CN117142862B - 一种导电陶瓷及其制备工艺 - Google Patents

一种导电陶瓷及其制备工艺 Download PDF

Info

Publication number
CN117142862B
CN117142862B CN202311116814.7A CN202311116814A CN117142862B CN 117142862 B CN117142862 B CN 117142862B CN 202311116814 A CN202311116814 A CN 202311116814A CN 117142862 B CN117142862 B CN 117142862B
Authority
CN
China
Prior art keywords
conductive
conductive ceramic
primary blank
ceramic
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202311116814.7A
Other languages
English (en)
Other versions
CN117142862A (zh
Inventor
王来国
朱凤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anqing Normal University
Original Assignee
Anqing Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anqing Normal University filed Critical Anqing Normal University
Priority to CN202311116814.7A priority Critical patent/CN117142862B/zh
Publication of CN117142862A publication Critical patent/CN117142862A/zh
Application granted granted Critical
Publication of CN117142862B publication Critical patent/CN117142862B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
    • C04B41/5048Phosphates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Conductive Materials (AREA)

Abstract

本发明涉及导电陶瓷材料合成技术领域,具体公开一种导电陶瓷及其制备工艺,包括以下步骤:S1:导电填料的掺杂;S2初步烧结;S3.表面修饰;S4.离子导电涂层的沉积。本发明的制备工艺制备出的导电陶瓷具有高致密性、高机械强度、高稳定性、高孔隙率、高比表面积、耐强酸强碱、低电阻的特点,并可显著降低烧结过程中的温度,减少能耗,具有广阔的发展前景。

Description

一种导电陶瓷及其制备工艺
技术领域
本发明涉及导电陶瓷材料合成技术领域,具体为一种导电陶瓷及其制备工艺。
背景技术
导电陶瓷材料,由于其具有高温稳定的导电性能、均匀更快的载流特性,以及优良的抗氧化性能、耐腐蚀性能、更高的击穿强度得到越来越广泛的关注和应用。
然而,目前所制得的导电陶瓷材料仍然存在电阻率较高、功率密度较小的缺陷,例如有用溅射镀膜方法制导电陶瓷材料不仅工艺复杂,而且需要承载导电陶瓷膜的基质相配合,使用范围和方式受限的问题。
因此,寻求一种成本低、工艺简单、电阻率低的导电陶瓷材料的合成方法具有重要的研究价值。
发明内容
针对现有技术的不足之处,本发明的目的在于提供一种导电陶瓷及其制备工艺,根据本发明的制备工艺制备出的导电陶瓷具有高致密性、高机械强度、高稳定性、高孔隙率、高比表面积、耐强酸强碱、低电阻的特点,并可显著降低烧结过程中的温度,减少能耗,具有广阔的发展前景。
为实现上述目的,本发明提供如下技术方案:
一种导电陶瓷的制备工艺,包括以下步骤:
S1:导电填料的掺杂:
按质量份将100—120份基质材料与5—10份的导电填料混合均匀,并采用球磨法对其进行研磨处理,球磨转速200-300r/min,球磨时间4—5h;
S2.初步烧结:
对经过S1步骤研磨处理后的基质材料和导电填料的混合物在惰性气氛的保护下进行烧结处理,烧结温度为1200-1500℃,烧结时间为5—8h,即得导电陶瓷初坯;
S3.表面修饰:
S301. 导电陶瓷初坯的预处理:采用超声技术对所述导电陶瓷初坯的表面进行超声处理,处理时间为20—30min;
S302.导电陶瓷初坯的初步化学修饰:将导电陶瓷初坯静置在溶解了第一化学修饰剂的N,N-二甲基甲酰胺溶液中,在65-75℃的条件下静置处理,静置时间为2—3h,即得初步修饰的导电初坯;
S303.二次化学修饰:将S302制得的所述初步修饰的导电初坯静置在溶解了第二化学修饰剂的乙醇溶液中,在40-50℃下静置处理,静置时间为2—3h,即得表面修饰的导电初坯;
S4.离子导电涂层的沉积:
通过磁控溅射,在S303步骤制备出的所述表面修饰的导电初坯表面沉积一层30-50nm厚的离子导电涂层,得到所述导电陶瓷。
优选的,S1中,所述基质材料选自氧化铝、氧化锆、氧化钛、氮化硼、氮化铝中的一种或多种。
优选的,S1中,所述导电填料选自石墨烯、炭黑、聚苯胺、聚咔唑中的一种或多种。
优选的,S2中,所述惰性气氛通过通入氩气或氩气中的一种形成,所述氮气或氩气的浓度为99.99%,气体流量为20—25L/min。
优选的,S302中,所述第一化学修饰剂为四丁基钛酸酯和2,4,6-三甲基苯甲酰氯的质量比为(1-2.5):(4-5.2)的混合物。
优选的,S303中,所述第二化学修饰剂为二甲基苯甲胺和聚苯磺酸的质量比为(2.3-3.1):(3.4-5)的混合物。
优选的,S4中,所述离子导电涂层选自磷酸锂、磷酸钠中的一种或多种。
优选的,S4中,所述磁控溅射的工艺参数为:溅射电流为80—110mA,通入的溅射气体为纯度>99.99%的氩气和氩气的质量比为5:6的混合物,气体总流量为20—30L/min。
一种导电陶瓷,所述导电陶瓷根据所述导电陶瓷的制备工艺制得。
与现有技术相比,本发明的有益效果是:
本发明的制备工艺制备出的导电陶瓷具有高致密性、高机械强度、高稳定性、高孔隙率、高比表面积、耐强酸强碱、低电阻的特点。
本发明提供的导电陶瓷的制备工艺可显著降低烧结过程中的温度,减少能耗,降低生产成本,提高经济效益。
本发明的制备工艺运用了化学修饰剂的修饰作用,对导电陶瓷的表面进行了修饰处理,即通过2,4,6-三甲基苯甲酰氯作为引发剂和催化剂,调控导电陶瓷的形貌和结构,在导电陶瓷的表面形成微小的空隙,使得作为钛源的四丁基钛酸酯中的钛元素不仅仅附着在导电陶瓷的表面,更能渗入导电陶瓷的内部,提高导电陶瓷的电导率,改善其导电性能;同时,在聚苯磺酸的分散作用下,使得二甲基苯甲胺进入导电陶瓷的孔隙内部与四丁基酞酸酯聚合,在导电陶瓷内部形成高分子聚合物组分,进而改善导电陶瓷的表面的疏水性、耐热性和粘附性,提高导电陶瓷的使用寿命;聚苯磺酸作为聚电解质,具有离子导电性能,其本身也可以增强导电陶瓷的电导率。
附图说明
图1为本发明的导电陶瓷的制备工艺流程图;
图2为本发明的导电陶瓷的表面修饰的工艺流程图。
具体实施方式
下面将结合本发明实施例,对本发明进行清楚、完整的描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1-2,本发明提供一种技术方案:
实施例1
一种导电陶瓷的制备工艺:
S1:导电填料的掺杂:
按质量份将100—120份氮化硼与5—10份的炭黑混合均匀,并采用球磨法对其进行研磨处理,球磨转速200r/min,球磨时间4h,即得炭黑掺杂的氮化硼;
S2.初步烧结:
对S1步骤制得的炭黑掺杂的氮化硼在氮气的保护下进行烧结处理,氮气的浓度为99.99%,流量为20L/min,烧结温度为1200℃,烧结时间为5h,即得导电陶瓷初坯;
S3.表面修饰:
S301.导电陶瓷初坯的预处理:采用超声技术对导电陶瓷初坯的表面进行超声处理,处理时间为20min;
S302.导电陶瓷初坯的初步化学修饰:将导电陶瓷初坯静置在溶解了四丁基钛酸酯和2,4,6-三甲基苯甲酰氯的质量比为2.1:4的混合物的N,N-二甲基甲酰胺溶液中,在65℃的条件下静置处理,静置时间为2h,即得初步修饰的导电初坯;
S303.二次化学修饰:将S302所得的初步修饰的导电陶瓷静置在溶解了二甲基苯甲胺和聚苯磺酸的质量比为2.3:4.2的混合物的乙醇溶液中,在40℃下静置处理,静置时间为2h,即得表面修饰的导电初坯;
S4.离子导电涂层的沉积:
通过磁控溅射,在S303步骤制备出的表面修饰的导电初坯表面沉积一层磷酸锂涂层,涂层厚度约为30nm,得到所述导电陶瓷,磁控溅射的工艺参数为:溅射电流为80mA,通入的溅射气体为纯度>99.99%的氩气和氩气的质量比为5:6的混合物,气体总流量为20L/min。
实施例2
一种导电陶瓷的制备工艺:
S1:导电填料的掺杂:
按质量份将120份氧化锆与10份的聚苯胺混合均匀,并采用球磨法对其进行研磨处理,球磨转速300r/min,球磨时间5h,即得聚苯胺掺杂的氧化锆;
S2.初步烧结:
对S1步骤制得的聚苯胺掺杂的氧化锆在氩气的保护下进行烧结处理,氩气的浓度为99.99%,气体流量为25L/min,烧结温度为1500℃,烧结时间为8h,即得导电陶瓷初坯;
S3.表面修饰:
S301.导电陶瓷初坯的预处理:采用超声技术对导电陶瓷初坯的表面进行超声处理,处理时间为30min;
S302.导电陶瓷初坯的初步化学修饰:将导电陶瓷初坯静置在溶解了四丁基钛酸酯和2,4,6-三甲基苯甲酰氯的质量比为1.1:5的混合物的N,N-二甲基甲酰胺溶液中,在75℃的条件下静置处理,静置时间为3h,即得初步修饰的导电初坯;
S303.二次化学修饰:将S302所得的初步修饰的导电初坯静置在溶解了二甲基苯甲胺和聚苯磺酸的质量比为3.1:4的混合物的乙醇溶液中,在50℃下静置处理,静置时间为3h,即得表面修饰的导电初坯;
S4.离子导电涂层的沉积:
通过磁控溅射,在S303步骤制备出的表面修饰的导电初坯表面沉积一层磷酸钠涂层,涂层厚度约为50nm,得到所述导电陶瓷,磁控溅射的工艺参数为:溅射电流为110mA,通入的溅射气体为纯度>99.99%的氩气和氩气的质量比为5:6的混合物,气体总流量为30L/min。
实施例3
一种导电陶瓷的制备工艺:
S1:导电填料的掺杂:
按质量份将110份氮化铝与8份的聚咔唑混合均匀,并采用球磨法对其进行研磨处理,球磨转速250r/min,球磨时间4.5h,即得聚咔唑掺杂的氮化铝;
S2.初步烧结:
对S1步骤制得的聚咔唑掺杂的氮化铝在氩气的保护下进行烧结处理,氩气的浓度为99.99%,气体流量为28L/min,烧结温度为1300℃,烧结时间为7h,即得导电陶瓷初坯;
S3.表面修饰:
S301.导电陶瓷初坯的预处理:采用超声技术对导电陶瓷初坯的表面进行超声处理,处理时间为25min;
S302.导电陶瓷初坯的初步化学修饰:将导电陶瓷初坯静置在溶解了四丁基钛酸酯和2,4,6-三甲基苯甲酰氯的质量比为2.1:4.5的混合物的N,N-二甲基甲酰胺溶液中,在70℃的条件下静置处理,静置时间为3h,即得初步修饰的导电初坯;
S303.二次化学修饰:将S302所得的初步修饰的导电初坯静置在溶解了二甲基苯甲胺和聚苯磺酸的质量比为3.1:4.5的混合物的乙醇溶液中,在45℃下静置处理,静置时间为2h,即得表面修饰的导电初坯;
S4.离子导电涂层的沉积:
通过磁控溅射,在S303步骤制备出的表面修饰的导电初坯表面沉积一层磷酸锂涂层,涂层厚度约为40nm,得到所述导电陶瓷,磁控溅射的工艺参数为:溅射电流为100mA,通入的溅射气体为纯度>99.99%的氩气和氩气的质量比为5:6的混合物,气体总流量为25L/min。
对比例
对比例1:
对比例1与实施例1存在以下区别,区别仅在于,在对比例1中,将实施例1中原来存在的S3、S4步骤进行了部分省略操作,从而取消了“导电陶瓷初坯的初步化学修饰”的步骤,其余步骤在对比例1中与实施例1中完全相同,在对比例1中,在经过“将所得的初步修饰的导电陶瓷静置在溶解了二甲基苯甲胺和聚苯磺酸的质量比为2.3:4.2的混合物的乙醇溶液中,在40℃下静置处理,静置时间为2h,即得表面修饰的导电初坯”的步骤后,对所述表面修饰的导电初坯进行电阻率、硬度、渗透率、比表面积的初步检测。
对比例2:
对比例2与实施例1存在以下区别,区别仅在于,在对比例2中,将实施例1中原来存在的S4步骤进行了部分省略操作,从而取消了“离子导电涂层的沉积”步骤,其余步骤在对比例2中与实施例1中完全相同。
对比例3:
对比例3与实施例1存在以下区别,区别仅在于,在对比例3中,将实施例1中原来存在的S3步骤进行了部分省略操作,从而取消了“二次化学修饰”的步骤,其余步骤在对比例3中与实施例1中完全相同,在对比例3中,对经过“导电陶瓷初坯的初步化学修饰”步骤后制得的导电初坯进行电阻率、硬度、渗透率、比表面积的初步检测。
对比例4:
对比例4与对比例2存在以下区别,区别仅在于,在对比例4中,将对比例2中原来存在的S3步骤进行了部分省略操作,从而取消了“表面修饰”的步骤,其余步骤在对比例4中与对比例2中完全相同。
对实施例1-3和对比例1-4制备的导电陶瓷材料的电阻率、硬度、渗透率、比表面积等性能进行完全测试,测试结果如表1所示:
示例 电阻率(Ω.cm) 硬度(GPa) 渗透率(L/h*m2*1.5bar) 比表面积(m2/g)
实施例1(完全检测) 6.7×10-2 16.2 554 124
实施例2(完全检测) 7.8×10-2 16.9 520 131
实施例3(完全检测) 9.4×10-2 17.1 548 128
对比例1(初步检测) 5.4×10-1 14.0 661 80
对比例1(完全检测) 4.7×10-1 14.2 652 84
对比例2(完全检测) 6.1.×10-1 13.8 691 118
对比例3(初步检测) 5.6×10-1 13.2 665 104
对比例3(完全检测) 5.0×10-1 13.5 641 107
对比例4(完全检测) 1.13 12.4 732 75
表中实验数据表明,实施例1-3在电阻率、硬度、渗透率、比表面积等参数均明显优于对比例1-4,因此本发明提供的一种导电陶瓷及其制备工艺是可靠的;同时实施例1与对比例1的初步检测数据和对比例3的初步检测数据的进行对比,可以看出本申请通过2,4,6-三甲基苯甲酰氯作为引发剂和催化剂,调控导电陶瓷的形貌和结构,在导电陶瓷的表面形成微小的空隙,使得作为钛源的四丁基钛酸酯中的钛元素不仅仅附着在导电陶瓷的表面,更能渗入导电陶瓷的内部,提高导电陶瓷的电导率,改善其导电性能;同时,在聚苯磺酸的分散作用下,使得二甲基苯甲胺进入导电陶瓷的孔隙内部与四丁基酞酸酯聚合,在导电陶瓷内部形成高分子聚合物组分,进而改善导电陶瓷的表面的疏水性、耐热性和粘附性,提高导电陶瓷的使用寿命,即第一化学修饰剂和第二化学修饰剂起到了一个组合作用,二者相互作用大大提高了其使用效果。
而实施例1和对比例1-4在电阻率、硬度、渗透率、比表面积等性能参数的明显差异,如实施例1的电阻率为6.7×10-2Ω.cm,对比例4的电阻率为1.13Ω.cm;实施例1的比表面积为124m2/g,对比例4的比表面积为75m2/g,均可以证明本发明的制备工艺制备出的导电陶瓷具有高致密性、高机械强度、高稳定性、高孔隙率、高比表面积、耐强酸强碱、低电阻的特点,具有较大的应用价值。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (3)

1.一种导电陶瓷的制备工艺,其特征在于,包括以下步骤:
S1:导电填料的掺杂:
按质量份将100-120份基质材料与5-10份的导电填料混合均匀,并采用球磨法对其进行研磨处理,球磨转速200-300r/min,球磨时间4-5h;
S2.初步烧结:
对经过S1步骤研磨处理后的基质材料和导电填料的混合物在惰性气氛的保护下进行烧结处理,烧结温度为1200-1500℃,烧结时间为5-8h,即得导电陶瓷初坯;
S3.表面修饰:
S301.导电陶瓷初坯的预处理:采用超声技术对所述导电陶瓷初坯的表面进行超声处理,处理时间为20-30min;
S302.导电陶瓷初坯的初步化学修饰:将导电陶瓷初坯静置在溶解了第一化学修饰剂的N,N-二甲基甲酰胺溶液中,在65-75℃的条件下静置处理,静置时间为2-3h,即得初步修饰的导电初坯;
S303.二次化学修饰:将S302制得的所述初步修饰的导电初坯静置在溶解了第二化学修饰剂的乙醇溶液中,在40-50℃下静置处理,静置时间为2-3h,即得表面修饰的导电初坯;
S4.离子导电涂层的沉积:
通过磁控溅射,在S303步骤制备出的所述表面修饰的导电初坯表面沉积一层30-50nm厚的离子导电涂层,得到所述导电陶瓷;
S1中,所述基质材料选自氧化铝、氧化锆、氧化钛、氮化硼、氮化铝中的一种或多种;
S1中,所述导电填料选自石墨烯、炭黑、聚苯胺、聚咔唑中的一种或多种;
S302中,所述第一化学修饰剂为四丁基钛酸酯和2,4,6-三甲基苯甲酰氯的质量比为(1-2.5):(4-5.2)的混合物;
S303中,所述第二化学修饰剂为二甲基苯甲胺和聚苯磺酸的质量比为(2.3-3.1):(3.4-5)的混合物;
S4中,所述离子导电涂层选自磷酸锂、磷酸钠中的一种或多种。
2.根据权利要求1所述的一种导电陶瓷的制备工艺,其特征在于,S2中,所述惰性气氛通过通入氮气或氩气中的一种形成,所述氮气或氩气的浓度为99.99%,气体流量为20-25L/min。
3.一种导电陶瓷,其特征在于,所述导电陶瓷根据权利要求1~2任意一项所述制备工艺制得。
CN202311116814.7A 2023-08-30 2023-08-30 一种导电陶瓷及其制备工艺 Active CN117142862B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311116814.7A CN117142862B (zh) 2023-08-30 2023-08-30 一种导电陶瓷及其制备工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311116814.7A CN117142862B (zh) 2023-08-30 2023-08-30 一种导电陶瓷及其制备工艺

Publications (2)

Publication Number Publication Date
CN117142862A CN117142862A (zh) 2023-12-01
CN117142862B true CN117142862B (zh) 2024-04-09

Family

ID=88907553

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311116814.7A Active CN117142862B (zh) 2023-08-30 2023-08-30 一种导电陶瓷及其制备工艺

Country Status (1)

Country Link
CN (1) CN117142862B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0896621A (ja) * 1994-09-28 1996-04-12 Agency Of Ind Science & Technol 導電性セラミックス
CN104876611A (zh) * 2015-04-09 2015-09-02 浙江泰索科技有限公司 一种石墨烯增强陶瓷及其制备方法
CN106938930A (zh) * 2017-03-12 2017-07-11 南京云启金锐新材料有限公司 高致密高强度氧化锆导电陶瓷及其制备方法
CN109503131A (zh) * 2018-12-12 2019-03-22 南开大学 氧化锆增韧石墨烯氧化铝复合导电陶瓷及其制备方法
CN110707267A (zh) * 2018-07-10 2020-01-17 中国科学院大连化学物理研究所 一种碱金属电池用复合隔膜及其制备和应用
CN114000031A (zh) * 2021-11-05 2022-02-01 深圳市汉清达科技有限公司 一种加热用多孔导电陶瓷材料及其制备方法
CN114573341A (zh) * 2022-04-27 2022-06-03 潍坊工程职业学院 一种二氧化锆基导电陶瓷的制备方法
CN116262666A (zh) * 2022-12-29 2023-06-16 浙江省冶金研究院有限公司 一种氮化铝基陶瓷复合材料的制备方法及其在静电吸盘上的应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0896621A (ja) * 1994-09-28 1996-04-12 Agency Of Ind Science & Technol 導電性セラミックス
CN104876611A (zh) * 2015-04-09 2015-09-02 浙江泰索科技有限公司 一种石墨烯增强陶瓷及其制备方法
CN106938930A (zh) * 2017-03-12 2017-07-11 南京云启金锐新材料有限公司 高致密高强度氧化锆导电陶瓷及其制备方法
CN110707267A (zh) * 2018-07-10 2020-01-17 中国科学院大连化学物理研究所 一种碱金属电池用复合隔膜及其制备和应用
CN109503131A (zh) * 2018-12-12 2019-03-22 南开大学 氧化锆增韧石墨烯氧化铝复合导电陶瓷及其制备方法
CN114000031A (zh) * 2021-11-05 2022-02-01 深圳市汉清达科技有限公司 一种加热用多孔导电陶瓷材料及其制备方法
CN114573341A (zh) * 2022-04-27 2022-06-03 潍坊工程职业学院 一种二氧化锆基导电陶瓷的制备方法
CN116262666A (zh) * 2022-12-29 2023-06-16 浙江省冶金研究院有限公司 一种氮化铝基陶瓷复合材料的制备方法及其在静电吸盘上的应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
化学修饰电极技术及其应用;李江柳;赵强;邢士波;;化工管理;20151001(第28期);211 *

Also Published As

Publication number Publication date
CN117142862A (zh) 2023-12-01

Similar Documents

Publication Publication Date Title
CN111892420B (zh) 块状碳化钛、氮化钛或碳氮化钛气凝胶的制备方法
CN103991860A (zh) 氮掺杂石墨烯及其制备方法
CN113663611B (zh) 一种耐高温复合纳米纤维气凝胶材料及其制备方法
CN108774072B (zh) 一种刚性隔热瓦及其制备方法
CN117142862B (zh) 一种导电陶瓷及其制备工艺
CN115650701B (zh) 一种氧化镍基靶材的制备方法与应用
CN111039663B (zh) 一种氧化铝陶瓷烧结方法
CN105692589A (zh) 一种基于改性酚醛树脂前驱体的玻璃炭材料制备方法
CN113903939A (zh) 一种质子交换膜及其制备方法
CN110343347B (zh) 聚偏氟乙烯SiO2改性石墨烯复合材料及其制备方法
CN111172624B (zh) 一种碳/硅杂化纤维的制备方法及碳硅杂化纤维
Liu et al. Preparation of transparent Y2O3 ceramic via gel casting: Realization of high solid volume via surface modification
CN115036519B (zh) 氟掺杂多孔碳、微孔层、气体扩散层及制备方法、应用
CN102219516A (zh) 一种高固含量氧化铈基陶瓷颗粒水系流延浆料的制备方法
CN117423894A (zh) 一种石榴石型固态电解质表面碳酸锂转换为稳定锂离子导体保护层的方法
CN110143582B (zh) 一种含氧多孔碳气凝胶的制备方法和应用
CN111099908B (zh) 一种表面包覆氧化硅的碳纤维复合稀土锆酸镧的高性能陶瓷及其制备方法
CN104681833B (zh) 一种纳米陶瓷纤维管燃料电池质子交换膜及制备方法
CN113061768A (zh) 一种弥散强化铜基复合材料的制备方法
CN113735605A (zh) 一种超高功率的石墨电极及其制备方法
CN114195133A (zh) 一种含石墨烯的石墨片生产工艺及散热石墨片
CN108134115B (zh) 一种燃料电池用改性聚膦腈质子交换膜及制备方法
CN111873574A (zh) 一种纳米级气凝隔热毡
CN112919891A (zh) 一种用于陶瓷辊的环保高新粉体材料及其制备方法
CN110729512A (zh) 一种钠离子电池用固体电解质复合材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant