CN112276275B - 一种利用高热稳定合金复合中间层连接方钴矿热电材料和电极的方法 - Google Patents

一种利用高热稳定合金复合中间层连接方钴矿热电材料和电极的方法 Download PDF

Info

Publication number
CN112276275B
CN112276275B CN202011163376.6A CN202011163376A CN112276275B CN 112276275 B CN112276275 B CN 112276275B CN 202011163376 A CN202011163376 A CN 202011163376A CN 112276275 B CN112276275 B CN 112276275B
Authority
CN
China
Prior art keywords
electrode
layer
thermoelectric material
skutterudite thermoelectric
diffusion barrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011163376.6A
Other languages
English (en)
Other versions
CN112276275A (zh
Inventor
张丽霞
任伟
耿慧远
张嘉伦
孙湛
冯吉才
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN202011163376.6A priority Critical patent/CN112276275B/zh
Publication of CN112276275A publication Critical patent/CN112276275A/zh
Application granted granted Critical
Publication of CN112276275B publication Critical patent/CN112276275B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/008Soldering within a furnace
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/20Preliminary treatment of work or areas to be soldered, e.g. in respect of a galvanic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/20Preliminary treatment of work or areas to be soldered, e.g. in respect of a galvanic coating
    • B23K1/206Cleaning
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/81Structural details of the junction
    • H10N10/817Structural details of the junction the junction being non-separable, e.g. being cemented, sintered or soldered

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

一种利用高热稳定合金复合中间层连接方钴矿热电材料和电极的方法,涉及一种连接方钴矿热电材料和电极的方法。目的是解决现有方钴矿热电材料焊接方法所得接头的连接接头热稳定性差和接触电阻大的问题。方法:一、方钴矿热电材料和电极清洗;二、使用电镀或物理气相沉积的方法制备中间连接层和扩散阻隔层,进行扩散焊;中间连接层材质为Co、Fe或Ni;扩散阻隔层材质为CoMo、CoW、FeMo或FeW。本发明利用中间连接层和扩散阻隔层所得接头具有低的接触电阻率,接头的热稳定性高。本发明适用于连接方钴矿热电材料和电极。

Description

一种利用高热稳定合金复合中间层连接方钴矿热电材料和电 极的方法
技术领域
本发明涉及一种连接方钴矿热电材料和电极的方法。
背景技术
热电材料是利用Seebeck效应和Peltier效应进行热能和电能之间互相转换的一类材料,在航天、航空、汽车尾气废热回收、工业废热回收、建筑制冷和供热、微小型设备制冷和供电等领域有着很大的潜在利用价值。块状热电材料在实际应用中需要将P型热电材料与N型热电材料用电极材料连接组成热电对,然后将若干热电对组成一定功率的热电器件使用。热电材料与电极之间的接触电阻会显著降低热电器件的最大转换效率和输出功率。热电器件要求在服役温度下可以持续工作几年到十数年的时间,对热电材料与电极之间的接头在高温下长期服役的热稳定性和接触电阻率提出了很高的挑战。
就连接方法而言,主要有两种:一种方法是固相反应连接,用热压或SPS等方法一次或分多次将电极材料与热电材料烧结在一起,这种方法导致电极材料的制备工艺与热电材料的烧结工艺耦合在一起,导致工艺控制难度加大,给实际规模化生产造成不必要的生产成本,此外这种方法得到的接头热稳定性相对较差和接触电阻率仍然较高;另一种是钎焊连接,其中很多的研究使用含Sn钎料,而Cu和Ni又常作为电极使用,此时需要注意的是Cu/含Sn钎料或Ni/含Sn钎料在长期服役过程中极易形成柯肯达尔孔洞,直接钎焊连接还有一些其他问题,比如工作温度不能高于钎料的熔点,这样会导致连接温度高于工作温度,加剧焊接过程中的扩散行为,而且热电材料中通常含有活泼的第七和第八主族元素,极易与钎料合金快速反应产生连续脆性化合物层,导致接头的碎裂。目前,通过引入合金复合中间层成功焊接方钴矿热电材料与金属或合金电极、并得到在服役温度下长期服役下高热稳定性和超低接触电阻接头的研究未见报道。
发明内容
本发明要解决现有方钴矿热电材料焊接方法所得接头的连接接头热稳定性差和接触电阻大的问题,提出一种利用高热稳定合金复合中间层连接方钴矿热电材料和电极的方法。
本发明利用高热稳定合金复合中间层连接方钴矿热电材料和电极的方法按以下步骤进行:
一、对方钴矿热电材料和电极的待焊面进行清洗;
二、使用电镀或物理气相沉积的方法在电极表面制备中间连接层、且在中间连接层表面制备扩散阻隔层;或在电极表面制备中间连接层、且在方钴矿热电材料表面制备扩散阻隔层;或在方钴矿热电材料表面制备扩散阻隔层、且在扩散阻隔层表面制备中间连接层;然后将所得电极和方钴矿热电材料叠放,中间连接层和扩散阻隔层朝向内侧,得到待焊工件;对待焊工件进行扩散焊;
或者,使用电镀或物理气相沉积的方法在方钴矿热电材料表面制备扩散阻隔层、且在扩散阻隔层表面制备中间连接层;将电极和方钴矿热电材料叠放,中间连接层和扩散阻隔层朝向内侧,在方钴矿热电材料和电极之间放置钎料,得到待焊工件;对待焊工件进行钎焊;
所述中间连接层材质为Co、Fe或Ni;
所述扩散阻隔层材质为CoMo、CoW、FeMo或FeW;所述扩散阻隔层中Mo或W的原子百分数为4%~20%。
本发明原理及有益效果为:
本发明利用中间连接层和扩散阻隔层构成的合金复合中间层来实现方钴矿热电材料和电极之间的线胀系数的梯度过渡,同时有效阻隔方钴矿热电材料与电极之间的元素互扩散,并且所得接头具有低的接触电阻率,接头的热稳定性高,在550℃下退火600h,接头的接触电阻率小于3μΩcm2
接触电阻降低的原因是:本发明中合金复合中间层的电阻率极低,均在10-8Ωm数量级,合金复合中间层与方钴矿热电材料的反应产物通常为类金属化合物,电阻率很低,均在10-6~10-8Ωm之间,并且方钴矿热电材料为重掺杂半导体,电阻率很低,均在10-5~10-7Ωm之间数量级。因此,金属或合金电极与方钴矿热电材料之间接头的接触近似于欧姆接触,接头总体接触电阻率极低。在高温退火过程中,接头微观组织的相组成不发生改变,只是反应层厚度缓慢增厚,因此,接头的接触电阻率增加不明显。
阻隔方钴矿热电材料与电极之间的元素互扩散的原因是:在焊接温度(550℃~650℃)和服役温度(450℃~600℃)下,本发明所用合金电极与中间层连接层材料(Co、Fe或Ni)之间仅存在极其有限而缓慢的互扩散反应。扩散阻隔层是由两种元素组成,在焊接温度(550℃~650℃)和服役温度(450℃~600℃)下,其中一种元素(Co或Fe)与方钴矿热电材料之间仅存在有限而缓慢的互扩散反应,另外一种低热膨胀低反应活性元素(W或Mo)与方钴矿热电材料不发生反应。低热膨胀低反应活性(W或Mo)的引入一方面合理调节了扩散阻隔层与方钴矿热电材料的热膨胀系数匹配,提高了接头的机械性能,另一方面在微观上增加了方钴矿热电材料中元素向扩散阻隔层内扩散的距离,进一步地显著提高了扩散阻隔层阻隔方钴矿热电材料向电极侧的扩散阻力。
本发明采用与大规模化生产方法相适应的物理气相沉积或电镀方法制备合金复合中间层,实现方钴矿热电材料与金属或合金电极的直接焊接,工艺控制简单。
附图说明
图1是实施例一所获得的接头组织的照片;
图2是实施例一所获得的接头经退火后的组织及元素分布照片。
具体实施方式
本发明技术方案不局限于以下所列举具体实施方式,还包括各具体实施方式间的任意合理组合。
具体实施方式一:本实施方式利用高热稳定合金复合中间层连接方钴矿热电材料和电极的方法按以下步骤进行:
一、对方钴矿热电材料和电极的待焊面进行清洗;
二、使用电镀或物理气相沉积的方法在电极表面制备中间连接层、且在中间连接层表面制备扩散阻隔层;或在电极表面制备中间连接层、且在方钴矿热电材料表面制备扩散阻隔层;或在方钴矿热电材料表面制备扩散阻隔层、且在扩散阻隔层表面制备中间连接层;然后将所得电极和方钴矿热电材料叠放,中间连接层和扩散阻隔层朝向内侧,得到待焊工件;对待焊工件进行扩散焊;
或者,使用电镀或物理气相沉积的方法在方钴矿热电材料表面制备扩散阻隔层、且在扩散阻隔层表面制备中间连接层;将电极和方钴矿热电材料叠放,中间连接层和扩散阻隔层朝向内侧,得到待焊工件;对待焊工件进行钎焊;
所述中间连接层材质为Co、Fe或Ni;
所述扩散阻隔层材质为CoMo、CoW、FeMo或FeW;所述扩散阻隔层中Mo或W的原子百分数为4%~20%。
本实施方式利用中间连接层和扩散阻隔层构成的合金复合中间层来实现方钴矿热电材料和电极之间的线胀系数的梯度过渡,同时有效阻隔方钴矿热电材料与电极之间的元素互扩散,并且所得接头具有低的接触电阻率,接头的热稳定性高,在550℃下退火600h,接头的接触电阻率小于3μΩcm2
接触电阻降低的原因是:本实施方式中合金复合中间层的电阻率极低,均在10-8Ωm数量级,合金复合中间层与方钴矿热电材料的反应产物通常为类金属化合物,电阻率很低,均在10-6~10-8Ωm之间,并且方钴矿热电材料为重掺杂半导体,电阻率很低,均在10-5~10-7Ωm之间数量级。因此,金属或合金电极与方钴矿热电材料之间接头的接触近似于欧姆接触,接头总体接触电阻率极低。在高温退火过程中,接头微观组织的相组成不发生改变,只是反应层厚度缓慢增厚,因此,接头的接触电阻率增加不明显。
阻隔方钴矿热电材料与电极之间的元素互扩散的原因是:在焊接温度(550℃~650℃)和服役温度(450℃~600℃)下,本实施方式所用合金电极与中间层连接层材料(Co、Fe或Ni)之间仅存在极其有限而缓慢的互扩散反应。扩散阻隔层是由两种元素组成,在焊接温度(550℃~650℃)和服役温度(450℃~600℃)下,其中一种元素(Co或Fe)与方钴矿热电材料之间仅存在有限而缓慢的互扩散反应,另外一种低热膨胀低反应活性元素(W或Mo)与方钴矿热电材料不发生反应。低热膨胀低反应活性(W或Mo)的引入一方面合理调节了扩散阻隔层与方钴矿热电材料的热膨胀系数匹配,提高了接头的机械性能,另一方面在微观上增加了方钴矿热电材料中元素向扩散阻隔层内扩散的距离,进一步地显著提高了扩散阻隔层阻隔方钴矿热电材料向电极侧的扩散阻力。
本实施方式采用与大规模化生产方法相适应的物理气相沉积或电镀方法制备合金复合中间层,实现方钴矿热电材料与金属或合金电极的直接焊接,工艺控制简单。
具体实施方式二:本实施方式与具体实施方式一不同的是:步骤一所述清洗工艺为:首先利用无水乙醇冲洗,然后置于丙酮中超声清洗5~30min,最后风干。
具体实施方式三:本实施方式与具体实施方式一或二不同的是:步骤一所述电极为金属电极或合金电极;
所述金属电极材质为Cu、Ni、Fe、Co或Cr;
所述合金电极材质为Cu基合金、Ni基合金、Fe基合金、Co基合金或Cr基合金;
所述Cu基合金为CuW或CuMo;Ni基合金为NiW、NiMo或NiCr;Fe基合金为FeW、FeMo、FeCr或FeCoNi;Co基合金为CoW、CoMo、CoCr、CoNi或CoFe;Cr基合金为CrW、CrMo、CrCoNi或CrFeNi。
具体实施方式四:本实施方式与具体实施方式一至三之一不同的是:步骤二所述中间连接层材质为Co、Fe或Ni。
具体实施方式五:本实施方式与具体实施方式一至四之一不同的是:步骤二所述扩散阻隔层材质为CoMo、CoW、FeMo或FeW;所述扩散阻隔层中Mo或W的原子百分数为4%~20%。
具体实施方式六:本实施方式与具体实施方式一至五之一不同的是:步骤二所述中间连接层的厚度为1~50μm;扩散阻隔层的厚度为1~50μm。
具体实施方式七:本实施方式与具体实施方式一至六之一不同的是:步骤一所述的方钴矿热电材料分子式为RrTtXx,分子式中:R为碱金属、碱土金属、稀土金属或第三主族元素的一种元素或多种元素;T为Cr,Mn,Fe,Co,Ni,Ru,Os,Rh,Ir,Pt或Au的一种元素或多种元素;X为P,As,Sb,Bi,Se,Te,Si,Ge,Sn,Ga或In的一种元素或多种元素;0﹤r≤1,t=4,11.8≤x≤12.4。
具体实施方式八:本实施方式与具体实施方式一至七之一不同的是:步骤二所述钎焊工艺为:真空加热炉中的真空压力小于2×10-3Pa,焊接时对待焊工件施加的压力为0.003~0.1MPa,首先以5~30℃/min的速度加热到550~650℃并保温1~40min,然后以2~5℃/min的速度降温到50~100℃,之后随炉冷却至室温。
具体实施方式九:本实施方式与具体实施方式一至八之一不同的是:步骤二所述扩散焊工艺为:扩散焊在加热炉中进行,加热炉的气氛为真空或Ar气保护气氛,加热炉为真空时炉腔真空压力小于2×10-3Pa,加热炉中为Ar气保护气氛时Ar气压强-0.5Mpa;焊接时对待焊工件施加的压力为5~20Mpa,首先以5~30℃/min的速度加热到550~650℃并保温1~40min,然后以2~5℃/min的速度降温到50~100℃,之后随炉冷却至室温。
具体实施方式十:本实施方式与具体实施方式一至九之一不同的是:步骤二所述的钎料为液相线在550℃-650℃的Ag基钎料或Al基钎料。
实施例1:
本实施例利用高热稳定合金复合中间层连接方钴矿热电材料和电极的方法按以下步骤进行:
一、对方钴矿热电材料和电极的待焊面进行清洗;方钴矿热电材料为Yb0.4Co4Sb12,电极为CuW电极;
步骤一所述清洗工艺为:首先利用无水乙醇冲洗,然后置于丙酮中超声清洗15min,最后风干;
二、使用电镀的方法在电极表面制备中间连接层、且在中间连接层表面制备扩散阻隔层;然后将所得电极和方钴矿热电材料叠放,中间连接层和扩散阻隔层朝向内侧,得到待焊工件;对待焊工件进行扩散焊;
步骤二所述中间连接层材质为Co,纯度为>98%;
步骤二所述扩散阻隔层材质为CoMo;扩散阻隔层中Mo的原子百分数为15.1%;
步骤二所述中间连接层的厚度为3μm;扩散阻隔层的厚度为3μm;
步骤二所述扩散焊工艺为:扩散焊在加热炉中进行,加热炉的气氛为Ar气保护气氛,Ar气压强-0.5Mpa;焊接时对待焊工件施加的压力为20Mpa,首先以30℃/min的速度加热到600℃并保温10min,然后以3℃/min的速度降温到50℃,之后随炉冷却至室温。
图1是实施例一所获得的接头组织的照片;如图1所示,Yb0.4Co4Sb12方钴矿热电材料和CuW合金电极接头结合良好,无任何界面缺陷,合金复合中间层Co/CoMo有效地阻隔了电极中Cu元素向方钴矿的扩散,同时方钴矿母材中填充原子Yb和Sb元素均被有效阻挡于Yb0.4Co4Sb12方钴矿热电材料侧,接头的接触电阻率为1.20μΩcm2
图2是实施例一所获得的接头经退火后的组织及元素分布照片。图2能够看出,经过在550℃下退火600h,接头结合良好,无任何界面缺陷,合金复合中间层Co/CoMo有效地阻隔了电极中Cu元素向方钴矿的扩散,同时方钴矿母材中填充原子Yb和Sb元素均被有效阻挡于Yb0.4Co4Sb12方钴矿热电材料侧,退火后接头的接触电阻率仅为2.67μΩcm2
实施例2:
本实施例利用高热稳定合金复合中间层连接方钴矿热电材料和电极的方法按以下步骤进行:
一、对方钴矿热电材料和电极的待焊面进行清洗;方钴矿热电材料为La0.8Ga0.1Ti0.1Fe3.3Co4Sb12,电极为CuW电极;
步骤一所述清洗工艺为:首先利用无水乙醇冲洗,然后置于丙酮中超声清洗15min,最后风干;
二、使用电镀的方法在电极表面制备中间连接层、且在中间连接层表面制备扩散阻隔层;然后将所得电极和方钴矿热电材料叠放,中间连接层和扩散阻隔层朝向内侧,得到待焊工件;对待焊工件进行扩散焊;
步骤二所述中间连接层材质为Co,纯度为>98%;
步骤二所述扩散阻隔层材质为CoW;
所述扩散阻隔层中W的原子百分数为5%;
步骤二所述中间连接层的厚度为10μm;扩散阻隔层的厚度为10μm;
步骤二所述扩散焊工艺为:扩散焊在加热炉中进行,加热炉的气氛为Ar气保护气氛,Ar气压强-0.5Mpa;焊接时对待焊工件施加的压力为15Mpa,首先以30℃/min的速度加热到590℃并保温10min,然后以3℃/min的速度降温到50℃,之后随炉冷却至室温。
经测试,La0.8Ga0.1Ti0.1Fe3.3Co4Sb12方钴矿热电材料和CuW合金电极接头结合良好,接头的接触电阻率为1.12μΩcm2。在550℃下退火120h的接头后接头结合良好,接头的接触电阻率仅为1.9μΩcm2
实施例3:
本实施例利用高热稳定合金复合中间层连接方钴矿热电材料和电极的方法按以下步骤进行:
一、对方钴矿热电材料和电极的待焊面进行清洗;方钴矿热电材料为Yb0.4Co4Sb12,电极为CuMo电极;
步骤一所述清洗工艺为:首先利用无水乙醇冲洗,然后置于丙酮中超声清洗25min,最后风干;
二、使用电镀的方法在电极表面制备中间连接层、且在中间连接层表面制备扩散阻隔层;然后将所得电极和方钴矿热电材料叠放,中间连接层和扩散阻隔层朝向内侧,得到待焊工件;对待焊工件进行扩散焊;
步骤二所述中间连接层材质为Co,纯度为>98%;
步骤二所述扩散阻隔层材质为CoW;
所述扩散阻隔层中W的原子百分数为20%;
步骤二所述中间连接层的厚度为3μm;扩散阻隔层的厚度为3μm;
步骤二所述扩散焊工艺为:扩散焊在加热炉中进行,加热炉的气氛为Ar气保护气氛,Ar气压强-0.5Mpa;焊接时对待焊工件施加的压力为20Mpa,首先以30℃/min的速度加热到610℃并保温5min,然后以3℃/min的速度降温到50℃,之后随炉冷却至室温。
经检测,本实施例方钴矿热电材料和合金电极接头结合良好,无任何界面缺陷,合金复合中间层Co/CoW有效地阻隔了电极中Cu元素向方钴矿的扩散,同时方钴矿母材中填充原子Yb和Sb元素均被有效阻挡于Yb0.4Co4Sb12方钴矿热电材料侧,接头的接触电阻率为1.31μΩcm2。在550℃下退火600h后的接头结合良好,接头的接触电阻率仅为2.6μΩcm2
实施例4:
本实施例利用高热稳定合金复合中间层连接方钴矿热电材料和电极的方法按以下步骤进行:
一、对方钴矿热电材料和电极的待焊面进行清洗;方钴矿热电材料为La0.8Ga0.1Ti0.1Fe3.3Co4Sb12,电极为CuMo电极;
步骤一所述清洗工艺为:首先利用无水乙醇冲洗,然后置于丙酮中超声清洗25min,最后风干;
二、使用电镀的方法在电极表面制备中间连接层、且在中间连接层表面制备扩散阻隔层;然后将所得电极和方钴矿热电材料叠放,中间连接层和扩散阻隔层朝向内侧,得到待焊工件;对待焊工件进行扩散焊;
步骤二所述中间连接层材质为Co,纯度为>98%;
步骤二所述扩散阻隔层材质为CoMo;
所述扩散阻隔层中Mo的原子百分数为13.5%;
步骤二所述中间连接层的厚度为3μm;扩散阻隔层的厚度为3μm;
步骤二所述扩散焊工艺为:扩散焊在加热炉中进行,加热炉的气氛为Ar气保护气氛,Ar气压强-0.5Mpa;焊接时对待焊工件施加的压力为20Mpa,首先以30℃/min的速度加热到600℃并保温15min,然后以3℃/min的速度降温到50℃,之后随炉冷却至室温。
经测试,La0.8Ga0.1Ti0.1Fe3.3Co4Sb12方钴矿热电材料和CuMo合金电极接头结合良好,接头的接触电阻率为1.3μΩcm2。在550℃下退火600h后的接头结合良好,接头的接触电阻率仅为2.55μΩcm2
实施例5:
本实施例利用高热稳定合金复合中间层连接方钴矿热电材料和电极的方法按以下步骤进行:
一、对方钴矿热电材料和电极的待焊面进行清洗;方钴矿热电材料为Yb0.4Co4Sb12,电极为CuW电极;
步骤一所述清洗工艺为:首先利用无水乙醇冲洗,然后置于丙酮中超声清洗15min,最后风干;
二、使用电镀的方法在方钴矿热电材料表面制备扩散阻隔层、且在扩散阻隔层表面制备中间连接层;将电极和方钴矿热电材料叠放,中间连接层和扩散阻隔层朝向内侧,在方钴矿热电材料和电极之间放置Ag-Cu-In-Sn钎料,得到待焊工件;对待焊工件进行钎焊;Ag-Cu-In-Sn钎料中Ag、Cu、In、Sn的质量分数分别为57.6%、22.4%、8%、12%;
步骤二所述中间连接层材质为Co,纯度为>98%;
步骤二所述扩散阻隔层材质为CoW;所述扩散阻隔层中W的原子百分数为20%;
步骤二所述中间连接层的厚度为5μm;扩散阻隔层的厚度为5μm;
步骤二所述钎焊工艺为:真空加热炉中的真空压力小于2×10-3Pa,焊接时对待焊工件施加的压力为0.05MPa,首先以30℃/min的速度加热到595℃并保温10min,然后以5℃/min的速度降温到100℃,之后随炉冷却至室温。
经检测,Yb0.4Co4Sb12方钴矿热电材料和CuW合金电极接头结合良好,无任何界面缺陷,合金复合中间层Co/CoW有效地阻隔了电极中Cu元素向方钴矿的扩散,同时方钴矿母材中填充原子Yb和Sb元素均被有效阻挡于Yb0.4Co4Sb12方钴矿热电材料侧,接头的接触电阻率为1.7μΩcm2。在550℃下退火600h后的接头结合良好,接头的接触电阻率仅为2.89μΩcm2
实施例6:
本实施例利用高热稳定合金复合中间层连接方钴矿热电材料和电极的方法按以下步骤进行:
一、对方钴矿热电材料和电极的待焊面进行清洗;方钴矿热电材料为La0.8Ga0.1Ti0.1Fe3.3Co4Sb12,电极为CuMo电极;
步骤一所述清洗工艺为:首先利用无水乙醇冲洗,然后置于丙酮中超声清洗20min,最后风干;
二、使用电镀的方法在方钴矿热电材料表面制备扩散阻隔层、且在扩散阻隔层表面制备中间连接层;将电极和方钴矿热电材料叠放,中间连接层和扩散阻隔层朝向内侧,在方钴矿热电材料和电极之间放置Ag-Cu-In-Sn钎料,得到待焊工件;对待焊工件进行钎焊;Ag-Cu-In-Sn钎料中Ag、Cu、In、Sn的质量分数分别为57.6%、22.4%、8%、12%;
步骤二所述中间连接层材质为Co,纯度为>98%;
步骤二所述扩散阻隔层材质为CoMo;所述扩散阻隔层中Mo的原子百分数为15.5%;
步骤二所述中间连接层的厚度为5μm;扩散阻隔层的厚度为5μm;
步骤二所述钎焊工艺为:真空加热炉中的真空压力小于2×10-3Pa,焊接时对待焊工件施加的压力为0.1MPa,首先以30℃/min的速度加热到600℃并保温5min,然后以5℃/min的速度降温到100℃,之后随炉冷却至室温。
经测试,La0.8Ga0.1Ti0.1Fe3.3Co4Sb12方钴矿热电材料和CuMo合金电极接头结合良好,接头的接触电阻率为1.8μΩcm2。在550℃下退火600h后的接头结合良好,接头的接触电阻率仅为2.91μΩcm2
实施例7:
本实施例利用高热稳定合金复合中间层连接方钴矿热电材料和电极的方法按以下步骤进行:
一、对方钴矿热电材料和电极的待焊面进行清洗;方钴矿热电材料为La0.8Ga0.1Ti0.1Fe3.3Co4Sb12,电极为Cu电极;
步骤一所述清洗工艺为:首先利用无水乙醇冲洗,然后置于丙酮中超声清洗20min,最后风干;
二、使用电镀的方法在方钴矿热电材料表面制备扩散阻隔层、且在扩散阻隔层表面制备中间连接层;将电极和方钴矿热电材料叠放,中间连接层和扩散阻隔层朝向内侧,在方钴矿热电材料和电极之间放置Ag-Cu-In-Sn钎料,得到待焊工件;对待焊工件进行钎焊;Ag-Cu-In-Sn钎料中Ag、Cu、In、Sn的质量分数分别为57.6%、22.4%、5%、15%;
步骤二所述中间连接层材质为Fe,纯度为>98%;
步骤二所述扩散阻隔层材质为FeMo;所述扩散阻隔层中Mo的原子百分数为14.9%;
步骤二所述中间连接层的厚度为5μm;扩散阻隔层的厚度为5μm;
步骤二所述钎焊工艺为:真空加热炉中的真空压力小于2×10-3Pa,焊接时对待焊工件施加的压力为0.05MPa,首先以30℃/min的速度加热到590℃并保温10min,然后以3℃/min的速度降温到100℃,之后随炉冷却至室温。
经测试,La0.8Ga0.1Ti0.1Fe3.3Co4Sb12方钴矿热电材料和Cu电极接头结合良好,接头的接触电阻率为1.5μΩcm2。在550℃下退火600h后的接头结合良好,接头的接触电阻率仅为2.77μΩcm2
实施例8:
本实施例利用高热稳定合金复合中间层连接方钴矿热电材料和电极的方法按以下步骤进行:
一、对方钴矿热电材料和电极的待焊面进行清洗;方钴矿热电材料为Co4Sb12,电极为Cu电极;
步骤一所述清洗工艺为:首先利用无水乙醇冲洗,然后置于丙酮中超声清洗25min,最后风干;
二、使用电镀的方法在方钴矿热电材料表面制备扩散阻隔层、且在扩散阻隔层表面制备中间连接层;将电极和方钴矿热电材料叠放,中间连接层和扩散阻隔层朝向内侧,在方钴矿热电材料和电极之间放置Ag-Cu-Sn钎料,得到待焊工件;对待焊工件进行钎焊;Ag-Cu-Sn钎料中Ag、Cu、Sn的质量分数分别为57.6%、22.4%、20%;
步骤二所述中间连接层材质为Fe,纯度为>98%;
步骤二所述扩散阻隔层材质为CoW;所述扩散阻隔层中W的原子百分数为19.5%;
步骤二所述中间连接层的厚度为3μm;扩散阻隔层的厚度为3μm;
步骤二所述钎焊工艺为:真空加热炉中的真空压力小于2×10-3Pa,焊接时对待焊工件施加的压力为0.1MPa,首先以15℃/min的速度加热到590℃并保温15min,然后以5℃/min的速度降温到100℃,之后随炉冷却至室温。
经检测,Co4Sb12方钴矿热电材料和Cu电极接头结合良好,无任何界面缺陷,合金复合中间层Co/CoW有效地阻隔了电极中Cu元素向方钴矿的扩散,同时方钴矿母材中Sb元素被有效阻挡于Co4Sb12方钴矿热电材料侧,接头的接触电阻率为1.66μΩcm2。在550℃下退火600h后的接头结合良好,接头的接触电阻率仅为2.95μΩcm2

Claims (7)

1.一种利用高热稳定合金复合中间层连接方钴矿热电材料和电极的方法,其特征在于:该方法按以下步骤进行:
一、对方钴矿热电材料和电极的待焊面进行清洗;
二、使用电镀或物理气相沉积的方法在电极表面制备中间连接层、且在中间连接层表面制备扩散阻隔层;或在电极表面制备中间连接层、且在方钴矿热电材料表面制备扩散阻隔层;或在方钴矿热电材料表面制备扩散阻隔层、且在扩散阻隔层表面制备中间连接层;然后将所得电极和方钴矿热电材料叠放,中间连接层和扩散阻隔层朝向内侧,得到待焊工件;对待焊工件进行扩散焊;
所述中间连接层材质为Co、Fe或Ni;
所述扩散阻隔层材质为CoMo、CoW、FeMo或FeW;所述扩散阻隔层中Mo或W的原子百分数为4%~20%;
步骤二所述扩散焊工艺为:扩散焊在加热炉中进行,加热炉的气氛为真空或Ar气保护气氛,加热炉为真空时炉腔真空压力小于2×10-3Pa,加热炉中为Ar气保护气氛时Ar气压强-0.5Mpa;焊接时对待焊工件施加的压力为5~20Mpa,首先以5~30℃/min的速度加热到550~650℃并保温1~40min,然后以2~5℃/min的速度降温到50~100℃,之后随炉冷却至室温。
2.根据权利要求1所述的利用高热稳定合金复合中间层连接方钴矿热电材料和电极的方法,其特征在于:步骤一所述清洗工艺为:首先利用无水乙醇冲洗,然后置于丙酮中超声清洗5~30min,最后风干。
3.根据权利要求1所述的利用高热稳定合金复合中间层连接方钴矿热电材料和电极的方法,其特征在于:步骤一所述电极为金属电极或合金电极。
4.根据权利要求3所述的利用高热稳定合金复合中间层连接方钴矿热电材料和电极的方法,其特征在于:所述金属电极材质为Cu、Ni、Fe、Co或Cr;所述合金电极材质为Cu基合金、Ni基合金、Fe基合金、Co基合金或Cr基合金。
5.根据权利要求4所述的利用高热稳定合金复合中间层连接方钴矿热电材料和电极的方法,其特征在于:所述Cu基合金为CuW或CuMo;Ni基合金为NiW、NiMo或NiCr;Fe基合金为FeW、FeMo、FeCr或FeCoNi;Co基合金为CoW、CoMo、CoCr、CoNi或CoFe;Cr基合金为CrW、CrMo、CrCoNi或CrFeNi。
6.根据权利要求1所述的利用高热稳定合金复合中间层连接方钴矿热电材料和电极的方法,其特征在于:步骤二所述中间连接层的厚度为1~50μm;扩散阻隔层的厚度为1~50μm。
7.根据权利要求1所述的利用高热稳定合金复合中间层连接方钴矿热电材料和电极的方法,其特征在于:步骤一所述的方钴矿热电材料分子式为RrTtXx,分子式中:R为碱金属、碱土金属、稀土金属或第三主族元素的一种元素或多种元素;T为Cr,Mn,Fe,Co,Ni,Ru,Os,Rh,Ir,Pt或Au的一种元素或多种元素; X为P,As,Sb,Bi,Se,Te,Si,Ge,Sn,Ga或In的一种元素或多种元素;0﹤r≤1,t=4,11.8≤x≤12.4。
CN202011163376.6A 2020-10-27 2020-10-27 一种利用高热稳定合金复合中间层连接方钴矿热电材料和电极的方法 Active CN112276275B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011163376.6A CN112276275B (zh) 2020-10-27 2020-10-27 一种利用高热稳定合金复合中间层连接方钴矿热电材料和电极的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011163376.6A CN112276275B (zh) 2020-10-27 2020-10-27 一种利用高热稳定合金复合中间层连接方钴矿热电材料和电极的方法

Publications (2)

Publication Number Publication Date
CN112276275A CN112276275A (zh) 2021-01-29
CN112276275B true CN112276275B (zh) 2022-06-07

Family

ID=74373114

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011163376.6A Active CN112276275B (zh) 2020-10-27 2020-10-27 一种利用高热稳定合金复合中间层连接方钴矿热电材料和电极的方法

Country Status (1)

Country Link
CN (1) CN112276275B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113020736B (zh) * 2021-03-25 2022-08-30 哈尔滨工业大学 一种方钴矿热电材料与铜电极的钎焊连接方法
CN113020737A (zh) * 2021-03-25 2021-06-25 哈尔滨工业大学 一种通过钴中间层扩散连接方钴矿与铜电极的方法
CN115502538B (zh) * 2022-09-19 2023-08-11 哈尔滨工业大学 一种方钴矿基热电材料与金属电极的连接方法
CN115415656B (zh) * 2022-09-19 2023-08-15 哈尔滨工业大学 一种以Fe-Cr-Mo/W为阻隔层的方钴矿热电材料与铜电极的连接方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011114186A (ja) * 2009-11-27 2011-06-09 Showa Denko Kk 熱電素子およびその製造方法、ならびに熱電モジュール
CN106062978A (zh) * 2013-06-20 2016-10-26 休斯敦大学体系 热电填充式方钴矿器件的稳定电极/扩散阻挡层的制造

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030186074A1 (en) * 2002-04-02 2003-10-02 Chi-Lin Chen Metal electrode using molybdenum-tungsten alloy as barrier layers and the fabrication method of the same
KR101079205B1 (ko) * 2008-08-22 2011-11-03 주식회사 하이닉스반도체 반도체 장치 및 그 제조 방법
CN103531704B (zh) * 2013-10-31 2020-01-21 中国科学院上海硅酸盐研究所 方钴矿热电单偶元件用电极与封装材料及一步法连接工艺
CN106299099B (zh) * 2015-05-19 2019-01-29 中国科学院上海硅酸盐研究所 一种用于方钴矿热电元件的合金电极及其制备方法
CN207719245U (zh) * 2017-09-19 2018-08-10 中国科学院上海硅酸盐研究所 一种n型锑化钴基方钴矿热电元件
CN111463341B (zh) * 2019-01-21 2022-04-08 中国科学院上海硅酸盐研究所 一种低接触电阻率的半赫斯勒合金热电器件及制备方法
CN111014929B (zh) * 2019-12-28 2021-04-20 哈尔滨工业大学 一种用于方钴矿热电材料与电极的快速扩散焊连接方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011114186A (ja) * 2009-11-27 2011-06-09 Showa Denko Kk 熱電素子およびその製造方法、ならびに熱電モジュール
CN106062978A (zh) * 2013-06-20 2016-10-26 休斯敦大学体系 热电填充式方钴矿器件的稳定电极/扩散阻挡层的制造

Also Published As

Publication number Publication date
CN112276275A (zh) 2021-01-29

Similar Documents

Publication Publication Date Title
CN112276275B (zh) 一种利用高热稳定合金复合中间层连接方钴矿热电材料和电极的方法
Zhang et al. Thermoelectric devices for power generation: recent progress and future challenges
US8198116B2 (en) Fabrication method for thermoelectric device
CN100583478C (zh) 一种π型CoSb3基热电转换器件及制备方法
JP5671258B2 (ja) 熱電変換モジュール
JP5386239B2 (ja) 熱電変換モジュール
CN113828906B (zh) 一种利用高熵合金中间层连接方钴矿与电极的扩散焊方法
JP2014086623A (ja) 熱電変換モジュール
JP2006294738A (ja) 管状熱電モジュールおよびそれを用いた熱電変換装置並びに管状熱電モジュールの製造方法
CN107350655B (zh) 一种铜/锡纳米复合粉末活性焊料及其制备方法
JP5780254B2 (ja) 熱電変換素子
WO2017098863A1 (ja) 熱電変換モジュールおよびその製造方法
CN111347146A (zh) 一种钨与热沉材料连接头及其制备方法
Li et al. Interface evolution analysis of graded thermoelectric materials joined by low temperature sintering of nano-silver paste
CN106159077B (zh) 一种碲化铋基热电发电元件及其制备方法
CN104711457A (zh) 一种高温焊料及其应用
CN111261767A (zh) 一种碲化铋基热电元件及其制备方法
WO2017020833A1 (zh) 相变抑制传热温差发电器件及其制造方法
JPH07202274A (ja) 熱電装置およびその製造方法
CN110098312B (zh) 一种分段热电材料的连接方法
CN109065697A (zh) 一种环形热电发电器件
JP2009081178A (ja) 熱電変換モジュールの製造方法
CN207529976U (zh) 热电器件及其电极
CN110976863B (zh) 铬镍系奥氏体不锈钢合金用于热电材料电极的应用及Mg3Sb2热电接头
CN104362249A (zh) 一种与Mg-Si-Sn基热电元件相匹配的分层电极及其连接工艺

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant