CN117293286A - 硅碳预锂复层负极材料及其制备方法与应用 - Google Patents

硅碳预锂复层负极材料及其制备方法与应用 Download PDF

Info

Publication number
CN117293286A
CN117293286A CN202210690849.0A CN202210690849A CN117293286A CN 117293286 A CN117293286 A CN 117293286A CN 202210690849 A CN202210690849 A CN 202210690849A CN 117293286 A CN117293286 A CN 117293286A
Authority
CN
China
Prior art keywords
silicon
carbon
lithium
anode material
lithium composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210690849.0A
Other languages
English (en)
Inventor
陈懋松
陈苇伦
赖鸿政
张曾隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xinliang Technology Co ltd
Hon Hai Precision Industry Co Ltd
Original Assignee
Xinliang Technology Co ltd
Hon Hai Precision Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xinliang Technology Co ltd, Hon Hai Precision Industry Co Ltd filed Critical Xinliang Technology Co ltd
Priority to CN202210690849.0A priority Critical patent/CN117293286A/zh
Priority to EP23177304.5A priority patent/EP4293745A1/en
Priority to US18/208,780 priority patent/US20230411598A1/en
Publication of CN117293286A publication Critical patent/CN117293286A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本申请提供一种硅碳预锂复层负极材料的制备方法,包括以下步骤:对硅料进行纳米化得到纳米硅,向纳米硅中加入碳基材及高分子聚合物进行均质化处理,得到硅碳复合体;提供一预锂纳米材料;将硅碳复合体和预锂纳米材料混合后进行造粒,得到硅碳预锂复层前驱体;对所述硅碳预锂复层前驱体进行烧结,得到硅碳预锂复层负极材料。本申请还提供一种硅碳预锂复层负极材料及包括其的电池。本申请提供的硅碳预锂复层负极材料的比容量和循环性能大幅提升。

Description

硅碳预锂复层负极材料及其制备方法与应用
技术领域
本发明涉及电池技术领域,尤其涉及一种硅碳预锂复层负极材料及其制备方法及包括该硅碳预锂复层负极材料的电池。
背景技术
目前,锂离子电池的预锂技术是提升电池能量密度和循环寿命的重要方法。预锂技术分为正极预锂及负极预锂。正极预锂化主要通过在正极中加入富锂氧化物,以补充首次活化过程中的锂源损失。而负极预锂化,主要通过将锂源如锂金属薄膜压制在负极活性物质层的表面上从而将锂离子嵌入负极活性物质中。这种方法虽然可以通过降低硅基负极活性材料的初始不可逆性来提高寿命,但是在锂源预锂化到硅基负极活性材料的过程中会有大量的副产物产生。同时,导电率低的氧化锂几乎只在硅基负极活性材料的表面产生,因此该方法减少不可逆性是有限度的。
现有技术的预锂方法,只能实现在首次活化中,对负极进行一次性补充以改善首次充电时造成的活性锂损失。但是,在一次性预锂后,大部分预锂材料,会以一种惰性物质的形式存在电池中,降低了整体能量密度和功率密度。所以,一次性预锂方法,对于锂离子电池在持续使用过程中,因为充放电循环所产生的锂损失,无法进行有效的补充,达不到循环中持续补充的效果。目前的解决方式主要是在负极预存一部分锂源,在循环过程中,随着锂的损失而逐步释放,但该方法在首次充电过程中存在极大的热失控风险。然同时,由于硅基负极活性材料在充放电过程中,不可避免会发生体积膨胀,造成固态电解质界面(SEI)反复形成,也会消耗电池体系内的锂量。
发明内容
有鉴于此,确有必要提供一种硅碳预锂复层负极材料的制备方法,以制备一种硅碳预锂复层负极材料,实现提高电池的容量及循环稳定性。
一种硅碳预锂复层负极材料的制备方法,所述制备方法包括以下步骤:对硅料进行纳米化得到纳米硅,向纳米硅中加入碳基材及高分子聚合物进行均质化处理,得到硅碳复合体;提供一预锂纳米材料;将硅碳复合体和预锂纳米材料混合后进行造粒,得到硅碳预锂复层前驱体;对所述硅碳预锂复层前驱体进行烧结,得到硅碳预锂复层负极材料。
一种硅碳预锂复层负极材料,所述硅碳预锂复层负极材料包括硅碳复合体及包覆在所述硅碳复合体表面的预锂纳米层,所述硅碳复合体包括纳米硅、高分子聚合物和碳基材;所述预锂纳米层包括一种或多种含锂化合物LiyM,其中,M为B、Si、Ge、Sn、N、O、F、Cl、I、S、P、AlO2、TiO2中的至少一种。
一种电池,包括正极极片、负极极片和隔膜,所述负极极片包括上述所述的硅碳预锂复层负极材料。
与现有技术相比,本发明的有益效果为:通过采用硅碳复合材料和预锂纳米材料混合均质后进行造粒和烧结的步骤,得到预锂纳米层包覆硅碳复合体的复合结构。该预锂纳米层可形成稳固的SEI膜,并提供硅材料体积膨胀时需要的缓冲空间,同时,所述预锂纳米层作为富锂相还可进行锂源补给,从而使得所述硅碳预锂复层负极材料的比容量和循环性能大幅提升。
附图说明
图1为本发明提供的硅碳复合体和预锂纳米材料的造粒示意图。
图2为本发明提供的硅碳预锂复层负极材料的结构示意图。
图3为实施例1制备的硅碳预锂复层负极材料与单质硅的X射线衍射图。
图4为实施例1制备的硅碳预锂复层负极材料的扫描电镜图。
主要元件符号说明
硅碳预锂复层负极材料 100
硅碳复合体 10
预锂纳米层 20
如下具体实施例将结合上述附图进一步说明本发明。
具体实施方式
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请实施例的技术领域的技术人员通常理解的含义相同。本文中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本申请实施例。
另外,在本申请中如涉及“第一”“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
下面结合附图,对本申请的一些实施方式作详细说明。在不冲突的情况下,下述的实施方式及实施方式中的特征可以相互组合。
本发明实施例提供一种硅碳预锂复层负极材料的制备方法,包括以下步骤:
步骤S1,对硅料进行纳米化得到纳米硅,向纳米硅中加入碳基材及高分子聚合物进行均质化处理,得到硅碳复合体;
步骤S2,提供一预锂纳米材料;
步骤S3,将硅碳复合体和预锂纳米材料混合后进行造粒,得到硅碳预锂复层前驱体;
步骤S4,对所述硅碳预锂复层前驱体进行烧结,烧结温度为500℃~1200℃,得到硅碳预锂复层负极材料。
上述步骤编号S1~S4仅是为了以下说明方便,并非限定步骤的先后顺序。此外,各步骤之间,亦可依所需包含其他步骤。
在步骤S1中,所述硅料可选择半导体等级的硅料,硅料的尺寸可选择微米等级,如大于等于10微米。纳米化的实现方式包括但不限于机械加工、机械球磨等,机械球磨可为干磨或湿磨。
所述纳米化的过程需要在保护性的环境中进行。其中,所述保护性的环境可为真空环境,或者所述保护性的环境可由通入惰性气体或者加入溶剂获得。所述惰性气体包括氩气(Ar)、氮气(N2)或氦气(He)中的至少一种。所述惰性气体可提供无氧环境,防止纳米硅被氧化,使后续制备出的硅碳预锂复层负极材料基本上无SiOx,有利于提升硅碳预锂复层负极材料的电化学性能和降低体积效应。所述溶剂可为二甘醇(DEG)、聚乙二醇(PEG)、丙二醇(PG)、二甲基亚砜(DMSO)或其组合。所述溶剂能防止纳米硅被氧化,使制备出的硅碳预锂复层负极材料基本上无SiOx,有利于提升硅碳预锂复层负极材料的电化学性能和降低体积效应。所述纳米硅的晶粒尺寸为10纳米-50纳米。将硅料纳米化后有利于与碳基材的均质化处理,并利于后续制备出合适粒径的硅碳预锂复层负极材料,以适合二次电池的制浆工艺。
所述高分子聚合物为两性高分子,同时具有疏水基和亲水基。所述高分子聚合物可为N-烯丙基-(2-乙基黄原酸基)丙酰胺(NAPA)、二甲基甲酰胺(DMF)或其组合。具体地,所述高分子聚合物是一种介质,含有例如氨基和羟基等。所述高分子聚合物一端具有亲水基和另一端具有疏水基的特性,能够改善纳米硅与碳基材之间的亲水性与疏水性差异。本实施例中,所述高分子聚合物中具有亲水基的一端与纳米硅键结,具有疏水基的一端与碳基材键结,从而使得纳米硅牢固地被包覆在碳基材上,且不容易与另外的纳米硅发生团聚。
所述碳基材可为沥青、石墨、石墨烯、碳黑、碳纳米管、纳米纤维等。在均质化处理过程中,颗粒逃逸现象会引发放热反应,所述碳基材可进行热扩散,避免发生团聚,并避免纳米硅因为放热现象而被氧化。
所述均质化处理可以是但不限于机械加工、放电加工或机械球磨等。其中,机械球磨可以是干磨或湿磨。所述均质化处理使得纳米硅、高分子聚合物和碳基材完成有序堆栈自组装包覆,得到层状的硅碳复合体。
在步骤S2中,所述预锂纳米材料(LiyM)可为Li5B4、Li22Si5、Li22Sn5、Li22Ge5、Li3N、Li2O、LiF、LiCl、LiI、Li2S、Li3PO4、LiAlO2、Li2TiO3等。优选地,所述预锂纳米材料为Li3N。进一步,所述预锂纳米材料可通过对锂原料和活性物进行混合后合成得到。所述锂原料可为氧化锂(Li2O)、锂粉、氢氧化锂(LiOH)、硝酸锂(LiNO3)、碳酸锂(LiCO3)等中的至少一种。所述活性物可为B、Si、Ge、Sn、N、O、F、Cl、I、S、P、AlO2、TiO2中的至少一种。根据选择的活性物的种类,即可得到相应的预锂纳米材料。
所述锂原料和活性物的合成反应需要在密封环境中进行。进一步,在所述密封环境中还可通入氮气或氩气进行内循环以用于散热。具体地,所述合成反应是在密封环境中将锂原料和活性物混合后进行研磨加工实现。经过研磨得到的所述预锂纳米材料的粒径为纳米级粒径,优选地,所述预锂纳米材料的粒径小于硅碳复合体的粒径,以易于在造粒过程中包覆在硅碳复合体上。进一步,在研磨过程中可加入溶剂以用于散热。所述溶剂可为己烷、庚烷、辛烷等烷烃类溶剂。所述溶剂可在反应后经真空干燥去除。
在步骤S3中,所述硅碳复合体和预锂纳米材料混合均匀后造粒,以制备出能用于后续制浆的实心球。具体地,所述预锂纳米材料与硅碳复合体的质量比为1%-5%。
所述造粒工艺包括但不限于二流体造粒、四流体造粒、旋风造粒、喷雾造粒、干式造粒或湿式造粒。请参阅图1,将硅碳复合体和预锂纳米材料均匀混合后,经过造粒工艺,所述预锂纳米材料在所述硅碳复合体的表面形成一稳定的膜层。所述预锂纳米材料形成的膜层包覆在所述硅碳复合体的表面,形成均匀的实心球结构,从而得到硅碳预锂复层前驱体。在所述造粒工艺中,造粒的温度和压差等造粒条件可根据需要进行调节控制,以防止预锂纳米材料在造粒过程中发生逸散。
造粒后,得到的所述硅碳预锂复层前驱体的粒径为5微米至15微米,以适合于现在锂二次电池制浆工艺的大小,同时也可避免后续烧结过程中的团聚。
在步骤S4中,所述烧结过程需要在保护性气氛下或低真空环境下进行,以增加所述预锂纳米材料作为包覆层的致密性及完整性。所述保护性气氛可为氮氢混合气氛。所述烧结温度为500℃~1200℃。
本发明实施例还提供一种硅碳预锂复层负极材料。请参阅图2,所述硅碳预锂复层负极材料100包括硅碳复合体10及包覆硅碳复合体10的预锂纳米层20。所述硅碳复合体10包括纳米硅、高分子聚合物和碳基材。在一个实施方式中,所述硅碳复合体10是由纳米硅、高分子聚合物和碳基材形成的复合结构。其中,所述纳米硅通过所述高分子聚合物键结在所述碳基材上,使得所述纳米硅被牢固地包覆在所述碳基材上,同时防止纳米硅颗粒之间发生团聚。所述预锂纳米层20包括一种或多种含锂化合物LiyM。其中,M为B、Si、Ge、Sn、N、O、F、Cl、I、S、P、AlO2、TiO2中的至少一种。所述含锂化合物LiyM的实例包含但不限于Li5B4、Li22Si5、Li22Sn5、Li22Ge5、Li3N、Li2O、LiF、LiCl、LiI、Li2S、Li3PO4、LiAlO2、Li2TiO3等。所述预锂纳米层20可以在所述硅碳复合体的表面形成稳固的SEI膜,并能在电池循环过程中进行锂源补给,含鋰化合物LiyM中的M是一种预留空位作为嵌锂使用,还可提供硅材料体积膨胀时需要的缓冲空间,从而使得负极材料的循环性能大幅提升。同时,由于所述硅碳预锂复层负极材料100中采用纳米化的硅,硅在纳米化后可有效降低首次因为锂嵌入硅而产生的应力效应。
本发明实施例还提供一种电池,包括正极极片、负极极片和隔膜,所述负极极片包括所述硅碳预锂复层负极材料。所述电池可为二次电池,例如锂离子二次电池、钠离子电池等,但并不限于此。
本申请提供的所述硅碳预锂复层负极材料的制备方法,通过采用硅碳复合材料和预锂纳米材料混合均质后进行造粒和烧结的步骤,得到预锂纳米层包覆硅碳复合体形成的复合结构。该预锂纳米层可在表面形成稳固的SEI膜,并提供硅材料体积膨胀时需要的缓冲空间,同时,所述预锂纳米层作为富锂相还可进行锂源补给,从而使得所述硅碳预锂复层负极材料的循环性能大幅提升。本申请提供的所述硅碳预锂复层负极材料,具有高的比容量(>1600mAh g-1)、所述硅碳预锂复层负极材料形成的半电池的法拉第效率可达90%以上及高的循环稳定性。
以下将结合具体实施例对本申请进行进一步说明。
实施例1
S1:将半导体等级的硅料(≥10μm)和二甘醇及5wt%高分子聚合物N-烯丙基-(2-乙基黄原酸基)丙酰胺放入研磨机中进行机械加工,其中,所述研磨机的转速为2400~3000rpm,所述硅料被加工成纳米硅,所述纳米硅的晶粒尺寸为15~50纳米;再添加10wt%片状天然石墨的碳基材,通过有序堆栈自组装工艺,使得纳米硅复合在碳基材表面,得到硅碳复合体。
S2:将符合LiyB原子比例的Li2O和B粉置于氩封环境内进行研磨加工,并加入辛烷作为散热溶剂,转速为2400~3000rpm,研磨24小时后取出并进行真空干燥,得到预锂纳米材料。
S3:将硅碳复合体与1%的LiyB预锂纳米材料进行混合均质处理,再进行共同造粒,得到硅碳预锂复层前驱体。
S4:将所述硅碳预锂复层前驱体放入含有氮氢混合气的烧结炉中,气体流速为2L/min,温度为550℃下热处理8小时,得到硅碳预锂复层负极材料。
请参阅图3,由实施例1制备的硅碳预锂复层负极材料与单质硅的XRD(X-RayDiffraction)图进行对比可知,所述硅碳预锂复层负极材料中硅的特征峰与单质硅的特征峰相同,并没有硅氧化物的特征峰,表明实施例1制备的硅碳预锂复层负极材料中的硅仍以单质硅的形式存在,而没有被氧化。
图4为实施例1制备的硅碳预锂复层负极材料的扫描电镜图,从图中可以看出,实施例1制备的硅碳预锂复层负极材料的颗粒表面光滑且覆层紧密,颗粒的比表面积得以有效控制,这说明通过本申请的均质、研磨、造粒工艺可得到尺寸合适的颗粒且颗粒表面得到有效的预锂纳米层的保护。
将实施例1制备的预锂纳米层为LiyB的硅碳预锂复层负极材料记为样品1,再根据实施例1的制备方法分别制备出预锂纳米层为LiySi的硅碳预锂复层负极材料和预锂纳米层为LiyN的硅碳预锂复层负极材料,并分别记为样品2和样品3。将不含预锂纳米层的硅碳负极材料作为对比例,并记为样品4。分别将四份样品与导电剂和黏结剂按照质量比88:1:11溶解在水中得到混合物,调配成固含量为50%的浆料。将所述浆料涂覆在铜箔集流体上并真空干燥以获得负极极片。然后采用常规生产工艺组装三元正极极片、锂盐浓度为1mol/L的电解液(组成为LiPF6/EC+DMC+EMC)、Celgard2400隔膜进行软包电池堆叠及5Ah组装。由样品1组装得到的电池记为电池1,由样品2组装得到的电池记为电池2,由样品3组装得到的电池记为电池3,由样品4组装得到的电池记为电池4。将电池1、电池2、电池3和电池4分别进行如下性能测试。
负极锂离子引出容量测试:电流密度0.1C、电压下降到2.0V,然后根据以下公式进行负极课电容量换算,得到引出容量。
上述性能测试结果请见表1。
表1
由表1可知,本申请制备方法所制备的硅碳预锂复层负极材料组装得到的电池,其引出容量和引出容量保持率都明显高于没有预锂复层的负极材料制备的电池,这表明本申请制备的含预锂纳米层的硅碳预锂复层负极材料提升了电池的导电性和循环稳定性。
本申请提供的硅碳预锂复层负极材料,由于预锂纳米材料LiyM可在硅碳复合体表面形成稳固的SEI膜,并可以在电池循环过程中,进行锂源补给,且还能够提供硅材料体积膨胀时需要的缓冲空间,从而使得硅碳预锂复层负极材料的循环性能大幅提升。同时,M可作为预留空位嵌锂使用,而且当硅碳预锂复层负极发生体积变化时,能够作为缓冲。本申请提供的硅碳预锂复层负极材料的制备方法工艺简单,易于控制流程,适合工业化生产。
另外,本领域技术人员还可在本发明精神内作其它变化,当然这些依据本发明精神所作的变化,都应包含在本发明所要求保护的范围内。

Claims (10)

1.一种硅碳预锂复层负极材料的制备方法,所述制备方法包括以下步骤:
对硅料进行纳米化得到纳米硅,向纳米硅中加入碳基材及高分子聚合物进行均质化处理,得到硅碳复合体;
提供一预锂纳米材料;
将硅碳复合体和预锂纳米材料混合后进行造粒,得到硅碳预锂复层前驱体;
对所述硅碳预锂复层前驱体进行烧结,得到硅碳预锂复层负极材料。
2.如权利要求1所述的硅碳预锂复层负极材料的制备方法,其特征在于,所述碳基材包括沥青、石墨、石墨烯、碳黑、碳纳米管、纳米纤维中的至少一种。
3.如权利要求1所述的硅碳预锂复层负极材料的制备方法,其特征在于,所述高分子聚合物具有疏水基和亲水基,所述高分子聚合物包括N-烯丙基-(2-乙基黄原酸基)丙酰胺、二甲基甲酰胺中的至少一种。
4.如权利要求1所述的硅碳预锂复层负极材料的制备方法,其特征在于,所述纳米硅的晶粒尺寸为10纳米-50纳米。
5.如权利要求1所述的硅碳预锂复层负极材料的制备方法,其特征在于,所述预锂纳米材料为Li5B4、Li22Si5、Li22Sn5、Li22Ge5、Li3N、Li2O、LiF、LiCl、LiI、Li2S、Li3PO4、LiAlO2、Li2TiO3中的至少一种。
6.如权利要求1所述的硅碳预锂复层负极材料的制备方法,其特征在于,所述预锂纳米材料与硅碳复合体的质量比为1%-5%。
7.如权利要求1所述的硅碳预锂复层负极材料的制备方法,其特征在于,所述硅碳预锂复层前驱体是由所述预锂纳米材料包覆在所述硅碳复合体的表面形成的实心球结构,所述硅碳预锂复层前驱体的粒径为5微米至15微米。
8.一种硅碳预锂复层负极材料,其特征在于,所述硅碳预锂复层负极材料包括硅碳复合体及包覆在所述硅碳复合体表面的预锂纳米层,所述硅碳复合体包括纳米硅、高分子聚合物和碳基材;所述预锂纳米层包括一或多种含锂化合物LiyM,其中,M为B、Si、Ge、Sn、N、O、F、Cl、I、S、P、AlO2、TiO2中的至少一种。
9.如权利要求8所述的硅碳预锂复层负极材料,其特征在于,所述含锂化合物LiyM为Li5B4、Li22Si5、Li22Sn5、Li22Ge5、Li3N、Li2O、LiF、LiCl、LiI、Li2S、Li3PO4、LiAlO2、Li2TiO3中的至少一种。
10.一种电池,包括正极极片、负极极片和隔膜,其特征在于,所述负极极片包括权利要求8或9所述的硅碳预锂复层负极材料。
CN202210690849.0A 2022-06-17 2022-06-17 硅碳预锂复层负极材料及其制备方法与应用 Pending CN117293286A (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202210690849.0A CN117293286A (zh) 2022-06-17 2022-06-17 硅碳预锂复层负极材料及其制备方法与应用
EP23177304.5A EP4293745A1 (en) 2022-06-17 2023-06-05 Silicon-carbon pre-lithium composite anode material and method for making the same and battery
US18/208,780 US20230411598A1 (en) 2022-06-17 2023-06-12 Silicon-carbon pre-lithium composite anode material and method for making the same and battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210690849.0A CN117293286A (zh) 2022-06-17 2022-06-17 硅碳预锂复层负极材料及其制备方法与应用

Publications (1)

Publication Number Publication Date
CN117293286A true CN117293286A (zh) 2023-12-26

Family

ID=86693158

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210690849.0A Pending CN117293286A (zh) 2022-06-17 2022-06-17 硅碳预锂复层负极材料及其制备方法与应用

Country Status (3)

Country Link
US (1) US20230411598A1 (zh)
EP (1) EP4293745A1 (zh)
CN (1) CN117293286A (zh)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009277485A (ja) * 2008-05-14 2009-11-26 Toyota Motor Corp Si/C複合体型負極活物質の製造方法
CN106129411B (zh) * 2016-09-19 2020-01-24 深圳市贝特瑞新能源材料股份有限公司 一种空心硅基复合材料、制备方法及包含该复合材料的锂离子电池
US11715832B2 (en) * 2019-08-12 2023-08-01 Global Graphene Group, Inc. Electrochemically stable anode active material for lithium-ion batteries and production method
CN111584848A (zh) * 2020-05-22 2020-08-25 贝特瑞新材料集团股份有限公司 硅氧复合负极材料、其制备方法和锂离子电池

Also Published As

Publication number Publication date
US20230411598A1 (en) 2023-12-21
EP4293745A1 (en) 2023-12-20

Similar Documents

Publication Publication Date Title
Lu et al. Improved electrochemical performance of tin-sulfide anodes for sodium-ion batteries
KR101436762B1 (ko) 부극 재료, 금속 2차 전지 및 부극 재료의 제조 방법
CN110048101B (zh) 一种硅氧碳微球复合负极材料及其制备方法与应用
CN112467108B (zh) 一种多孔硅氧复合材料及其制备方法和应用
JP2022553657A (ja) コバルトフリー正極材料およびその調製方法、並びにリチウムイオン電池正極およびリチウム電池
US11791459B2 (en) Electrochemically active materials and methods of preparing the same
CN111653759A (zh) 一种硅基复合材料及其制备方法
CN113054241A (zh) 一种固态锂电池及其制备方法
CN114464909A (zh) 一种纳米化复合正极补锂浆料以及正极
CN112952048A (zh) 硅碳复合负极材料及其制备方法、电极和二次电池
Meng et al. Preparation and performance of in situ carbon-coated silicon monoxide@ C@ carbon microspheres composite anode material for lithium-ion batteries
CN114079086A (zh) 正极补锂添加剂、正极极片、其制备方法及锂离子电池
CN114520320B (zh) 一种基于碱金属还原法的氧化锂复合正极材料
CN113889594A (zh) 一种硼掺杂锆酸镧锂包覆石墨复合材料的制备方法
CN114094078B (zh) 一种氮掺杂碳包覆的金属硫化物异质结材料、制备方法及电池应用
CN113644252A (zh) 一种硅碳负极材料及制备方法
CN112993218A (zh) 一种高比功率锂离子电池用负极材料及其制备与应用
CN117293286A (zh) 硅碳预锂复层负极材料及其制备方法与应用
CN111952561A (zh) 自模板法合成的CoIn2S4@CPAN微球复合材料及其方法
TW202400513A (zh) 矽碳預鋰複層負極材料及其製備方法與應用
CN116134642A (zh) 正极材料及包含其的电化学装置和电子装置
TWI805123B (zh) 矽碳複合負極材料及其製備方法與應用
Ding et al. High-performance spherical LiVPO 4 F/C cathode enabled by facile spray pyrolysis
CN117766742B (zh) 多孔硅碳复合材料、其制备方法及在二次电池中的应用
CN113471522B (zh) 一种复合固态电解质及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination