CN117295382A - 一种高热稳定性且膨胀系数可调的方钴矿元素阻隔层的制备方法 - Google Patents

一种高热稳定性且膨胀系数可调的方钴矿元素阻隔层的制备方法 Download PDF

Info

Publication number
CN117295382A
CN117295382A CN202311241868.6A CN202311241868A CN117295382A CN 117295382 A CN117295382 A CN 117295382A CN 202311241868 A CN202311241868 A CN 202311241868A CN 117295382 A CN117295382 A CN 117295382A
Authority
CN
China
Prior art keywords
barrier layer
skutterudite
powder
pure
vanadium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202311241868.6A
Other languages
English (en)
Other versions
CN117295382B (zh
Inventor
张丽霞
潘辉
孙湛
耿慧远
常青
张博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN202311241868.6A priority Critical patent/CN117295382B/zh
Publication of CN117295382A publication Critical patent/CN117295382A/zh
Application granted granted Critical
Publication of CN117295382B publication Critical patent/CN117295382B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/26Vacuum evaporation by resistance or inductive heating of the source
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • B22F2003/1051Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding by electric discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Optics & Photonics (AREA)
  • Powder Metallurgy (AREA)

Abstract

一种高热稳定性且膨胀系数可调的方钴矿元素阻隔层的制备方法,涉及方钴矿热电材料元素阻隔层制备技术领域。本发明的目的是为了解决现有方钴矿与金属电极连接过程中方钴矿与金属电极之间易发生元素扩散以及焊接接头强度衰减的问题。方法:步骤1、称取:按照方钴矿元素阻隔层中钒和铁的原子百分比分别称取纯钒和纯铁;步骤2、制备方钴矿元素阻隔层:将称取的纯钒和纯铁采用电弧熔炼、粉末冶金或物理气相沉积的方式,制备得到高热稳定性且膨胀系数可调的方钴矿元素阻隔层,所述的方钴矿元素阻隔层为P型方钴矿元素阻隔层或N型方钴矿元素阻隔层。本发明可获得一种高热稳定性且膨胀系数可调的方钴矿元素阻隔层的制备方法。

Description

一种高热稳定性且膨胀系数可调的方钴矿元素阻隔层的制备 方法
技术领域
本发明涉及方钴矿热电材料元素阻隔层制备技术领域,具体涉及一种高热稳定性且膨胀系数可调的的同时适用于P、N型方钴矿的元素阻隔层。
背景技术
方钴矿(CoSb3)热电材料是目前中温段热电性能、力学性能以及稳定性最佳的热电材料。目前,广大科研工作者结构纳米化和填充原子等方式已经将填充方钴矿的zT值大幅度提高(P型接近1.5,N型接近2)。然而方钴矿基热电器件的发展远远滞后于材料的进步,器件的转换效率目前仅为10%左右,并且随服役时间延长迅速衰减,主要原因在于方钴矿与金属电极接头存在严重的元素扩散问题。因此,在服役过程中器件的转换效率会急剧下降。同时,由于焊接接头热膨胀系数的差异,导致接头连接强度过低,在热冲击时会产生较大的热应力,导致接头的开裂。
目前,可用于方钴矿热电材料的防元素扩散阻隔层材料均为纯金属及及其合金,但是由于方钴矿热电材料中Sb元素高反应活性,可与大多数金属元素剧烈反应并形成金属间化合物,增大界面电阻,降低接头强度。并且由于元素纯度的不同方钴矿材料可主要分为P型和N型两类,并在此基础上填充不同化学元素形成各种填充方钴矿,因此方钴矿的热膨胀系数也有较大差异。
目前尚未研制出可以满足方钴矿热电材料长期服役需求的阻隔层金属材料。因此,设计一种热膨胀系数可调且同时适用于P型和N型方钴矿热电材料的高热稳定性元素阻隔层是非常重要的。
发明内容
本发明的目的是为了解决现有方钴矿与金属电极连接过程中方钴矿与金属电极之间易发生元素扩散以及焊接接头强度衰减的问题,而提供一种高热稳定性且膨胀系数可调的方钴矿元素阻隔层的制备方法。
一种高热稳定性且膨胀系数可调的方钴矿元素阻隔层的制备方法,按以下步骤进行:
步骤1、称取:
按照方钴矿元素阻隔层中钒和铁的原子百分比分别称取纯钒和纯铁;
步骤2、制备方钴矿元素阻隔层:
将步骤1中称取的纯钒和纯铁采用电弧熔炼、粉末冶金或物理气相沉积的方式,制备得到高热稳定性且膨胀系数可调的方钴矿元素阻隔层,所述的方钴矿元素阻隔层为P型方钴矿元素阻隔层或N型方钴矿元素阻隔层。
本发明的有益效果:
1、本发明方钴矿热电材料元素阻隔层及其制备方法,通过电弧熔炼(感应加热炉)、粉末冶金、以及物理气相沉积等技术可以制得成分均匀、性能稳定的阻隔层。该阻隔层可以有效降低现有方钴矿与金属电极连接过程中元素扩散问题,解决焊接接头强度衰减及接触电阻降低的问题。方钴矿与阻隔层连接界面结合良好,无裂纹产生,室温下接头抗剪切强度可达20MPa,界面元素扩散极少,界面反应层厚度小于10μm,焊接接头处接触电阻和接触热阻均较小。
2、本发明制备阻隔层方法多样可根据实际情况采用不同制备工艺,操作方便,工艺灵活、成本低廉。
3、后续可采用扩散焊、钎焊、纳米银烧结等方法对方钴矿与金属电极进行连接,操作方便,工艺灵活,可根据实际使用需求选择合适的方法,成本较低。
4、现有的阻隔层常采用直接粉末烧结的方法在方钴矿材料表面制备金属阻隔层,该方法的烧结工艺有方钴矿材料制备工艺决定,往往温度较低,阻隔层粉末难以烧结致密,因此元素阻隔效果较差。
5、本发明制备的FeV合金阻隔层两种元素无限互溶,成分可以根据情况调整,满足所有P、N型方钴矿的使用需求,膨胀系数可调,元素阻隔效果良好。
本发明可获得一种高热稳定性且膨胀系数可调的方钴矿元素阻隔层的制备方法。
附图说明
图1为实施例1中电弧熔炼FeV合金的SEM组织图;
图2为实施例1中FeV合金与P型方钴矿连接界面在550℃下退火600h后的界面SEM图;
图3为实施例2中粉末冶金加热处理制得的FeV-W合金阻隔层的SEM组织图;
图4为实施例2中FeV-W合金与N型方钴矿连接界面在550℃下退火600h后的界面SEM图。
具体实施方式
具体实施方式一:本实施方式一种高热稳定性且膨胀系数可调的方钴矿元素阻隔层的制备方法,按以下步骤进行:
步骤1、称取:
按照方钴矿元素阻隔层中钒和铁的原子百分比分别称取纯钒和纯铁;
步骤2、制备方钴矿元素阻隔层:
将步骤1中称取的纯钒和纯铁采用电弧熔炼、粉末冶金或物理气相沉积的方式,制备得到高热稳定性且膨胀系数可调的方钴矿元素阻隔层,所述的方钴矿元素阻隔层为P型方钴矿元素阻隔层或N型方钴矿元素阻隔层。
本实施方式的有益效果:
1、本实施方式方钴矿热电材料元素阻隔层及其制备方法,通过电弧熔炼(感应加热炉)、粉末冶金、以及物理气相沉积等技术可以制得成分均匀、性能稳定的阻隔层。该阻隔层可以有效降低现有方钴矿与金属电极连接过程中元素扩散问题,解决焊接接头强度衰减及接触电阻降低的问题。方钴矿与阻隔层连接界面结合良好,无裂纹产生,室温下接头抗剪切强度可达20MPa,界面元素扩散极少,界面反应层厚度小于10μm,焊接接头处接触电阻和接触热阻均较小。
2、本实施方式制备阻隔层方法多样可根据实际情况采用不同制备工艺,操作方便,工艺灵活、成本低廉。
3、后续可采用扩散焊、钎焊、纳米银烧结等方法对方钴矿与金属电极进行连接,操作方便,工艺灵活,可根据实际使用需求选择合适的方法,成本较低。
4、现有的阻隔层常采用直接粉末烧结的方法在方钴矿材料表面制备金属阻隔层,该方法的烧结工艺有方钴矿材料制备工艺决定,往往温度较低,阻隔层粉末难以烧结致密,因此元素阻隔效果较差。
5、本实施方式制备的FeV合金阻隔层两种元素无限互溶,成分可以根据情况调整,满足所有P、N型方钴矿的使用需求,膨胀系数可调,元素阻隔效果良好。
具体实施方式二:本实施方式与具体实施方式一不同点是:采用电弧熔炼制备P型方钴矿元素阻隔层的具体步骤如下:
按照P型方钴矿元素阻隔层中钒的原子百分比为10~30%和余量为铁分别称取纯钒颗粒和纯铁颗粒;将称取的纯钒颗粒和纯铁颗粒置于真空电弧熔炼炉或感应加热炉内进行电弧熔炼,得到成分均匀的阻隔层铸锭,电弧熔炼工艺为:电弧熔炼电流为120~140A,每次熔炼引弧15~30s,每熔炼一次进行一次翻料,至少熔炼5~8次;将阻隔层铸锭依次进行切割、打磨、清洗和吹干,最终得到P型方钴矿元素阻隔层,厚度为100~300μm。
其他步骤与具体实施方式一相同。
具体实施方式三:本实施方式与具体实施方式一或二不同点是:采用粉末冶金制备P型方钴矿元素阻隔层的具体步骤如下:
按照P型方钴矿元素阻隔层中钒的原子百分比为10~30%和余量为铁分别称取纯钒粉末和纯铁粉末,纯钒粉末和纯铁粉末的粒径均≤10μm;将称取的纯钒粉末和纯铁粉末球磨,得到球磨粉末;将球磨粉末置于石墨模具中进行放电等离子体烧结或者热压烧结,得到阻隔层金属块;
将阻隔层金属块置于真空管式炉或者真空封管内,进行均匀化热处理,得到成分均匀的阻隔层块体,再依次进行切割、打磨、清洗和吹干,最终得到P型方钴矿元素阻隔层,厚度为100~300μm。
其他步骤与具体实施方式一或二相同。
具体实施方式四:本实施方式与具体实施方式一至三之一不同点是:采用粉末冶金制备P型方钴矿元素阻隔层的具体步骤如下:
按照P型方钴矿元素阻隔层中钒的原子百分比为5~30%和余量为铁分别称取纯钒颗粒和纯铁颗粒;将称取的纯钒颗粒和纯铁颗粒置于真空电弧熔炼炉内,进行电弧熔炼,得到成分均匀的阻隔层铸锭,电弧熔炼工艺为:电弧熔炼电流为120~140A,每次熔炼引弧15~30s,每熔炼一次进行一次翻料,至少熔炼5~8次;将阻隔层铸锭置于金属真空雾化机中进行雾化制粉,得到阻隔层FeV合金粉末;将阻隔层FeV合金粉末置于石墨模具中进行放电等离子体烧结或者热压烧结,得到阻隔层金属块;将阻隔层块体依次进行切割、打磨、清洗和吹干,最终得到P型方钴矿元素阻隔层,厚度为100~300μm。
其他步骤与具体实施方式一至三相同。
具体实施方式五:本实施方式与具体实施方式一至四之一不同点是:采用物理气相沉积制备P型方钴矿元素阻隔层的具体步骤如下:
按照P型方钴矿元素阻隔层中钒的原子百分比为10~30%和余量为铁分别称取纯钒和纯铁;将称取的纯钒和纯铁采用电弧熔炼或者粉末冶金热压烧结制备阻隔层合金或者合金靶材;将阻隔层合金或者合金靶材置于电子束蒸镀或电阻蒸镀设备中,同时将方钴矿块体材料置于电子束蒸镀或电阻蒸镀设备中,进行蒸发镀膜,得到带有阻隔层的方钴矿块体材料;将带有阻隔层的方钴矿块体材料置于真空炉或者真空封管后置于马弗炉内,在550~700℃下退火热处理5~60min,得到P型方钴矿元素阻隔层,厚度为20~150μm。
其他步骤与具体实施方式一至四相同。
具体实施方式六:本实施方式与具体实施方式一至五之一不同点是:采用粉末冶金制备N型方钴矿元素阻隔层的具体步骤如下:
按照N型方钴矿元素阻隔层中钒的原子百分比为5~30%和余量为铁分别称取纯钒颗粒和纯铁颗粒;将称取的纯钒颗粒和纯铁颗粒置于真空电弧熔炼炉内,进行电弧熔炼,得到成分均匀的阻隔层铸锭,电弧熔炼工艺为:电弧熔炼电流为120~140A,每次熔炼引弧15~30s,每熔炼一次进行一次翻料,至少熔炼5~8次;将阻隔层铸锭置于金属真空雾化机中进行雾化制粉,得到阻隔层FeV合金粉末;将阻隔层FeV合金粉末与纯钨粉混合球磨,得到球磨粉末,10μm≤纯钨粉的粒径≤50μm;将球磨粉末置于石墨模具中进行放电等离子体烧结或者热压烧结,得到粉末烧结阻隔层金属块;
将烧结后的阻隔层块体置于真空管式炉或者真空封管内,进行均匀化热处理,获得成分均匀的阻隔层块体;将阻隔层块体依次进行切割、打磨、清洗和吹干,最终得到P型方钴矿元素阻隔层,厚度为100~300μm。
其他步骤与具体实施方式一至五相同。
具体实施方式七:本实施方式与具体实施方式一至六之一不同点是:采用粉末冶金制备N型方钴矿元素阻隔层的具体步骤如下:
按照N型方钴矿元素阻隔层中钒的原子百分比为5~30%、钨的原子百分比为5~20%和余量为铁分别称取纯钒粉末、纯钨粉末和纯铁粉末,纯钒粉末和纯铁粉末的粒径均≤10μm,10μm≤纯钨粉末的粒径≤50μm;将称取的纯钒粉末、纯钨粉末和纯铁粉末球磨,得到球磨粉末;将球磨粉末置于石墨模具中进行放电等离子体烧结或者热压烧结,得到粉末烧结阻隔层金属块;
将烧结后的阻隔层块体置于真空管式炉或者真空封管内,进行均匀化热处理,得到成分均匀的阻隔层块体;将阻隔层块体依次进行切割、打磨、清洗和吹干,最终得到N型方钴矿元素阻隔层,厚度为100~300μm。
其他步骤与具体实施方式一至六相同。
具体实施方式八:本实施方式与具体实施方式一至七之一不同点是:所述的球磨步骤均为:以100~500rpm的转速球磨1~24h,球磨罐和磨球均为玛瑙或者氧化锆制成。
其他步骤与具体实施方式一至七相同。
具体实施方式九:本实施方式与具体实施方式一至八之一不同点是:所述的放电等离子体烧结或者热压烧结的步骤均为:在真空或者惰性气体气氛下,以5~100℃/min的升温速度升温至800~1400℃,并在800~1400℃的温度和10~60MPa的压力条件下保温10~30min,保温结束后以5~100℃/min的降温速度降至室温,得到烧结后的阻隔层块体,所述的惰性气体为氩气、氮气或氦气。
其他步骤与具体实施方式一至八相同。
具体实施方式十:本实施方式与具体实施方式一至九之一不同点是:所述的均匀化热处理的步骤均为:在80~1200℃下保温5~72h。
其他步骤与具体实施方式一至九相同。
采用以下实施例验证本发明的有益效果:
实施例1:一种高热稳定性且膨胀系数可调的P型方钴矿元素阻隔层的制备方法,按以下步骤进行:
步骤1、称取:
按照P型方钴矿元素阻隔层中钒的原子百分比为20%和余量为铁分别称取纯钒颗粒和纯铁颗粒;
步骤2、制备P型方钴矿元素阻隔层:
将步骤1中称取的纯钒颗粒和纯铁颗粒置于真空电弧熔炼炉内进行电弧熔炼,得到成分均匀的阻隔层铸锭,电弧熔炼工艺为:电弧熔炼电流为130A,每次熔炼引弧30s,每熔炼一次进行一次翻料,至少熔炼5次;将阻隔层铸锭依次进行切割、打磨、清洗和吹干,最终得到P型方钴矿元素阻隔层,厚度为100~300μm;
步骤3:将P型方钴矿元素阻隔层置于装有待焊方钴矿热电材料粉末的石墨模具中,直接将阻隔层与热电材料粉末采用热电材料烧结工艺进行一步热压烧结,随炉冷却,得到带阻隔层的热电材料,再进行切割、逐级打磨和清洗,得到待焊热电材料,置于惰性气体环境下保存备用;
所采用的热电材料成分为La0.8Ti0.1Ga0.1Fe3.3Co0.7Sb12(P型),烧结工艺为Ar气气氛下,以100℃/min的速度迅速升温至650℃,保温10min,压力为60MPa,保温结束后以5℃/min速度缓慢降温至室温。
步骤4:在待焊热电材料的阻隔层和金属电极之间设置纳米银焊膏得到待焊件,进行固相烧结,得到焊接接头;
所述的纳米银焊膏为市售商用焊膏;
固相烧结工艺为:向待焊件施加5MPa压力,真空度为5×10-3以上,并以5℃/min速度升温至500℃并保温10min,保温结束后随炉冷却。
本实施例利用电弧熔炼方法制得了单相固溶体阻隔层,膨胀系数线性可调,元素阻隔效果良好。阻隔层与P型方钴矿接头在550℃老化实验600h后接头反应层不超过10μm,界面电阻率小于4μΩ·cm2,接头抗剪强度可达20MPa。
实施例2:一种高热稳定性且膨胀系数可调的N型方钴矿元素阻隔层的制备方法,按以下步骤进行:
步骤1、称取:
按照N型方钴矿元素阻隔层中钒的原子百分比为18%、钨的原子百分比为10%和余量为铁分别称取纯钒粉末、纯钨粉末和纯铁粉末,纯钒粉末和纯铁粉末的粒径均≤10μm,10μm≤纯钨粉末的粒径≤50μm;
步骤2、制备N型方钴矿元素阻隔层:
将步骤1中称取的纯钒粉末、纯钨粉末和纯铁粉末置于球磨罐中,以300rpm的转速球磨24h,球磨罐和磨球均为玛瑙或者氧化锆制成。
将球磨粉末置于石墨模具中进行放电等离子体烧结或者热压烧结,得到阻隔层金属块;所述的放电等离子体烧结或者热压烧结的步骤为:在真空或者惰性气体气氛下,以100℃/min的升温速度升温至900℃,并在900℃的温度和60MPa的压力条件下保温10min,保温结束后以20℃/min的降温速度降至室温,得到烧结后的阻隔层块体,所述的惰性气体为氩气、氮气或氦气。
将烧结后的阻隔层块体置于真空管式炉或者真空封管内,在900℃的温度条件下保温24h,获得成分均匀的阻隔层块体;将阻隔层块体依次进行切割、打磨、清洗和吹干,最终得到N型方钴矿元素阻隔层,厚度为100~300μm;
步骤3:将N型方钴矿元素阻隔层置于装有待焊方钴矿热电材料粉末的石墨模具中,直接将阻隔层与热电材料粉末采用热电材料烧结工艺进行一步热压烧结,随炉冷却,得到带阻隔层的热电材料,再进行切割、逐级打磨和清洗,得到待焊热电材料,置于惰性气体环境下保存备用;
所采用的热电材料成分为Yb0.3Ga0.1Al0.1Ga0.1In0.1Fe0.25Co3.75Sb12(N型),烧结工艺为Ar气气氛下,以100℃/min速度迅速升温至700℃,保温10min,压力为60MPa,保温结束后以5℃/min速度缓慢降温至室温。
步骤4:在待焊热电材料的阻隔层和金属电极之间设置纳米银焊膏得到待焊件,进行固相烧结,得到焊接接头;
所述的纳米银焊膏为市售商用焊膏;
固相烧结工艺为:向待焊件施加5MPa压力,真空度为5×10-3以上,并以5℃/min速度升温至500℃并保温10min,保温结束后随炉冷却。
本实施例利用粉末冶金加热处理工艺制备了FeV-W双相阻隔层金属,采用纳米银焊膏对热电材料与Cu电极进行固相烧结连接,既实现了热电材料与Cu电极的可靠连接,又有效阻隔了热电材料与Cu之间的元素扩散。接头抗剪强度可达20MPa,在550℃老化600h后接触电阻小于5μΩ·cm2,界面反应层厚度小于20μm。
图1为实施例1中电弧熔炼FeV合金的SEM组织图;如图1所示,可以看出电弧熔炼的FeV合金成分组织均匀,未见明显金属间化合物产生,证明这种单相固溶体组织赋予了阻隔层良好的塑韧性。
图2为实施例1中FeV合金与P型方钴矿连接界面在550℃下退火600h后的界面SEM图;如图2所示,表明在经过长时间高温服役以后,FeV阻隔层对P型方钴矿展现出良好的元素阻隔扩散的效果。
图3为实施例2中粉末冶金加热处理制得的FeV-W合金阻隔层的SEM组织图;如图3所示,粉末冶金得到的阻隔层颗粒烧结良好,分布均匀,表明经过均匀化热处理后可以实现Fe与V的相互扩散,实现成分均匀化。
图4为实施例2中FeV-W合金与N型方钴矿连接界面在550℃下退火600h后的界面SEM图;如图4所示,表明粉末冶金加均匀化热处理的得到的FeV-W阻隔层对N型方钴矿也展现出良好的元素阻隔扩散效果。

Claims (10)

1.一种高热稳定性且膨胀系数可调的方钴矿元素阻隔层的制备方法,其特征在于该制备方法按以下步骤进行:
步骤1、称取:
按照方钴矿元素阻隔层中钒和铁的原子百分比分别称取纯钒和纯铁;
步骤2、制备方钴矿元素阻隔层:
将步骤1中称取的纯钒和纯铁采用电弧熔炼、粉末冶金或物理气相沉积的方式,制备得到高热稳定性且膨胀系数可调的方钴矿元素阻隔层,所述的方钴矿元素阻隔层为P型方钴矿元素阻隔层或N型方钴矿元素阻隔层。
2.根据权利要求1所述的一种高热稳定性且膨胀系数可调的方钴矿元素阻隔层的制备方法,其特征在于采用电弧熔炼制备P型方钴矿元素阻隔层的具体步骤如下:
按照P型方钴矿元素阻隔层中钒的原子百分比为10~30%和余量为铁分别称取纯钒颗粒和纯铁颗粒;将称取的纯钒颗粒和纯铁颗粒置于真空电弧熔炼炉或感应加热炉内进行电弧熔炼,得到成分均匀的阻隔层铸锭,电弧熔炼工艺为:电弧熔炼电流为120~140A,每次熔炼引弧15~30s,每熔炼一次进行一次翻料,至少熔炼5~8次;将阻隔层铸锭依次进行切割、打磨、清洗和吹干,最终得到P型方钴矿元素阻隔层,厚度为100~300μm。
3.根据权利要求1所述的一种高热稳定性且膨胀系数可调的方钴矿元素阻隔层的制备方法,其特征在于采用粉末冶金制备P型方钴矿元素阻隔层的具体步骤如下:
按照P型方钴矿元素阻隔层中钒的原子百分比为10~30%和余量为铁分别称取纯钒粉末和纯铁粉末,纯钒粉末和纯铁粉末的粒径均≤10μm;将称取的纯钒粉末和纯铁粉末球磨,得到球磨粉末;将球磨粉末置于石墨模具中进行放电等离子体烧结或者热压烧结,得到阻隔层金属块;
将阻隔层金属块置于真空管式炉或者真空封管内,进行均匀化热处理,得到成分均匀的阻隔层块体,再依次进行切割、打磨、清洗和吹干,最终得到P型方钴矿元素阻隔层,厚度为100~300μm。
4.根据权利要求1所述的一种高热稳定性且膨胀系数可调的方钴矿元素阻隔层的制备方法,其特征在于采用粉末冶金制备P型方钴矿元素阻隔层的具体步骤如下:
按照P型方钴矿元素阻隔层中钒的原子百分比为5~30%和余量为铁分别称取纯钒颗粒和纯铁颗粒;将称取的纯钒颗粒和纯铁颗粒置于真空电弧熔炼炉内,进行电弧熔炼,得到成分均匀的阻隔层铸锭,电弧熔炼工艺为:电弧熔炼电流为120~140A,每次熔炼引弧15~30s,每熔炼一次进行一次翻料,至少熔炼5~8次;将阻隔层铸锭置于金属真空雾化机中进行雾化制粉,得到阻隔层FeV合金粉末;将阻隔层FeV合金粉末置于石墨模具中进行放电等离子体烧结或者热压烧结,得到阻隔层金属块;将阻隔层块体依次进行切割、打磨、清洗和吹干,最终得到P型方钴矿元素阻隔层,厚度为100~300μm。
5.根据权利要求1所述的一种高热稳定性且膨胀系数可调的方钴矿元素阻隔层的制备方法,其特征在于采用物理气相沉积制备P型方钴矿元素阻隔层的具体步骤如下:
按照P型方钴矿元素阻隔层中钒的原子百分比为10~30%和余量为铁分别称取纯钒和纯铁;将称取的纯钒和纯铁采用电弧熔炼或者粉末冶金热压烧结制备阻隔层合金或者合金靶材;将阻隔层合金或者合金靶材置于电子束蒸镀或电阻蒸镀设备中,同时将方钴矿块体材料置于电子束蒸镀或电阻蒸镀设备中,进行蒸发镀膜,得到带有阻隔层的方钴矿块体材料;将带有阻隔层的方钴矿块体材料置于真空炉或者真空封管后置于马弗炉内,在550~700℃下退火热处理5~60min,得到P型方钴矿元素阻隔层,厚度为20~150μm。
6.根据权利要求1所述的一种高热稳定性且膨胀系数可调的方钴矿元素阻隔层的制备方法,其特征在于采用粉末冶金制备N型方钴矿元素阻隔层的具体步骤如下:
按照N型方钴矿元素阻隔层中钒的原子百分比为5~30%和余量为铁分别称取纯钒颗粒和纯铁颗粒;将称取的纯钒颗粒和纯铁颗粒置于真空电弧熔炼炉内,进行电弧熔炼,得到成分均匀的阻隔层铸锭,电弧熔炼工艺为:电弧熔炼电流为120~140A,每次熔炼引弧15~30s,每熔炼一次进行一次翻料,至少熔炼5~8次;将阻隔层铸锭置于金属真空雾化机中进行雾化制粉,得到阻隔层FeV合金粉末;将阻隔层FeV合金粉末与纯钨粉混合球磨,得到球磨粉末,10μm≤纯钨粉的粒径≤50μm;将球磨粉末置于石墨模具中进行放电等离子体烧结或者热压烧结,得到粉末烧结阻隔层金属块;
将烧结后的阻隔层块体置于真空管式炉或者真空封管内,进行均匀化热处理,获得成分均匀的阻隔层块体;将阻隔层块体依次进行切割、打磨、清洗和吹干,最终得到P型方钴矿元素阻隔层,厚度为100~300μm。
7.根据权利要求1所述的一种高热稳定性且膨胀系数可调的方钴矿元素阻隔层的制备方法,其特征在于采用粉末冶金制备N型方钴矿元素阻隔层的具体步骤如下:
按照N型方钴矿元素阻隔层中钒的原子百分比为5~30%、钨的原子百分比为5~20%和余量为铁分别称取纯钒粉末、纯钨粉末和纯铁粉末,纯钒粉末和纯铁粉末的粒径均≤10μm,10μm≤纯钨粉末的粒径≤50μm;将称取的纯钒粉末、纯钨粉末和纯铁粉末球磨,得到球磨粉末;将球磨粉末置于石墨模具中进行放电等离子体烧结或者热压烧结,得到粉末烧结阻隔层金属块;
将烧结后的阻隔层块体置于真空管式炉或者真空封管内,进行均匀化热处理,得到成分均匀的阻隔层块体;将阻隔层块体依次进行切割、打磨、清洗和吹干,最终得到N型方钴矿元素阻隔层,厚度为100~300μm。
8.根据权利要求3、6或7所述的一种高热稳定性且膨胀系数可调的方钴矿元素阻隔层的制备方法,其特征在于所述的球磨步骤均为:以100~500rpm的转速球磨1~24h,球磨罐和磨球均为玛瑙或者氧化锆制成。
9.根据权利要求3、4、6或7所述的一种高热稳定性且膨胀系数可调的方钴矿元素阻隔层的制备方法,其特征在于所述的放电等离子体烧结或者热压烧结的步骤均为:在真空或者惰性气体气氛下,以5~100℃/min的升温速度升温至800~1400℃,并在800~1400℃的温度和10~60MPa的压力条件下保温10~30min,保温结束后以5~100℃/min的降温速度降至室温,得到烧结后的阻隔层块体,所述的惰性气体为氩气、氮气或氦气。
10.根据权利要求3、6或7所述的一种高热稳定性且膨胀系数可调的方钴矿元素阻隔层的制备方法,其特征在于所述的均匀化热处理的步骤均为:在80~1200℃下保温5~72h。
CN202311241868.6A 2023-09-25 2023-09-25 一种高热稳定性且膨胀系数可调的方钴矿元素阻隔层的制备方法 Active CN117295382B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311241868.6A CN117295382B (zh) 2023-09-25 2023-09-25 一种高热稳定性且膨胀系数可调的方钴矿元素阻隔层的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311241868.6A CN117295382B (zh) 2023-09-25 2023-09-25 一种高热稳定性且膨胀系数可调的方钴矿元素阻隔层的制备方法

Publications (2)

Publication Number Publication Date
CN117295382A true CN117295382A (zh) 2023-12-26
CN117295382B CN117295382B (zh) 2024-06-14

Family

ID=89247475

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311241868.6A Active CN117295382B (zh) 2023-09-25 2023-09-25 一种高热稳定性且膨胀系数可调的方钴矿元素阻隔层的制备方法

Country Status (1)

Country Link
CN (1) CN117295382B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011159804A2 (en) * 2010-06-15 2011-12-22 California Institute Of Technology Electrical contacts for skutterudite thermoelectric materials
US20140377901A1 (en) * 2013-06-20 2014-12-25 University Of Houston System Fabrication of stable electrode/diffusion barrier layers for thermoelectric filled skutterudite devices
CN104498751A (zh) * 2014-12-25 2015-04-08 中国科学院上海硅酸盐研究所 一种方钴矿热电材料的制备方法
CN110039060A (zh) * 2019-05-16 2019-07-23 马鞍山新康达磁业有限公司 一种高直流叠加特性FeSi合金粉末的制备方法
KR20190108412A (ko) * 2018-03-14 2019-09-24 한국생산기술연구원 체심입방구조 고엔트로피 합금 구상 분말의 제조방법
CN115502538A (zh) * 2022-09-19 2022-12-23 哈尔滨工业大学 一种以MAX或Mxene为阻隔层的方钴矿基热电材料与金属电极的连接方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011159804A2 (en) * 2010-06-15 2011-12-22 California Institute Of Technology Electrical contacts for skutterudite thermoelectric materials
US20140377901A1 (en) * 2013-06-20 2014-12-25 University Of Houston System Fabrication of stable electrode/diffusion barrier layers for thermoelectric filled skutterudite devices
CN104498751A (zh) * 2014-12-25 2015-04-08 中国科学院上海硅酸盐研究所 一种方钴矿热电材料的制备方法
KR20190108412A (ko) * 2018-03-14 2019-09-24 한국생산기술연구원 체심입방구조 고엔트로피 합금 구상 분말의 제조방법
CN110039060A (zh) * 2019-05-16 2019-07-23 马鞍山新康达磁业有限公司 一种高直流叠加特性FeSi合金粉末的制备方法
CN115502538A (zh) * 2022-09-19 2022-12-23 哈尔滨工业大学 一种以MAX或Mxene为阻隔层的方钴矿基热电材料与金属电极的连接方法

Also Published As

Publication number Publication date
CN117295382B (zh) 2024-06-14

Similar Documents

Publication Publication Date Title
CN1969354B (zh) 制造锰铝铜强磁性合金、半锰铝铜强磁性合金、填充式方钴矿基合金的方法以及利用它们的热电转换系统
CN101080506B (zh) 热电半导体合金的制造方法、热电转换模块以及热电发电设备
US8198116B2 (en) Fabrication method for thermoelectric device
JP5386239B2 (ja) 熱電変換モジュール
EP2913857B1 (en) Mg-Si THERMOELECTRIC CONVERSION MATERIAL, METHOD FOR PRODUCING SAME, SINTERED BODY FOR THERMOELECTRIC CONVERSION, THERMOELECTRIC CONVERSION ELEMENT, AND THERMOELECTRIC CONVERSION MODULE
CN112276275B (zh) 一种利用高热稳定合金复合中间层连接方钴矿热电材料和电极的方法
CN111463341B (zh) 一种低接触电阻率的半赫斯勒合金热电器件及制备方法
CN107350655B (zh) 一种铜/锡纳米复合粉末活性焊料及其制备方法
CN113828906A (zh) 一种利用高熵合金中间层连接方钴矿与电极的扩散焊方法
CN100409996C (zh) 一种能在空气中进行无焊剂焊接的抗氧化锡基无铅焊料
JP6623003B2 (ja) 熱電変換素子および熱電変換モジュール
JP2006514160A (ja) スパッタターゲットの製造方法
CN113278836A (zh) 一种制备CuW/低碳钢异质双金属材料的方法
JP6162423B2 (ja) 熱電変換素子
EP3375548B1 (en) Thermoelectric conversion material
JP3216378B2 (ja) 熱電装置およびその製造方法
CN117295382B (zh) 一种高热稳定性且膨胀系数可调的方钴矿元素阻隔层的制备方法
JPH03152841A (ja) ろう付けx線管アノード・アセンブリイ
CN115502538B (zh) 一种方钴矿基热电材料与金属电极的连接方法
JP6382093B2 (ja) 熱電変換素子および熱電変換モジュール
CN111211214A (zh) 一种用于半赫斯勒合金热电材料的界面阻挡层
CN115415656B (zh) 一种以Fe-Cr-Mo/W为阻隔层的方钴矿热电材料与铜电极的连接方法
WO2024122324A1 (ja) 熱電変換素子、熱電変換モジュール、熱電変換システム、発電方法、及び熱電変換素子の製造方法
Bae et al. Effect of electroless Ni-P Plating on the bonding strength of pbte thermoelectric module using silver alloy-based brazing
JP6809852B2 (ja) 熱電変換素子および熱電変換モジュール

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant