CN117362068B - 一种铝电解用尖晶石基多孔保温盖板的制备方法 - Google Patents

一种铝电解用尖晶石基多孔保温盖板的制备方法 Download PDF

Info

Publication number
CN117362068B
CN117362068B CN202311433788.0A CN202311433788A CN117362068B CN 117362068 B CN117362068 B CN 117362068B CN 202311433788 A CN202311433788 A CN 202311433788A CN 117362068 B CN117362068 B CN 117362068B
Authority
CN
China
Prior art keywords
spinel
foaming agent
cover plate
silicate
carbonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202311433788.0A
Other languages
English (en)
Other versions
CN117362068A (zh
Inventor
刘建华
黄梓铭
王光平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN202311433788.0A priority Critical patent/CN117362068B/zh
Publication of CN117362068A publication Critical patent/CN117362068A/zh
Application granted granted Critical
Publication of CN117362068B publication Critical patent/CN117362068B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/02Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding chemical blowing agents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • C04B35/443Magnesium aluminate spinel
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0022Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof obtained by a chemical conversion or reaction other than those relating to the setting or hardening of cement-like material or to the formation of a sol or a gel, e.g. by carbonising or pyrolysing preformed cellular materials based on polymers, organo-metallic or organo-silicon precursors
    • C04B38/0025Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof obtained by a chemical conversion or reaction other than those relating to the setting or hardening of cement-like material or to the formation of a sol or a gel, e.g. by carbonising or pyrolysing preformed cellular materials based on polymers, organo-metallic or organo-silicon precursors starting from inorganic materials only, e.g. metal foam; Lanxide type products
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/08Cell construction, e.g. bottoms, walls, cathodes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5212Organic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及一种铝电解用尖晶石基多孔保温盖板的制备方法,属于新型复合材料技术领域。制备硅酸盐‑碳酸盐‑纤维复合发泡剂;制备复合增韧剂;以尖晶石基材料作为原料,将尖晶石基材料、硅酸盐‑碳酸盐‑纤维复合发泡剂和复合增韧剂按照质量比为5‑7:2:1‑3混合均匀得到混合料,混合料放入定制模具中,在压力为10MPa‑200MPa,温度为1200℃‑1470℃,保温2‑6h,进行烧结成型一体化,得到铝电解用尖晶石基多孔保温盖板。发明所制备的铝电解用尖晶石基多孔保温盖板所具备耐腐蚀、多孔保温性能优越同时质量较轻、抗压抗震性能优越、高韧性等性能。

Description

一种铝电解用尖晶石基多孔保温盖板的制备方法
技术领域
本发明涉及一种铝电解用尖晶石基多孔保温盖板的制备方法,属于新型复合材料技术领域。
背景技术
目前铝电解槽所用的保温盖板主要其保温性能差、抗震抗压性能差,盖板的料易脱落在电解质中污染电解质,导致后期耗费大量的人力物力去清理电解质中的杂质;同时质量较重所以操作难度较大,在更换阳极过程中会造成大量的热量损失,我们应当节约能耗、降低能源损失,因此传统的用铝电解保温料性能有明显缺陷,所带来的经济效益不高。
针对上述中的传统材料,传统铝电解用保温料存在以下缺陷:传统的铝电解用保温材,1:其料容易脱落,更换阳极过程中要将掉落在电解质中的散料清理,其操作难度大,且时间较长,热量散失严重;2:其保温料粉末易破碎掉入电解质中会很大程度上对电解质造成污染,所以增加了后期清理电解质的工作量。3:传统铝电解保温装置使得劳动强度大幅增加的同时也使得大量能量的损耗,不利于节能减排低碳量的排放。
因此制备一种耐腐蚀、多孔保温且质轻、韧性好、抗震抗压性能优越的铝电解用多孔保温盖板方可解决以上缺陷。
发明内容
针对传统的铝电解用保温盖板耐腐蚀性能差、抗压抗震性能不好、换极操作难度大,散失热量巨大,易破碎等缺陷,本发明提供一种铝电解用尖晶石基多孔保温盖板的制备方法。本发明目的之一在于提高保温盖板的耐腐蚀性能;目的之二在于提高尖晶石基材料的多孔性使其质轻以提高其保温性能;目的之三在于提高所制备保温板的韧性以及抗震抗压强度高使其不易断裂;目的之四所用烧结成型一体化技术可以使得其操作简便,提高其生产效益,创造更大的经济效益。
本发明所使用的原料为尖晶石基材料,其包括镁铝尖晶石、镍铁尖晶石、锌铬尖晶石等尖晶石基材料等,因其本身具有耐腐蚀,高抗压抗震性能,优异的机械性能。这种尖晶石基材料拥有如此优越的性能,再将其经行发泡、增韧、烧结成型处理可以更大程度提高其耐腐蚀,抗压抗震,保温等性能以制备铝电解用尖晶石基多孔保温盖板。
本发明通过以下技术方案实现。
一种铝电解用尖晶石基多孔保温盖板的制备方法,其包括以下步骤:
S1、制备硅酸盐-碳酸盐-纤维复合发泡剂;
S2、制备复合增韧剂;
S3、以尖晶石基材料作为原料,将尖晶石基材料、S1制备得到的硅酸盐-碳酸盐-纤维复合发泡剂和S2制备复合增韧剂按照质量比为5-7:2:1-3混合均匀得到混合料,混合料放入定制模具中,在压力为10MPa-200MPa,温度为1200℃-1470℃,保温2-6h,进行烧结成型一体化,得到铝电解用尖晶石基多孔保温盖板。
所述S1中硅酸盐-碳酸盐-纤维复合发泡剂的制备方法为:
S1.1、将硅酸盐、碳酸盐和纤维按照质量百分比为80%-90%:5%-12%:4%-8%混合均匀得到混合发泡剂物料;
S1.2、将S1.1中的混合发泡剂物料,在超声频率为20.2KHZ-20.8KHZ、功率为400W-1500W,同时以500r/min磁力搅拌,超声和磁力搅拌2h-6h,得到超声处理发泡剂物料;
S1.3、将S1.2中的超声处理发泡剂物料,以5-10℃/min的升温速率,升温至温度为200℃-280℃,在通入惰性气体条件下烧结2h-8h得到硅酸盐-碳酸盐-纤维复合发泡剂。
所述S2中复合增韧剂的制备方法为:将纤维和硅烷偶联剂按照固液比为2-8:1g/mL混合均匀,然后在微波场为2200MHZ-3200MHZ、波长32-70cm,温度为140℃-280℃下微波处理160min-200min,处理完成后得到复合增韧剂。
所述S3中尖晶石基材料包括镁铝尖晶石、镍铁尖晶石或锌铬尖晶石尖的晶石基材料。
上述制备得到铝电解用尖晶石基多孔保温盖板为内部多孔结构。
上述S3中制备得到的铝电解用尖晶石基多孔保温盖板将进一步制备得到用于铝电解盖板尺寸大小的保温盖板。
本发明的有益效果是:
(1)本发明通过选用尖晶石基材料如镁铝尖晶石、镍铁尖晶石、锌铬尖晶石等尖晶石基材料本身具有很好的耐腐蚀性能。
(2)本发明制备硅酸盐-碳酸盐-纤维复合发泡剂可以有效地使得尖晶石基形成多孔状提高孔隙率使得材料的保温性能优越同时增加其抗震抗压强度;其次在微波水热的条件下用硅烷耦合剂改性的纤维可以很好的改性纤维以增强增韧剂的性能,同时提高增韧剂的粘度,可以使得增韧剂很好地附着在目标材料上。
(3)本发明所使用的烧结成型一体化技术可以将已制备的物料放入可以增温增压的模具中进行烧结成型一体化技术可以得到理想的成品,使得操作过程简便,实现智能化烧结成型,最大程度上提高其成产效率,减少在生产合成过程中时间和经济的损耗以及减少人工劳动成本。
(4)本发明所制备的铝电解用尖晶石基多孔保温盖板所具备耐腐蚀、多孔保温性能优越同时质量较轻、抗压抗震性能优越、高韧性等性能。使得铝电解过程中减少能量的损耗,以及具有很好的耐腐蚀性能所以降低了原材料的损耗。最大程度增加了铝电解过程中的经济效益,最大程度上实现了节能减排以及降低碳的排放量。
附图说明
图1是本发明本发明实施例1制备得到的铝电解槽用多孔保温盖板和对比例1制备得到的保温盖板的粒度分布的测试图,其中(a)为对比例1制备得到的多孔保温盖板,(b)为实施例1制备得到的铝电解槽多孔保温盖板;
图2是本发明实施例1制备得到的铝电解槽用多孔保温盖板实物图。
具体实施方式
下面结合附图和具体实施方式,对本发明作进一步说明。
实施例1
将铝电解用尖晶石基多孔保温盖板的制备方法,其包括以下步骤:
S1、制备硅酸盐-碳酸盐-纤维复合发泡剂;硅酸盐-碳酸盐-纤维复合发泡剂的制备方法为:
S1.1、将硅酸盐(硅酸钠)、碳酸盐(碳酸钠)和纤维(聚丙烯腈预氧化纤维)按照质量百分比为80%:12%:8%混合均匀得到混合发泡剂物料;
S1.2、将S1.1中的混合发泡剂物料,在超声频率为20.4KHZ、功率为800W,同时以500r/min磁力搅拌,超声和磁力搅拌2h,得到超声处理发泡剂物料;
S1.3、将S1.2中的超声处理发泡剂物料,以5℃/min的升温速率,升温至温度为200℃-240℃,在通入惰性气体(氩气,氩气通入量为2L/min)条件下烧结4h得到硅酸盐-碳酸盐-纤维复合发泡剂;
S2、制备复合增韧剂;复合增韧剂的制备方法为:将纤维和硅烷偶联剂按照固液比为6:1g/mL混合均匀,然后在微波场为2450MHZ、波长32cm,温度为160℃下微波处理180min,处理完成后得到复合增韧剂;
S3、以尖晶石基材料作为原料,将尖晶石基材料(镁铝尖晶石,尺寸为50cm×60cm的镁铝尖晶石)、S1制备得到的硅酸盐-碳酸盐-纤维复合发泡剂和S2制备复合增韧剂按照质量比为7:2:1混合均匀得到混合料,混合料放入定制模具中,在压力为180MPa,温度为1470℃,保温2h,进行烧结成型一体化,得到铝电解用尖晶石基多孔保温盖板。
本发明制备得到的铝电解用尖晶石基多孔保温盖板为内部多孔结构,其粒度分布的测试图如图1(b)所示,本发明制备得到的铝电解用尖晶石基多孔保温盖板实物图如图2所示。
铝电解用尖晶石基多孔保温盖板质量仅为未使用复合发泡剂所制备的保温盖板的的16%,抗压强度是320MPa,弹性模量是70GPa。
对比实施例1
省略实施例1中的S1,其他步骤不变
S2、制备复合增韧剂;复合增韧剂的制备方法为:将纤维和硅烷偶联剂按照固液比为6:1g/mL混合均匀,然后在微波场为2450MHZ、波长32cm,温度为160℃下微波水热处理180min,处理完成后得到复合增韧剂;
S3、以尖晶石基材料作为原料,将尖晶石基材料(镁铝尖晶石,尺寸为50cm×60cm的镁铝尖晶石)和S2制备复合增韧剂按照质量比为9:1混合均匀得到混合料,混合料放入定制模具中,在压力为180MPa,温度为1470℃,保温2h,进行烧结成型一体化,得到保温盖板。
本对比实施例1制备得到的保温盖板内部也有孔,其粒度分布的测试图如图1(a)所示。
实施例1和对比实施例1的粒径分布图如图一说明此尖晶石材料(镁铝尖晶石材料)都有很好的孔隙率,高比表面积。图1(b)是经硅酸钠-碳酸钠-纤维复合发泡剂的作用,可以直白地表现出此材料更加多孔,表面积更大,经发泡剂作用其孔径在10nm、18nm、23nm、40nm均有分布其均属于介孔,同时也有少量的大孔,如150nm也有少量的分布,其进一步说明经硅酸钠-碳酸钠-纤维的发泡作用使得材料拥有更加复杂的孔径分布,同样此材料的多孔性能也使得保温性能更加优越。
实施例2
将铝电解用尖晶石基多孔保温盖板的制备方法,其包括以下步骤:
S1、制备硅酸盐-碳酸盐-纤维复合发泡剂;硅酸盐-碳酸盐-纤维复合发泡剂的制备方法为:
S1.1、将硅酸盐(硅酸钠)、碳酸盐(碳酸钠)和纤维(聚丙烯腈预氧化纤维)按照质量百分比为90%:6%:4%混合均匀得到混合发泡剂物料;
S1.2、将S1.1中的混合发泡剂物料,在超声频率为20.2KHZ、功率为600W,同时以500r/min磁力搅拌,超声和磁力搅拌2h,得到超声处理发泡剂物料;
S1.3、将S1.2中的超声处理发泡剂物料,以5℃/min的升温速率,升温至温度为220℃-260℃,在通入惰性气体(氮气,氮气通入量为2L/min)条件下烧结4h得到硅酸盐-碳酸盐-纤维复合发泡剂;
S2、制备复合增韧剂;复合增韧剂的制备方法为:将纤维和硅烷偶联剂按照固液比为4:1g/mL混合均匀,然后在微波场为2780MHZ、波长40cm,温度为200℃下微波处理160min,处理完成后得到复合增韧剂;
S3、以尖晶石基材料作为原料,将尖晶石材料(镍铁尖晶石材料,尺寸为50cm×60cm的镍铁尖晶石)、S1制备得到的硅酸盐-碳酸盐-纤维复合发泡剂和S2制备复合增韧剂按照质量比为5:2:3混合均匀得到混合料,混合料放入定制模具中,在压力为90MPa,温度为1200℃,保温6h,进行烧结成型一体化,得到铝电解用尖晶石基多孔保温盖板。
实施例3
将铝电解用尖晶石基多孔保温盖板的制备方法,其包括以下步骤:
S1、制备硅酸盐-碳酸盐-纤维复合发泡剂;硅酸盐-碳酸盐-纤维复合发泡剂的制备方法为:
S1.1、将硅酸盐(硅酸钠)、碳酸盐(碳酸钠)和纤维(聚丙烯腈预氧化纤维)按照质量百分比为82%:12%:6%混合均匀得到混合发泡剂物料;
S1.2、将S1.1中的混合发泡剂物料,在超声频率为20.6KHZ、功率为1500W,同时以500r/min磁力搅拌,超声和磁力搅拌6h,得到超声处理发泡剂物料;
S1.3、将S1.2中的超声处理发泡剂物料,以5℃/min的升温速率,升温至温度为240℃-280℃,在通入惰性气体(氮气,氮气通入量为2L/min)条件下烧结8h得到硅酸盐-碳酸盐-纤维复合发泡剂;
S2、制备复合增韧剂;复合增韧剂的制备方法为:将纤维和硅烷偶联剂按照固液比为2:1g/mL混合均匀,然后在微波场为3200MHZ、波长60cm,温度为190℃下微波处理170min,处理完成后得到复合增韧剂;
S3、以尖晶石基材料作为原料,将尖晶石材料(锌铬尖晶石材料,尺寸为50cm×60cm的锌铬尖晶石)、S1制备得到的硅酸盐-碳酸盐-纤维复合发泡剂和S2制备复合增韧剂按照质量比为6:2:2混合均匀得到混合料,混合料放入定制模具中,在压力为40MPa,温度为1300℃,保温2h,进行烧结成型一体化,得到铝电解用尖晶石基多孔保温盖板。
实施例4
将铝电解用尖晶石基多孔保温盖板的制备方法,其包括以下步骤:
S1、制备硅酸盐-碳酸盐-纤维复合发泡剂;硅酸盐-碳酸盐-纤维复合发泡剂的制备方法为:
S1.1、将硅酸盐(硅酸钠)、碳酸盐(碳酸钠)和纤维(聚丙烯腈预氧化纤维)按照质量百分比为88%:8%:4%混合均匀得到混合发泡剂物料;
S1.2、将S1.1中的混合发泡剂物料,在超声频率为20.8KHZ、功率为1400W,同时以500r/min磁力搅拌,超声和磁力搅拌5h,得到超声处理发泡剂物料;
S1.3、将S1.2中的超声处理发泡剂物料,以5℃/min的升温速率,升温至温度为230℃-270℃,在通入惰性气体(氩气,氩气通入量为2L/min)条件下烧结7h得到硅酸盐-碳酸盐-纤维复合发泡剂;
S2、制备复合增韧剂;复合增韧剂的制备方法为:将纤维和硅烷偶联剂按照固液比为8:1g/mL混合均匀,然后在微波场为3000MHZ、波长70cm,温度为240℃下微波水热处理190min,处理完成后得到复合增韧剂;
S3、以尖晶石基材料作为原料,将尖晶石材料(镁铝尖晶石材料,尺寸为50cm×60cm的镁铝尖晶石)、S1制备得到的硅酸盐-碳酸盐-纤维复合发泡剂和S2制备复合增韧剂按照质量比为7:2:1混合均匀得到混合料,混合料放入定制模具中,在压力为140MPa,温度为1400℃,保温5h,进行烧结成型一体化,得到铝电解用尖晶石基多孔保温盖板。
以上结合附图对本发明的具体实施方式作了详细说明,但是本发明并不限于上述实施方式,在本领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。

Claims (2)

1.一种铝电解用尖晶石基多孔保温盖板的制备方法,其特征在于包括以下步骤:
S1、制备硅酸盐-碳酸盐-纤维复合发泡剂;
S2、制备复合增韧剂;
S3、以尖晶石材料作为原料,将尖晶石材料、S1制备得到的硅酸盐-碳酸盐-纤维复合发泡剂和S2制备复合增韧剂按照质量比为5-7:2:1-3混合均匀得到混合料,混合料放入定制模具中,在压力为10MPa-200MPa,温度为1200℃-1470℃,保温2-6h,进行烧结成型一体化,得到铝电解用尖晶石基多孔保温盖板;
所述S1中硅酸盐-碳酸盐-纤维复合发泡剂的制备方法为:
S1.1、将硅酸盐、碳酸盐和纤维按照质量百分比为80%-90%:5%-12%:4%-8%混合均匀得到混合发泡剂物料;所述混合发泡剂物料中纤维为聚丙烯腈预氧化纤维;
S1.2、将S1.1中的混合发泡剂物料,在超声频率为20.2KHZ-20.8KHZ、功率为400W-1500W,同时以500r/min磁力搅拌,超声和磁力搅拌2h-6h,得到超声处理发泡剂物料;
S1.3、将S1.2中的超声处理发泡剂物料,以5-10℃/min的升温速率,升温至温度为200℃-280℃,在通入惰性气体条件下烧结2h-8h得到硅酸盐-碳酸盐-纤维复合发泡剂;
所述S2中复合增韧剂的制备方法为:将纤维和硅烷偶联剂按照固液比为2-8:1g/mL混合均匀,然后在微波场为2200MHZ-3200MHZ、波长32-70cm,温度为140℃-280℃下微波处理160min-200min,处理完成后得到复合增韧剂。
2.根据权利要求1所述的铝电解用尖晶石基多孔保温盖板的制备方法,其特征在于:所述S3中尖晶石材料包括镁铝尖晶石、镍铁尖晶石或锌铬尖晶石。
CN202311433788.0A 2023-10-31 2023-10-31 一种铝电解用尖晶石基多孔保温盖板的制备方法 Active CN117362068B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311433788.0A CN117362068B (zh) 2023-10-31 2023-10-31 一种铝电解用尖晶石基多孔保温盖板的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311433788.0A CN117362068B (zh) 2023-10-31 2023-10-31 一种铝电解用尖晶石基多孔保温盖板的制备方法

Publications (2)

Publication Number Publication Date
CN117362068A CN117362068A (zh) 2024-01-09
CN117362068B true CN117362068B (zh) 2024-05-03

Family

ID=89398136

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311433788.0A Active CN117362068B (zh) 2023-10-31 2023-10-31 一种铝电解用尖晶石基多孔保温盖板的制备方法

Country Status (1)

Country Link
CN (1) CN117362068B (zh)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1759207A (zh) * 2003-03-12 2006-04-12 皮奇尼铝公司 用于熔融浴电解生产铝的惰性阳极的制造方法
CN101725032A (zh) * 2009-12-22 2010-06-09 暨南大学 一种植物纤维的微波改性方法及其应用
CN103467072A (zh) * 2013-08-27 2013-12-25 中国科学院宁波材料技术与工程研究所 一种轻质微孔刚玉陶瓷的制备方法
CN103820813A (zh) * 2013-11-28 2014-05-28 云南云铝润鑫铝业有限公司 一种保温电解槽
CN104876638A (zh) * 2015-04-13 2015-09-02 河南工程学院 一种纳米级多孔陶瓷用造孔剂及其制备方法和应用
CN105887463A (zh) * 2016-04-25 2016-08-24 西安交通大学 一种碳纤维表面活性提高的微波辐射处理方法与装置
CN106810285A (zh) * 2017-01-14 2017-06-09 中国矿业大学(北京) 一种原位生成碳纤维增韧氧化铝陶瓷的制备方法
CN107442741A (zh) * 2017-08-21 2017-12-08 马鞍山市三川机械制造有限公司 一种高品质铸造涂料的制备方法
JP2018087115A (ja) * 2016-11-30 2018-06-07 三菱重工業株式会社 セラミックス基複合材の製造方法
CN109834271A (zh) * 2019-02-25 2019-06-04 俞小峰 一种电解铝槽专用长效抗渗透砖的制备方法
CN110950631A (zh) * 2019-11-29 2020-04-03 安徽云数推网络科技有限公司 一种利用尾矿制备的轻质发泡陶瓷保温板及其制备方法
CN112250423A (zh) * 2020-10-28 2021-01-22 河南鑫诚耐火材料股份有限公司 一种防渗高强镁橄榄石轻质隔热砖及其制备方法
CN112831803A (zh) * 2021-01-05 2021-05-25 中南大学 一种双层密闭铝电解槽及其上部保温罩
CN115074777A (zh) * 2022-06-27 2022-09-20 中南大学 一种可柔性运行的大型双层密闭惰性阳极铝电解槽

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1759207A (zh) * 2003-03-12 2006-04-12 皮奇尼铝公司 用于熔融浴电解生产铝的惰性阳极的制造方法
CN101725032A (zh) * 2009-12-22 2010-06-09 暨南大学 一种植物纤维的微波改性方法及其应用
CN103467072A (zh) * 2013-08-27 2013-12-25 中国科学院宁波材料技术与工程研究所 一种轻质微孔刚玉陶瓷的制备方法
CN103820813A (zh) * 2013-11-28 2014-05-28 云南云铝润鑫铝业有限公司 一种保温电解槽
CN104876638A (zh) * 2015-04-13 2015-09-02 河南工程学院 一种纳米级多孔陶瓷用造孔剂及其制备方法和应用
CN105887463A (zh) * 2016-04-25 2016-08-24 西安交通大学 一种碳纤维表面活性提高的微波辐射处理方法与装置
JP2018087115A (ja) * 2016-11-30 2018-06-07 三菱重工業株式会社 セラミックス基複合材の製造方法
CN106810285A (zh) * 2017-01-14 2017-06-09 中国矿业大学(北京) 一种原位生成碳纤维增韧氧化铝陶瓷的制备方法
CN107442741A (zh) * 2017-08-21 2017-12-08 马鞍山市三川机械制造有限公司 一种高品质铸造涂料的制备方法
CN109834271A (zh) * 2019-02-25 2019-06-04 俞小峰 一种电解铝槽专用长效抗渗透砖的制备方法
CN110950631A (zh) * 2019-11-29 2020-04-03 安徽云数推网络科技有限公司 一种利用尾矿制备的轻质发泡陶瓷保温板及其制备方法
CN112250423A (zh) * 2020-10-28 2021-01-22 河南鑫诚耐火材料股份有限公司 一种防渗高强镁橄榄石轻质隔热砖及其制备方法
CN112831803A (zh) * 2021-01-05 2021-05-25 中南大学 一种双层密闭铝电解槽及其上部保温罩
CN115074777A (zh) * 2022-06-27 2022-09-20 中南大学 一种可柔性运行的大型双层密闭惰性阳极铝电解槽

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Optimization of response surface methodology (RSM) for defluorination of spent carbon cathode (SCC) in fire-roasting aluminum electrolysis;Zhu, Z等;《MINERALS ENGINEERING》;20220531;第182卷;第1-3页 *
镁铝尖晶石多孔陶瓷的制备及性能;李思蒙;黄建国;;硅酸盐学报;20180702(第09期);第1-2页 *

Also Published As

Publication number Publication date
CN117362068A (zh) 2024-01-09

Similar Documents

Publication Publication Date Title
CN101591178B (zh) 刚性碳纤维隔热保温材料的制造及表面处理方法
CN101423403B (zh) 一种碳硅化铝和碳化硅复合材料及其制备方法
CN101423404B (zh) 一种Al4SiC4/SiC复合耐火材料及其制备方法
CN103467102A (zh) 一种氮化硅多孔陶瓷及其制备方法
CN109251005A (zh) 一种增强二氧化硅气凝胶材料的制备方法
CN115321939B (zh) 一种宽频共振高效吸声砖的制备方法
CN111517761A (zh) 一种复合内衬材料及其应用和应用方法
CN117362068B (zh) 一种铝电解用尖晶石基多孔保温盖板的制备方法
CN113718370A (zh) 一种中空碳化硅纤维的制备方法
CN111004018B (zh) 一种高温相变储热材料、储热砖及其制备方法
CN110040995B (zh) 一种高温用轻质韧性莫来石骨料制备方法
CN103396138B (zh) 转炉镁碳砖及其制备方法
CN201537480U (zh) 立方氮化硼高压合成装置
CN108083698A (zh) 一种低密度等级的无机非金属固体浮力材料及其制备方法
CN103285873B (zh) 一种合成多晶金刚石用触媒及其制备方法
CN102260884B (zh) 一种短流程高密度低电阻块状石墨阳极的制备方法
CN115626798B (zh) 一种基于金属有机框架材料的碳捕捉混凝土及其制备方法
CN108929072B (zh) 一种从铁尾矿制备氧化铁及纳米复合隔热保温材料的方法
CN106083175B8 (zh) 一种复合陶瓷蓄热基体材料的制备方法
CN115322751A (zh) 电蓄热用高温相变储热材料、储热砖及其制备方法
CN108947469B (zh) 一种从铁尾矿制备二氧化硅复合尾矿渣隔热保温材料的方法
CN114988903A (zh) 一种高强度低收缩率多孔陶瓷及其制备方法
CN107285792B (zh) 一种微波加热制备镁橄榄石型耐火材料的方法
CN201245568Y (zh) 刚性碳纤维隔热保温材料的制造装置
CN110845241A (zh) 一种多孔氮化铝陶瓷材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant