CN105206699A - 一种背面结n型双面晶体硅电池及其制备方法 - Google Patents

一种背面结n型双面晶体硅电池及其制备方法 Download PDF

Info

Publication number
CN105206699A
CN105206699A CN201510562102.7A CN201510562102A CN105206699A CN 105206699 A CN105206699 A CN 105206699A CN 201510562102 A CN201510562102 A CN 201510562102A CN 105206699 A CN105206699 A CN 105206699A
Authority
CN
China
Prior art keywords
layer
diffusion
type
boron
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510562102.7A
Other languages
English (en)
Inventor
张中伟
李愿杰
黄仑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dongfang Electric Corp
Original Assignee
Dongfang Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dongfang Electric Corp filed Critical Dongfang Electric Corp
Priority to CN201510562102.7A priority Critical patent/CN105206699A/zh
Publication of CN105206699A publication Critical patent/CN105206699A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells back-junction, i.e. rearside emitter, solar cells, e.g. interdigitated base-emitter regions back-junction cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0684Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells double emitter cells, e.g. bifacial solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Sustainable Development (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明提供了一种背面结N型双面晶体硅电池及其制备方法,该电池包括前表面Ag电极、前表面减反射膜、磷扩散N+前表面场层、N型基底、硼扩散发射极P+层、背面钝化复合膜、背面AgAl电极,电池正面与背面均为绒面结构,背面钝化复合膜包括硼硅玻璃层和氮化硅层,硼硅玻璃层在硼扩散发射极P+层之上,氮化硅层沉积在硼硅玻璃层上;本发明电池的正面和背面都可有效接受阳光照射发电,从而可提升电池的综合效率;采用经过氧化处理的硼硅玻璃层和氮化硅层叠层薄膜充当硼发射极的钝化层和后续磷扩散的扩散掩蔽层,可同时实现硼发射极的钝化和扩散掩蔽功能,减少了制程中多次刻蚀和掩膜沉积的过程;本发明工艺简单,生产效率高,生产工艺成本低。

Description

一种背面结N型双面晶体硅电池及其制备方法
技术领域
本发明涉及太阳能电池生产技术领域,特别是一种背面结N型双面晶体硅电池及其制备方法。
背景技术
目前晶体硅电池是太阳能电池市场的主流产品,晶硅太阳能电池从材料基体类型上又可以分为P型晶硅电池和N型晶硅电池。相对于P型单晶硅电池,N型单晶硅电池具有光致衰减小、耐金属杂质污染性能好、少数载流子扩散长度长等特点。这是因为(1)P型电池光致衰减效应产生的原因在于P型晶硅衬底中的硼与氧的结合,因此欲从根本上解决光致衰减效应,就必须避免同时在硅衬底中出现硼和氧,改用N型晶硅代替P型硅作为基底是解决上述问题的有效途径;(2)铁等常见金属杂质对电子的俘获截面比对空穴的俘获截面大,所以在低注人情况下,N型硅比P型硅耐金属杂质污染性好,具有更长的少子寿命;(3)在太阳能级硅材料中,不同体电阻率的N型太阳能级硅少子寿命都在几百微秒到一毫秒之间,远远高于P型硅的水平,所以在一般的太阳光照情况下,N型电池对光照产生的少数载流子收集率高,有利于提高电池的光伏转换性能。目前商业化的高效电池都是在N型单晶的基底上完成的,典型的是美国的Sunpower的背接触电池(IBC)和日本三洋的异质结电池(HIT),光电转换效率分别达到24%和22%的水平,但制程中涉及到繁杂的制备步骤和特殊的设备,每瓦成本居高不下,降价潜力有限。
太阳能电池表面接收的太阳光除了直接由太阳辐射来的分量之外,还包括由空气、尘埃、天空悬浮物等散射引起的相当可观的间接辐射或散射辐射分量,这个分量可达直射的辐射总量的10~30%,在阳光不足的天气,这个比例还要增加。如果光线能从电池背面进入电池体内被吸收转化为电能,则太阳能的利用率即光电转化率将显著提高。所以双面受光的电池可以充分提高太阳电池的输出功率和硅材料的利用率,双面N型晶硅电池结合了双面电池及N型硅材料的优点,已经成为目前研究的热点。
寻求能够较好地兼容目前晶硅电池生产线设备,制备成本较低且效率较高的电池结构跟制备工艺流程对于降低太阳能电池每瓦成本是至关重要的。对于简单结构的双面N型晶硅电池而言,对硼发射极的钝化及电池制备流程中硼、磷扩散制程间的相互掩蔽对于提升电池效率有重要的意义。不同的生产制造商采用不同的制备工艺流程,以先掺硼为例,在完成单面掺杂形成p+硼发射极层后,现有工艺主要采用热氧化生长的SiO2薄膜作为掺磷面的扩散阻挡层,之后再去除SiO2掩蔽层,再进行发射极钝化的处理。这一方法涉及高温过程且步骤繁杂,热氧化的温度高达1000℃以上,同时氧化时间应不少于30min以形成厚度大于100nm的SiO2薄膜。此高温过程易导致p+层的扩散曲线发生改变,如表面掺杂浓度的降低,结深的增加,导致电池的串联电阻增加,电接触性能下降;同时高温过程易导致硅衬底的杂质浓度增加,电池的体复合随之加剧,最终表现为开路电压和整体效率的下降。专利CN102544236B报道在完成单面B掺杂形成p+硼发射极层后,去除硼硅玻璃层,然后利用低压化学气相沉积(LPCVD)的方法在硅片两面沉积SiNx膜,再在B扩面的SiNx上沉积SiO2,利用磷酸去除未被SiO2保护的SiNx面,然后在此面上进行磷扩散,此方法涉及多次镀膜和清洗过程,工艺比较复杂,不利于提高生产效率和降低生产成本。
发明内容
本发明旨在提供一种背面结N型双面晶体硅电池及其制备方法,克服现有技术的不足,简化N型双面晶体硅电池制备工艺,降低成本,适于大规模工业化生产。
为达到上述目的,本发明采用的技术方案是:
一种背面结N型双面晶体硅电池,包括前表面Ag电极、前表面减反射膜、磷扩散N+前表面场层、N型基底、硼扩散发射极P+层、背面钝化复合膜、背面AgAl电极,其特征在于:电池正面与背面均为绒面结构,能够双面受光发电,所述背面钝化复合膜包括一硼硅玻璃层和一氮化硅层,硼硅玻璃层在硼扩散发射极P+层之上,氮化硅层则沉积在硼硅玻璃层上。
所述硼硅玻璃层的厚度在20-50nm之间。
所述氮化硅层的厚度在25-60nm之间。
通过对硼硅玻璃的厚度与后续氮化硅厚度的限制,可以达到更好的匹配,从而达到较好的抗反射效果。
上述背面结N型晶体硅电池的制备方法,包括如下步骤:
(1)将原始N型硅片进行清洗,去除表面的损伤层,制绒;
(2)将步骤(1)处理后的硅片的正面面贴面地放置进行单面硼扩散,硅片背面为硼扩散面,采用BBr3液态源扩散,扩散温度为900~970℃,时间为30~60min,扩散方阻为60~70Ω/□;
(3)在硼扩散推进结束后的降温过程中通入氧气对硼硅玻璃及其与N型硅片的界面进行氧化,通入的氧气的流量为3-16slm,氧化时间为3-40min,直到降温至760℃~840℃;
(4)在氧化后的硼硅玻璃层上用等离子增强化学气相沉积(PECVD)的方法沉积一层氮化硅薄膜,厚度为25-60nm;
(5)利用槽式制绒设备将硅片的正面进行碱式制绒刻蚀,去除硼扩散过程中在正面形成的绕射扩散层,同时形成良好的正面随机金字塔面;
(6)将硅片的背面背靠背进行单面磷扩散,硅片正面为磷扩散面;
(7)利用等离子体刻蚀或激光刻蚀去除磷扩散形成的周边结,利用单面刻蚀设备去除磷扩散在正面形成的磷硅杂质玻璃层(PSG);
(8)在硅片的正面沉积氮化硅减反膜,厚度为70-80nm;
(9)在硅片的背面印刷AgAl浆电极,正面印刷Ag浆电极,烘干烧结,即可得到背面结N型双面晶体硅太阳能电池。
本发明的有益效果是:N型硅片具有少子寿命长的特点,因此在电池前表面产生的光生载流子也能扩散至后表面处的PN结区被收集,同时由于电池背面也是采用的制绒结构,硼硅玻璃层和氮化硅叠层薄膜的厚度经过与折射率匹配的设计对太阳光谱的紫外-可见波段反射率低,因而电池的正面和背面都可以有效地接受阳光照射发电,从而可以提升电池的综合效率。在电池工艺中采用经过氧化处理的硼硅玻璃层和氮化硅层叠层薄膜充当硼发射极的钝化层和后续磷扩散的扩散掩蔽层,可以同时实现硼发射极的钝化和扩散掩蔽的功能,减少了制程中多次刻蚀和掩膜沉积的过程。在制备工艺中对硼扩散推进完毕后的在硼发射极表面形成的硼硅玻璃层进行氧化处理,可降低硅与硼硅玻璃层界面处的B原子的浓度,从而降低界面态的密度,降低了界面复合速率,实现了对硼扩散层的钝化作用。把PN结置于背面并采用BSG/SiNx叠层结构作为电池的硼发射极钝化层和扩散掩蔽层可以大大简化工艺,提高了生产效率,降低生产工艺成本,具有积极的现实意义。
附图说明
下面结合附图和具体实施例对发明进一步说明
图1是本发明的电池结构示意图;
图2是本发明的工艺流程图;
其中,附图1标记为:1是正面银电极;2是正面减反射膜(SiNx);3是磷扩散层正面场(N+层);4是基体材料(N型硅);5是硼扩散发射极(p+层);6是氧化处理的硼硅玻璃层(BSG);7是背面SiNx层;8是背面AgAl金属电极。
具体实施方式
实施例1
如图2所示,一种背面结N型双面晶体硅太阳能电池的制备方法,包括如下步骤:
(1)采用N型单晶硅为衬底,将硅片进行清洗、制绒,N型单晶硅衬底的电阻率为1~12Ω·cm,厚度为170~200mm;
(2)将上述硅片的正面面贴面地放置进行单面硼扩散,硅片背面为硼扩散面,方块电阻为60Ω/□,采用BBr3液态源扩散,扩散温度为970度,时间为60min;
(3)在硼扩散推进结束后的降温过程中通入一定流量的氧气对硼硅玻璃及其与硅的界面进行氧化,直到降温至790℃,氧气的流量为3-16slm,,优选10slm,氧化时间为3-40min,优选20min;
(4)在氧化后的硼硅玻璃层上用等离子增强化学气相沉积(PECVD)的方法沉积一层氮化硅薄膜,厚度为20-70nm,优选40nm;
(5)利用槽式制绒设备对PECVD镀膜后的硅片进行碱式制绒,去除硼扩散时正面绕射层并在硅片正面制备出随机金字塔;
(6)把(5)中的硅片背对背放置于扩散炉中进行磷扩散,扩散温度为790-840℃,沉积与推进时间总共为30-40min,扩散方阻为50-80Ω/□;
(7)利用等离子体刻蚀或激光划刻的方法去除磷扩散形成的周边结,利用单面化学刻蚀系统去除磷扩散在正面形成的磷硅杂质玻璃层(PSG);
(8)利用PECVD系统在硅片正面沉积SiNx抗反射层,厚度为75-80nm;
(9)利用丝网印刷设备在硅片背面印刷AgAl浆,正面印刷Ag浆,烧结,制备出背面结N型晶硅电池。
如图1所示,制备得到的背面结N型双面晶体硅电池,包括前表面Ag电极、前表面减反射膜、磷扩散N+前表面场层、N型基底、硼扩散发射极P+层、背面钝化复合膜、背面AgAl电极,电池正面与背面均为绒面结构,背面钝化复合膜包括一硼硅玻璃层和一氮化硅层,硼硅玻璃层在硼扩散发射极P+层之上,氮化硅层则沉积在硼硅玻璃层上。
实施例2
如图2所示,一种背面结N型晶硅太阳能电池的制备方法,包括如下步骤:
(1)采用N型单晶硅为衬底,将硅片进行清洗、制绒,N型单晶硅衬底的电阻率为1~12Ω·cm,厚度为170~200mm;
(2)将上述硅片的正面面贴面地放置进行单面硼扩散,硅片背面为硼扩散面,方块电阻为70Ω/□,采用BBr3液态源扩散,扩散温度为930℃,时间为60min;
(3)在硼扩散推进结束后的降温过程中通入一定流量的氧气对硼硅玻璃及其与硅的界面进行氧化,直到降温至790℃,氧气的流量为5slm,氧化时间为10min;
(4)在氧化后的硼硅玻璃层上用等离子增强化学气相沉积(PECVD)的方法沉积一层氮化硅薄膜,厚度为50nm;
(5)利用槽式制绒设备对PECVD镀膜后的硅片进行碱式制绒,去除硼扩散时正面绕射层并在硅片正面制备出随机金字塔;
(6)把(5)中的硅片背对背放置于扩散炉中进行磷扩散,扩散温度为790-840℃,沉积与推进时间总共为30-40min,扩散方阻为50-80Ω/□;
(7)利用等离子体刻蚀或激光划刻的方法去除磷扩散形成的周边结,利用单面化学刻蚀系统去除磷扩散在正面形成的磷硅杂质玻璃层(PSG);
(8)利用PECVD系统在硅片正面沉积SiNx抗反射层,厚度为75-80nm;
(9)利用丝网印刷设备在硅片背面印刷AgAl浆,正面印刷Ag浆,烧结,制备出背面结N型晶硅电池。
如图1所示,制备得到的背面结N型双面晶体硅电池,包括前表面Ag电极、前表面减反射膜、磷扩散N+前表面场层、N型基底、硼扩散发射极P+层、背面钝化复合膜、背面AgAl电极,电池正面与背面均为绒面结构,背面钝化复合膜包括一硼硅玻璃层和一氮化硅层,硼硅玻璃层在硼扩散发射极P+层之上,氮化硅层则沉积在硼硅玻璃层上。

Claims (8)

1.一种背面结N型双面晶体硅电池,包括前表面Ag电极、前表面减反射膜、磷扩散N+前表面场层、N型基底、硼扩散发射极P+层、背面钝化复合膜、背面AgAl电极,其特征在于:PN结位于电池背面,电池正面与背面均为绒面结构,所述背面钝化复合膜包括一硼硅玻璃层和一氮化硅层,硼硅玻璃层在硼扩散发射极P+层之上,氮化硅层则沉积在硼硅玻璃层上。
2.根据权利要求1所述的一种背面结N型晶硅电池,其特征在于:所述硼硅玻璃层的厚度在20-50nm之间。
3.根据权利要求1所述的一种背面结N型晶硅电池,其特征在于:所述氮化硅层的厚度在25-60nm之间。
4.制备权利要求1-3中任意一项所述的背面结N型晶体硅电池的方法,其特征在于包括如下步骤:
(1)将原始N型硅片进行清洗,去除表面的损伤层,制绒;
(2)将步骤(1)处理后的硅片的正面面贴面地放置进行单面硼扩散,N型硅片背面为硼扩散面;
(3)在硼扩散推进结束后的降温过程中通入氧气,对硼硅玻璃及其与N型硅片的界面进行氧化,直到降温至760℃~840℃;
(4)在氧化后的硼硅玻璃层上用等离子增强化学气相沉积的方法沉积一层氮化硅薄膜;
(5)利用槽式制绒设备将N型硅片的正面进行碱式制绒刻蚀,去除硼扩散过程中在正面形成的绕射扩散层,同时形成正面随机金字塔面;
(6)将硅片的背面背靠背进行单面磷扩散,硅片正面为磷扩散面;
(7)利用等离子体刻蚀或激光刻蚀去除磷扩散形成的周边结,利用单面刻蚀设备去除磷扩散在正面形成的磷硅杂质玻璃层;
(8)在硅片的正面沉积氮化硅减反膜;
(9)在硅片的两面分别印刷金属电极,烧结,即可得到N型晶硅太阳能电池。
5.根据权利要求4所述的背面结N型晶体硅电池的制备方法,其特征在于:步骤(2)中做单面硼扩散时,采用BBr3液态源扩散,扩散方阻为60~70Ω/□,扩散温度为900~970℃,时间为30~60min。
6.根据权利要求4所述的N型晶体硅电池的制备方法,其特征在于:所述步骤(3)的氧化过程中通入氧气的流量为3-16slm,氧化时间为3-40min。
7.根据权利要求6所述的N型晶体硅电池的制备方法,其特征在于:所述步骤(3)的氧化过程中通入氧气的流量为4-10slm,氧化时间为10-30min。
8.根据权利要求4所述的N型晶体硅电池的制备方法,其特征在于:步骤(4)中的沉积温度为400~450℃,沉积厚度为25-60nm。
CN201510562102.7A 2015-09-07 2015-09-07 一种背面结n型双面晶体硅电池及其制备方法 Pending CN105206699A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510562102.7A CN105206699A (zh) 2015-09-07 2015-09-07 一种背面结n型双面晶体硅电池及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510562102.7A CN105206699A (zh) 2015-09-07 2015-09-07 一种背面结n型双面晶体硅电池及其制备方法

Publications (1)

Publication Number Publication Date
CN105206699A true CN105206699A (zh) 2015-12-30

Family

ID=54954253

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510562102.7A Pending CN105206699A (zh) 2015-09-07 2015-09-07 一种背面结n型双面晶体硅电池及其制备方法

Country Status (1)

Country Link
CN (1) CN105206699A (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106129173A (zh) * 2016-06-28 2016-11-16 浙江晶科能源有限公司 一种n型双面电池的制造方法
CN106229357A (zh) * 2016-09-22 2016-12-14 东莞市联洲知识产权运营管理有限公司 一种太阳能光伏电池
CN106784131A (zh) * 2016-11-11 2017-05-31 揭阳中诚集团有限公司 基于n型硅片的太阳能电池片及其制备方法
CN107369726A (zh) * 2017-05-26 2017-11-21 泰州隆基乐叶光伏科技有限公司 n型晶体硅双面太阳电池
CN107731965A (zh) * 2017-11-22 2018-02-23 奕铭(大连)科技发展有限公司 一种太阳能电池的制备方法
CN109346606A (zh) * 2018-09-30 2019-02-15 苏州钱正科技咨询有限公司 一种新型杂化光伏电池及其制备方法
CN109802008A (zh) * 2019-01-18 2019-05-24 江苏大学 一种高效低成本n型背结pert双面电池的制造方法
CN110299434A (zh) * 2019-07-17 2019-10-01 浙江晶科能源有限公司 一种n型双面电池的制作方法
CN111584666A (zh) * 2020-06-09 2020-08-25 山西潞安太阳能科技有限责任公司 一种新的p型晶硅电池结构及其制备工艺
CN112812776A (zh) * 2019-11-15 2021-05-18 苏州阿特斯阳光电力科技有限公司 一种腐蚀液及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6420647B1 (en) * 1998-11-06 2002-07-16 Pacific Solar Pty Limited Texturing of glass by SiO2 film
CN101692466A (zh) * 2009-09-17 2010-04-07 中电电气(南京)光伏有限公司 基于丝网印刷工艺的制作高效双面n型晶体硅太阳电池的方法
CN103887347A (zh) * 2014-03-13 2014-06-25 中国东方电气集团有限公司 一种双面p型晶体硅电池结构及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6420647B1 (en) * 1998-11-06 2002-07-16 Pacific Solar Pty Limited Texturing of glass by SiO2 film
CN101692466A (zh) * 2009-09-17 2010-04-07 中电电气(南京)光伏有限公司 基于丝网印刷工艺的制作高效双面n型晶体硅太阳电池的方法
CN103887347A (zh) * 2014-03-13 2014-06-25 中国东方电气集团有限公司 一种双面p型晶体硅电池结构及其制备方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106129173A (zh) * 2016-06-28 2016-11-16 浙江晶科能源有限公司 一种n型双面电池的制造方法
CN106229357A (zh) * 2016-09-22 2016-12-14 东莞市联洲知识产权运营管理有限公司 一种太阳能光伏电池
CN106784131A (zh) * 2016-11-11 2017-05-31 揭阳中诚集团有限公司 基于n型硅片的太阳能电池片及其制备方法
CN107369726A (zh) * 2017-05-26 2017-11-21 泰州隆基乐叶光伏科技有限公司 n型晶体硅双面太阳电池
CN107369726B (zh) * 2017-05-26 2023-09-15 泰州隆基乐叶光伏科技有限公司 n型晶体硅双面太阳电池
CN107731965A (zh) * 2017-11-22 2018-02-23 奕铭(大连)科技发展有限公司 一种太阳能电池的制备方法
CN109346606B (zh) * 2018-09-30 2022-11-15 新优(宁波)智能科技有限公司 一种杂化光伏电池及其制备方法
CN109346606A (zh) * 2018-09-30 2019-02-15 苏州钱正科技咨询有限公司 一种新型杂化光伏电池及其制备方法
CN109802008A (zh) * 2019-01-18 2019-05-24 江苏大学 一种高效低成本n型背结pert双面电池的制造方法
CN109802008B (zh) * 2019-01-18 2021-03-26 江苏大学 一种高效低成本n型背结pert双面电池的制造方法
CN110299434A (zh) * 2019-07-17 2019-10-01 浙江晶科能源有限公司 一种n型双面电池的制作方法
CN112812776A (zh) * 2019-11-15 2021-05-18 苏州阿特斯阳光电力科技有限公司 一种腐蚀液及其制备方法和应用
CN111584666A (zh) * 2020-06-09 2020-08-25 山西潞安太阳能科技有限责任公司 一种新的p型晶硅电池结构及其制备工艺

Similar Documents

Publication Publication Date Title
CN105206699A (zh) 一种背面结n型双面晶体硅电池及其制备方法
CN105047742A (zh) 一种双面n型晶体硅电池及其制备方法
CN103489934B (zh) 一种双面透光的局部铝背场太阳能电池及其制备方法
KR101000064B1 (ko) 이종접합 태양전지 및 그 제조방법
CN102222726B (zh) 采用离子注入法制作交错背接触ibc晶体硅太阳能电池的工艺
CN103887347B (zh) 一种双面p型晶体硅电池结构及其制备方法
CN101937944A (zh) 双面钝化的晶体硅太阳电池的制备方法
CN105097978A (zh) 一种n型背结晶体硅电池及其制备方法
CN102403369A (zh) 一种用于太阳能电池的钝化介质膜
CN102683493A (zh) N型晶体硅双面背接触太阳电池的制备方法
CN105226115A (zh) 一种n型晶硅电池及其制备方法
CN102364691A (zh) 具有上/下转换发光结构的晶体硅太阳能电池及制备方法
CN110034193A (zh) 一种Topcon钝化结构的多细栅IBC电池及其制备方法
CN202134564U (zh) 一种新型ibc 结构n型硅异质结电池
CN211295118U (zh) 一种双面钝化晶体硅太阳能电池
CN203812893U (zh) 一种n型背结太阳能电池
JP2023507176A (ja) 両面タンデム太陽電池とモジュール
CN108461554A (zh) 全背接触式异质结太阳能电池及其制备方法
CN103187482A (zh) 一种晶硅太阳能mwt电池的制造方法及其制造的电池
CN114050105A (zh) 一种TopCon电池的制备方法
CN104134706B (zh) 一种石墨烯硅太阳电池及其制作方法
CN112510116A (zh) 一种抗LeTID钝化接触太阳能电池及其生产工艺
CN103035771B (zh) N型mwt太阳能电池结构及其制造工艺
CN216563145U (zh) 电池背面结构及双面TOPCon太阳能电池
US8445311B2 (en) Method of fabricating a differential doped solar cell

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20151230

RJ01 Rejection of invention patent application after publication