被包括在化学织构的成本内,则此工艺的成本低于化学织构。
以上描述的本实施方案,依赖于在平面基底或上基底上形成织构层,然而,也可能通过直接织构化基底或上基底表面而实现本发明。
在图8中描述的,是类似于图3-5中的实施方案截面图,其中表示进出硅膜15的光子沿着路径18穿过基底,并在硅膜15中在下面的电介质/硅界面20(或抗反射层/硅界面)和上面的硅金属(背部接触)界面21之间反射几次,从而增加形成在薄硅膜中的光电池的转换效率。
本发明也可以应用到无定形硅电池,此时,对于无定形电池的制造厂家,常规的工艺步骤可修改如下:
1)在玻璃基底或上基底的表面上涂敷包括束缚在TCO基质中的织构颗粒的织构层。TCO材料能用凝胶工艺涂敷或用溅射或其它适合的技术来淀积,且织构颗粒可以是SiO2小球、粉碎的石英或TCO材料自身的颗粒;
2)在TCO基质上面形成无定形硅膜,
或作为变通:
1)如上面参考图1到5所述,在玻璃基底或上基底的表面上涂敷包括束缚在SiO2基质中的织构颗粒的织构层;
2)在SiO2基质上形成TCO膜;
3)在TCO膜上面形成无定形硅膜。
本领域的技术人员应当理解,可以对特定实施方案所示的本发明进行许多变更和/或改变,而不偏离广义所述的本发明的构思与范围。本实施方案因此被认为在所有方面是示例性的,而不是限制性的。

Claims (58)

1.一种在制作于玻璃基底或上基底上的薄膜硅太阳能电池中形成光捕集结构的方法,该方法包括下列步骤:
a)将织构层涂敷到玻璃基底或上基底的表面,该织构层包括束缚在粘接材料中的织构颗粒;和
b)在织构化表面上形成硅膜,并在硅膜内形成光电器件结构,硅膜小于10μm厚。
2.权利要求1的方法,其中薄膜硅器件形成在晶体硅薄膜中。
3.权利要求1的方法,其中薄膜硅器件形成在透明导电氧化物层上的无定形硅薄膜中。
4.权利要求1的方法,其中在织构表面上形成的薄硅层的厚度在被织构表面的零件的平均高度的0.5-20倍范围内。
5.权利要求1的方法,其中织构层被涂敷到基底或上基底的表面,其方法是:制备含有织构化颗粒的凝胶玻璃,将该凝胶玻璃涂敷到基底或上基底的表面,使得涂敷后玻璃膜的厚度小于织构化颗粒的平均直径,以及加热凝胶玻璃使它烧结,从而成为电介质层。
6.权利要求1的方法,其中织构层被涂敷到基底或上基底的表面,其方法是:制备含有织构化颗粒的凝胶玻璃,将该凝胶玻璃涂敷到基底或上基底的表面,使得涂敷后玻璃膜的厚度小于织构化颗粒的平均直径,以及加热凝胶玻璃使它烧结,从而成为透明导电氧化物层,并且在形成于透明导电氧化物层上的无定形硅薄膜内形成薄膜硅器件。
7.权利要求5的方法,其中从凝胶玻璃层产生的电介质层是SiO2层。
8.权利要求6的方法,其中织构化颗粒是单一球形SiO2颗粒。
9.权利要求8的方法,其中SiO2颗粒的直径范围在0.2-1.5μm。
10.权利要求8的方法,其中SiO2颗粒的直径范围在0.5-0.9μm。
11.权利要求8的方法,其中SiO2颗粒的直径范围在0.65-0.75μm。
12.权利要求7的方法,其中织构化颗粒是粉碎的石英。
13.权利要求12的方法,其中石英颗粒的直径主要在0.5-3.0μm范围内。
14.权利要求12的方法,其中石英颗粒的直径主要在1.0-2.0μm范围内。
15.权利要求11的方法,其中粘结材料的厚度范围是织构化颗粒的平均直径的0.2-0.8倍。
16.权利要求9的方法,其中粘结材料的厚度范围是织构化颗粒的平均直径的0.35-0.5倍。
17.权利要求8的方法,其中粘结材料的厚度范围在0.25-0.35μm,而织构化颗粒的平均直径范围在0.65-0.75μm。
18.权利要求5的方法,其中在涂敷织构层的步骤完成之后,形成薄硅膜之前,形成薄的共形势垒层。
19.权利要求18的方法,其中势垒层被涂敷成厚度等于势垒层材料中光波长的四分之一±20%。
20.权利要求19的方法,其中势垒层材料是厚度为70nm±20%的氮化硅。
21.权利要求4的方法,其中形成在织构化表面上面的薄硅膜的厚度范围是表面织构零件平均高度的1-10倍。
22.权利要求4的方法,其中形成在织构化表面上面的薄硅膜的厚度范围是表面织构零件平均高度的2-3倍。
23.权利要求17的方法,其中形成在织构化表面上面的薄硅膜的厚度范围在1-2μm。
24.权利要求1的方法,其中在硅膜形成之后,反射材料层被形成在远离基底或上基底的硅膜表面上。
25.权利要求24的方法,其中在反射材料层形成之前,在远离基底或上基底的硅膜表面上形成绝缘层。
26.权利要求24或25的方法,其中反射材料层也形成金属化结构以接触电池的有源区。
27.组合有光捕集结构的一种薄膜光电器件,其中光电器件形成在玻璃基底或上基底的织构化表面上,光电器件包括薄硅膜,其中形成至少一个pn光电结,硅膜小于10μm厚,以及位于基底或上基底表面上的织构化层提供的织构化结构,并包括束缚在粘接材料中的织构颗粒。
28.权利要求27的器件,其中薄硅膜是晶体硅薄膜。
29.权利要求27的器件,其中薄硅膜是形成在透明导电氧化物层上的无定形硅薄膜。
30.权利要求27的器件,其中在所述织构层的织构化表面上形成的薄硅膜的厚度是所述织构表面上的表面零件的平均高度的0.5-20。
31.权利要求27的器件,其中织构层是形成为含有织构颗粒的硬化凝胶玻璃的电介质层,该凝胶玻璃的厚度小于织构颗粒的平均直径。
32.权利要求27的器件,其中织构层是形成为含有织构颗粒的硬化透明导电氧化物凝胶膜的透明导电氧化物层,该凝胶膜的厚度小于织构颗粒的平均直径,并且薄硅膜是形成于透明导电氧化物膜上的无定形硅薄膜。
33.权利要求31的器件,其中电介质层是SiO2层。
34.权利要求33的器件,其中织构化颗粒是单一球形SiO2颗粒。
35.权利要求34的器件,其中SiO2颗粒的直径范围在0.2-1.5μm。
36.权利要求34的器件,其中SiO2颗粒的直径范围在0.5-0.9μm。
37.权利要求34的器件,其中SiO2颗粒的直径范围在0.65-0.75μm。
38.权利要求33的器件,其中织构化颗粒是粉碎的石英。
39.权利要求38的器件,其中石英颗粒的直径主要在0.5-3μm范围内。
40.权利要求38的器件,其中石英颗粒的直径主要在1.0-2μm范围内。
41.权利要求37的器件,其中粘结材料的厚度范围在织构化颗粒的平均直径的0.2-0.8倍。
42.权利要求35的器件,其中粘结材料的厚度范围在织构化颗粒的平均直径的0.35-0.5倍。
43.权利要求34的器件,其中粘结材料的厚度范围在0.25-0.35μm,而织构化颗粒的平均直径范围在0.65-0.75μm。
44.权利要求31的器件,其中薄共形势垒层位于织构层和薄硅膜之间。
45.权利要求44的器件,其中势垒层的厚度等于势垒层材料中光波长的四分之一±20%。
46.权利要求45的器件,其中势垒层材料是厚度为70nm±20%的氮化硅。
47.权利要求30的器件,其中薄硅膜的厚度范围在表面织构零件平均高度的1-10倍。
48.权利要求30的器件,其中薄硅膜的厚度范围在表面织构零件平均高度的2-3倍。
49.权利要求43的器件,其中薄硅膜的厚度范围在1-2μm。
50.权利要求27的器件,其中反射材料层位于远离基底或上基底的硅膜表面上。
51.权利要求50的器件,其中绝缘层位于硅膜和反射材料层之间。
52.权利要求50的器件,其中反射材料层也形成金属化结构以接触电池的有源区。
53.权利要求23的方法,其中在硅膜形成之后,反射材料层被形成在远离基底或上基底的硅膜表面上。
54.权利要求53的方法,其中在所述反射材料层被形成之前,在远离基底或上基底的硅膜表面上形成一个绝缘层。
55.权利要求54的方法,其中所述反射材料层也形成一个金属化结构以与所述器件的有源区接触。
56.权利要求49的器件,其中一个反射材料层位于所述硅膜的远离基底或上基底的表面上。
57.权利要求56的器件,其中一个绝缘层位于所述硅膜和所述反射材料层之间。
58.权利要求57的器件,其中所述反射材料层也形成一个金属化结构以与所述器件的有源区接触。
CNB998130346A 1998-11-06 1999-11-08 玻璃的二氧化硅膜织构化 Expired - Fee Related CN1174494C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AUPP6997A AUPP699798A0 (en) 1998-11-06 1998-11-06 Thin films with light trapping
AUPP6997 1998-11-06

Publications (2)

Publication Number Publication Date
CN1325550A CN1325550A (zh) 2001-12-05
CN1174494C true CN1174494C (zh) 2004-11-03

Family

ID=3811210

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB998130346A Expired - Fee Related CN1174494C (zh) 1998-11-06 1999-11-08 玻璃的二氧化硅膜织构化

Country Status (9)

Country Link
US (2) US6420647B1 (zh)
EP (1) EP1142031B1 (zh)
JP (1) JP4532742B2 (zh)
CN (1) CN1174494C (zh)
AT (1) ATE482472T1 (zh)
AU (3) AUPP699798A0 (zh)
DE (1) DE69942791D1 (zh)
ES (1) ES2351034T3 (zh)
WO (2) WO2000028603A1 (zh)

Families Citing this family (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6335479B1 (en) * 1998-10-13 2002-01-01 Dai Nippon Printing Co., Ltd. Protective sheet for solar battery module, method of fabricating the same and solar battery module
AUPQ293099A0 (en) * 1999-09-17 1999-10-14 Pacific Solar Pty Limited Recrystallization of semiconductor material
JP4111669B2 (ja) 1999-11-30 2008-07-02 シャープ株式会社 シート製造方法、シートおよび太陽電池
AUPR174800A0 (en) 2000-11-29 2000-12-21 Australian National University, The Semiconductor processing
AUPR719801A0 (en) * 2001-08-23 2001-09-13 Pacific Solar Pty Limited Glass beads coating process
JP2003124491A (ja) * 2001-10-15 2003-04-25 Sharp Corp 薄膜太陽電池モジュール
WO2003036657A1 (fr) * 2001-10-19 2003-05-01 Asahi Glass Company, Limited Substrat a couche d'oxyde conductrice transparente, son procede de production et element de conversion photoelectrique
FR2832706B1 (fr) * 2001-11-28 2004-07-23 Saint Gobain Substrat transparent muni d'une electrode
US7828983B2 (en) * 2001-11-29 2010-11-09 Transform Solar Pty Ltd Semiconductor texturing process
EP1500634A4 (en) * 2002-03-26 2008-01-23 Nippon Sheet Glass Co Ltd GLASS SUBSTRATE AND PROCESS FOR PRODUCING THE SAME
IL149236A0 (en) * 2002-04-21 2002-11-10 Solel Solar Systems Ltd Casing for solar collecting system
TWI238894B (en) * 2003-02-21 2005-09-01 Asahi Kasei Corp Laminate containing silica and application composition for forming porous silica layer
AU2003901559A0 (en) * 2003-04-07 2003-05-01 Unisearch Limited Glass texturing method
US7170001B2 (en) * 2003-06-26 2007-01-30 Advent Solar, Inc. Fabrication of back-contacted silicon solar cells using thermomigration to create conductive vias
US7649141B2 (en) * 2003-06-30 2010-01-19 Advent Solar, Inc. Emitter wrap-through back contact solar cells on thin silicon wafers
US6855439B1 (en) 2003-09-16 2005-02-15 Seagate Technology Llc Highly oriented longitudinal magnetic media on direct textured glass substrates
US6861721B1 (en) * 2003-12-08 2005-03-01 Texas Instruments Incorporated Barrier region and method for wafer scale package (WCSP) devices
US20050148198A1 (en) * 2004-01-05 2005-07-07 Technion Research & Development Foundation Ltd. Texturing a semiconductor material using negative potential dissolution (NPD)
US20060060238A1 (en) * 2004-02-05 2006-03-23 Advent Solar, Inc. Process and fabrication methods for emitter wrap through back contact solar cells
US7335555B2 (en) * 2004-02-05 2008-02-26 Advent Solar, Inc. Buried-contact solar cells with self-doping contacts
US7144751B2 (en) * 2004-02-05 2006-12-05 Advent Solar, Inc. Back-contact solar cells and methods for fabrication
US20050172996A1 (en) * 2004-02-05 2005-08-11 Advent Solar, Inc. Contact fabrication of emitter wrap-through back contact silicon solar cells
JP4792732B2 (ja) * 2004-11-18 2011-10-12 株式会社日立製作所 反射防止膜及び反射防止膜を用いた光学部品及び反射防止膜を用いた画像表示装置
US7781668B2 (en) 2004-03-25 2010-08-24 Kaneka Corporation Substrate for thin-film solar cell, method for producing the same, and thin-film solar cell employing it
JP2005311292A (ja) * 2004-03-25 2005-11-04 Kaneka Corp 薄膜太陽電池用基板、及びその製造方法、並びにそれを用いた薄膜太陽電池
JP4535767B2 (ja) * 2004-04-26 2010-09-01 京セラ株式会社 光電変換装置およびその製造方法ならびに光発電装置
MXPA06015018A (es) * 2004-07-07 2007-03-12 Saint Gobain Celda solar fotovoltaica y modulo solar.
DE102004032810B4 (de) * 2004-07-07 2009-01-08 Saint-Gobain Glass Deutschland Gmbh Photovoltaische Solarzelle mit einer Schicht mit Licht streuenden Eigenschaften und Solarmodul
FR2883663B1 (fr) 2005-03-22 2007-05-11 Commissariat Energie Atomique Procede de fabrication d'une cellule photovoltaique a base de silicium en couche mince.
JP2009506546A (ja) 2005-08-24 2009-02-12 ザ トラスティーズ オブ ボストン カレッジ ナノスケール共金属構造を用いた太陽エネルギー変換のための装置および方法
US7754964B2 (en) 2005-08-24 2010-07-13 The Trustees Of Boston College Apparatus and methods for solar energy conversion using nanocoax structures
DE102005041242A1 (de) * 2005-08-31 2007-03-01 Merck Patent Gmbh Verfahren zur Strukturierung von Oberflächen von Substraten
WO2007127482A2 (en) * 2006-04-28 2007-11-08 Sri International Methods for producing consolidated and purified materials
WO2008009428A1 (de) * 2006-07-20 2008-01-24 Leonhard Kurz Stiftung & Co. Kg Solarzelle auf polymerbasis
CA2568136C (en) * 2006-11-30 2008-07-29 Tenxc Wireless Inc. Butler matrix implementation
WO2008080160A1 (en) * 2006-12-22 2008-07-03 Advent Solar, Inc. Interconnect technologies for back contact solar cells and modules
US8143514B2 (en) * 2007-09-11 2012-03-27 Silicon China (Hk) Limited Method and structure for hydrogenation of silicon substrates with shaped covers
WO2009064870A2 (en) * 2007-11-13 2009-05-22 Advent Solar, Inc. Selective emitter and texture processes for back contact solar cells
WO2009116018A2 (en) * 2008-03-21 2009-09-24 Oerlikon Trading Ag, Trübbach Photovoltaic cell and methods for producing a photovoltaic cell
CN102017171A (zh) * 2008-03-25 2011-04-13 康宁股份有限公司 用于光生伏打装置的基材
US8129212B2 (en) * 2008-03-25 2012-03-06 Applied Materials, Inc. Surface cleaning and texturing process for crystalline solar cells
TWI390747B (zh) * 2008-04-29 2013-03-21 Applied Materials Inc 使用單石模組組合技術製造的光伏打模組
US9299863B2 (en) * 2008-05-07 2016-03-29 The Hong Kong University Of Science And Technology Ultrathin film multi-crystalline photovoltaic device
US20110108118A1 (en) * 2008-07-07 2011-05-12 Mitsubishi Electric Corporation Thin-film solar cell and method of manufacturing the same
US8916769B2 (en) 2008-10-01 2014-12-23 International Business Machines Corporation Tandem nanofilm interconnected semiconductor wafer solar cells
US20100126583A1 (en) * 2008-11-25 2010-05-27 Jeongwoo Lee Thin film solar cell and method of manufacturing the same
DE102009006719A1 (de) * 2009-01-29 2010-08-12 Schott Ag Dünnschichtsolarzelle
DE102009006718A1 (de) 2009-01-29 2010-08-12 Schott Ag Dünnschichtsolarzelle
US8329046B2 (en) * 2009-02-05 2012-12-11 Asia Union Electronic Chemical Corporation Methods for damage etch and texturing of silicon single crystal substrates
US7858427B2 (en) * 2009-03-03 2010-12-28 Applied Materials, Inc. Crystalline silicon solar cells on low purity substrate
US20110017285A1 (en) * 2009-07-23 2011-01-27 Emcore Solar Power, Inc. Solar Cell with Textured Coverglass
US20110120555A1 (en) * 2009-11-23 2011-05-26 Nicholas Francis Borrelli Photovoltaic devices and light scattering superstrates
US20110126890A1 (en) * 2009-11-30 2011-06-02 Nicholas Francis Borrelli Textured superstrates for photovoltaics
US7951638B1 (en) * 2010-01-07 2011-05-31 Atomic Energy Council-Institute of Nuclear Research Method for making a textured surface on a solar cell
US20110209752A1 (en) * 2010-02-26 2011-09-01 Glenn Eric Kohnke Microstructured glass substrates
US8663732B2 (en) * 2010-02-26 2014-03-04 Corsam Technologies Llc Light scattering inorganic substrates using monolayers
CN102934234B (zh) 2010-03-31 2015-08-05 帝斯曼知识产权资产管理有限公司 使用增强的光捕获方案的薄膜光伏器件
KR101218133B1 (ko) * 2010-04-27 2013-01-18 엘지디스플레이 주식회사 마이크로 렌즈의 제조방법 및 마이크로 렌즈를 구비한 태양전지
JP2012044147A (ja) * 2010-06-11 2012-03-01 Moser Baer India Ltd 光電デバイスでの反射防止バリア層
FR2961952B1 (fr) * 2010-06-23 2013-03-29 Commissariat Energie Atomique Substrat comprenant une couche d'oxyde transparent conducteur et son procede de fabrication
KR20120016802A (ko) * 2010-08-17 2012-02-27 엘지디스플레이 주식회사 박막 태양전지 및 그 제조방법
US8445309B2 (en) 2010-08-20 2013-05-21 First Solar, Inc. Anti-reflective photovoltaic module
US20120048367A1 (en) * 2010-08-24 2012-03-01 Andrey Kobyakov Light scattering inorganic substrates
US8797662B2 (en) 2010-12-14 2014-08-05 Micron Technology, Inc. Apparatuses and devices for absorbing electromagnetic radiation, and methods of forming the apparatuses and devices
TW201251077A (en) * 2011-06-07 2012-12-16 Kuo-Ching Chiang Solar cell having non-planar junction and the method of the same
US20140124030A1 (en) * 2011-06-30 2014-05-08 Kaneka Corporation Thin film solar cell and method for manufacturing same
CN102332477B (zh) * 2011-07-27 2012-08-01 常州时创能源科技有限公司 一种用于单晶硅太阳电池的陷光结构
CN102306680B (zh) * 2011-08-23 2013-04-17 浙江嘉毅能源科技有限公司 晶体硅太阳能电池片减反射膜制备工艺
US9676649B2 (en) 2011-08-26 2017-06-13 Corning Incorporated Glass substrates with strategically imprinted B-side features and methods for manufacturing the same
KR20130028578A (ko) 2011-09-09 2013-03-19 삼성전자주식회사 광결정 구조체, 이의 제조방법, 광결정 구조체를 채용한 반사형 컬러필터 및 디스플레이 장치.
US20140110805A1 (en) 2012-10-18 2014-04-24 Infineon Technologies Dresden Gmbh Silicon light trap devices, systems and methods
US20140182670A1 (en) * 2012-12-27 2014-07-03 Intermolecular Inc. Light trapping and antireflective coatings
JP6293138B2 (ja) * 2013-06-17 2018-03-14 株式会社カネカ 太陽電池モジュール及び太陽電池モジュールの製造方法
US8957490B2 (en) * 2013-06-28 2015-02-17 Infineon Technologies Dresden Gmbh Silicon light trap devices
JP6586092B2 (ja) 2013-12-19 2019-10-02 コーニング インコーポレイテッド ディスプレイ用途のための起伏加工表面
CN105206699A (zh) * 2015-09-07 2015-12-30 中国东方电气集团有限公司 一种背面结n型双面晶体硅电池及其制备方法
KR20170033951A (ko) * 2015-09-17 2017-03-28 한국생산기술연구원 나노결정 박막이 형성된 태양전지 및 그 제조방법
EP3147954A1 (en) * 2015-09-22 2017-03-29 Nokia Technologies Oy Photodetector with conductive channel made from two dimensional material and its manufacturing method
CN109888030B (zh) * 2019-03-04 2020-12-29 常州时创能源股份有限公司 晶体硅表面类倒金字塔绒面结构的制备方法
CN114105488A (zh) * 2020-08-26 2022-03-01 上海西源新能源技术有限公司 中性色双层减反射镀膜及具有该镀膜的玻璃及其制备方法
CN116727163B (zh) * 2023-08-10 2023-10-20 常州福睿新材料科技有限公司 一种聚四氟乙烯板材表层轧碾涂布装置及其加工工艺

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3653970A (en) * 1969-04-30 1972-04-04 Nasa Method of coating solar cell with borosilicate glass and resultant product
DE3300400A1 (de) * 1982-01-06 1983-07-14 Canon K.K., Tokyo Halbleiterbauelement
US4554727A (en) * 1982-08-04 1985-11-26 Exxon Research & Engineering Company Method for making optically enhanced thin film photovoltaic device using lithography defined random surfaces
JPS59127879A (ja) * 1983-01-12 1984-07-23 Semiconductor Energy Lab Co Ltd 光電変換装置およびその作製方法
JPH0680837B2 (ja) * 1983-08-29 1994-10-12 通商産業省工業技術院長 光路を延長した光電変換素子
JPS6068663A (ja) 1983-09-26 1985-04-19 Komatsu Denshi Kinzoku Kk アモルフアスシリコン太陽電池
US4956685A (en) 1984-12-21 1990-09-11 Licentia Patent-Verwaltungs Gmbh Thin film solar cell having a concave n-i-p structure
JPH0614554B2 (ja) * 1985-03-22 1994-02-23 工業技術院長 薄膜太陽電池の製造方法
US4994116A (en) * 1985-05-28 1991-02-19 Donaldson Thomas W Wheel device for removing fluid from a fluid carrying chain
US4732621A (en) * 1985-06-17 1988-03-22 Sanyo Electric Co., Ltd. Method for producing a transparent conductive oxide layer and a photovoltaic device including such a layer
US4675468A (en) 1985-12-20 1987-06-23 The Standard Oil Company Stable contact between current collector grid and transparent conductive layer
JPS63119275A (ja) * 1986-11-07 1988-05-23 Sumitomo Bakelite Co Ltd 非晶質シリコン又は薄膜太陽電池
US4808462A (en) * 1987-05-22 1989-02-28 Glasstech Solar, Inc. Solar cell substrate
JPH01106472A (ja) 1987-10-20 1989-04-24 Sanyo Electric Co Ltd 太陽電池
US4904526A (en) * 1988-08-29 1990-02-27 3M Company Electrically conductive metal oxide coatings
JP2663414B2 (ja) 1988-12-30 1997-10-15 太陽誘電株式会社 非晶質半導体太陽電池
JPH04196364A (ja) * 1990-11-28 1992-07-16 Sanyo Electric Co Ltd 光起電力装置の製造方法
FR2694451B1 (fr) * 1992-07-29 1994-09-30 Asulab Sa Cellule photovoltaïque.
JP3222945B2 (ja) * 1992-09-11 2001-10-29 三洋電機株式会社 光起電力装置の製造方法
AUPN679295A0 (en) * 1995-11-23 1995-12-14 Unisearch Limited Conformal films for light-trapping in thin silicon solar cells
JPH10283847A (ja) * 1997-04-01 1998-10-23 Sharp Corp 透明導電膜
JP3416024B2 (ja) * 1997-05-23 2003-06-16 シャープ株式会社 薄膜太陽電池における微粒子塗布膜
JPH1140829A (ja) * 1997-07-16 1999-02-12 Nisshin Steel Co Ltd 太陽電池用絶縁基板及びその製造方法
DE69828936T2 (de) * 1997-10-27 2006-04-13 Sharp K.K. Photoelektrischer Wandler und sein Herstellungsverfahren
JP2001177130A (ja) * 1999-12-16 2001-06-29 Kanegafuchi Chem Ind Co Ltd 太陽電池モジュール

Also Published As

Publication number Publication date
AU755546B2 (en) 2002-12-12
DE69942791D1 (de) 2010-11-04
EP1142031A4 (en) 2007-11-21
AU1501200A (en) 2000-05-29
CN1325550A (zh) 2001-12-05
US6420647B1 (en) 2002-07-16
WO2000028603A1 (en) 2000-05-18
JP2002529937A (ja) 2002-09-10
EP1142031B1 (en) 2010-09-22
AU1533200A (en) 2000-05-29
EP1142031A1 (en) 2001-10-10
AUPP699798A0 (en) 1998-12-03
ATE482472T1 (de) 2010-10-15
ES2351034T3 (es) 2011-01-31
WO2000028602A1 (en) 2000-05-18
US6538195B1 (en) 2003-03-25
JP4532742B2 (ja) 2010-08-25

Similar Documents

Publication Publication Date Title
CN1174494C (zh) 玻璃的二氧化硅膜织构化
US7128975B2 (en) Multicrystalline silicon substrate and process for roughening surface thereof
CN1230917C (zh) 光生伏打元件和光生伏打器件
EP1189288B1 (en) Photoelectric conversion device
CN1767216A (zh) 光电转换装置
EP2149915A2 (en) Method of manufacturing photovoltaic device
US20020162585A1 (en) Photoelectric conversion device and method of manufacturing the same
US20090065051A1 (en) Method and structure for hydrogenation of silicon substrates with shaped covers
JP2012522403A (ja) 光起電力電池、及び、半導体層スタックにおいて光補足を高める方法
KR20100125443A (ko) 광전지용 기판
WO2007040065A1 (ja) 太陽電池及び太陽電池モジュール
JP4903314B2 (ja) 薄膜結晶質Si太陽電池
US20140124030A1 (en) Thin film solar cell and method for manufacturing same
US7517552B2 (en) Glass beads coating process
WO2021030491A1 (en) Perovskite/silicon tandem photovoltaic device
JP2012509603A (ja) 多重接合光電デバイスおよびその製造プロセス
JPH1140832A (ja) 薄膜太陽電池およびその製造方法
TWI483410B (zh) 太陽能電池、其製造方法及其模組
CN117352564A (zh) 钝化接触太阳能电池及其制作方法
US8153887B2 (en) Method and structure for hydrogenation of silicon substrates with shaped covers
KR20050087253A (ko) 전사법을 이용한 태양전지 및 그 제조방법
CN112349791B (zh) 太阳能电池及其制备方法
CN117083721A (zh) 太阳能电池
CN117153911B (zh) 太阳能电池、光伏组件
JPH1070293A (ja) 太陽電池およびその製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: CSG SUN STOCK CO., LTD.

Free format text: FORMER OWNER: PACIFIC SOLAR PTY. LTD.

Effective date: 20041224

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20041224

Address after: Berlin

Patentee after: CSG sun AG

Address before: New South Wales Australia

Patentee before: Pacific Solar Pty. Ltd.

C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20041103

Termination date: 20111108