CN117062920A - 退火分离剂用粉末和使用其的取向性电磁钢板的制造方法 - Google Patents

退火分离剂用粉末和使用其的取向性电磁钢板的制造方法 Download PDF

Info

Publication number
CN117062920A
CN117062920A CN202280020972.XA CN202280020972A CN117062920A CN 117062920 A CN117062920 A CN 117062920A CN 202280020972 A CN202280020972 A CN 202280020972A CN 117062920 A CN117062920 A CN 117062920A
Authority
CN
China
Prior art keywords
mass
annealing
powder
less
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202280020972.XA
Other languages
English (en)
Inventor
寺岛敬
白柳花梨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of CN117062920A publication Critical patent/CN117062920A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/02Magnesia
    • C01F5/04Magnesia by oxidation of metallic magnesium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/02Magnesia
    • C01F5/06Magnesia by thermal decomposition of magnesium compounds
    • C01F5/08Magnesia by thermal decomposition of magnesium compounds by calcining magnesium hydroxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/14Magnesium hydroxide
    • C01F5/16Magnesium hydroxide by treating magnesia, e.g. calcined dolomite, with water or solutions of salts not containing magnesium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1255Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/12Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • H01F1/18Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets with insulating coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/25Oxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

本发明提出了一种退火分离剂,涂布退火分离剂后,卷绕成卷材状在超过1000℃的高温下进行退火时,能够良好地保持退火后的卷材形状。上述退火分离剂中使用的退火分离剂用粉末以氧化镁为主要成分,含有B:0.020质量%~0.200质量%、SO3:0.030质量%~1.000质量%和P2O3:0.050质量%~1.000质量%,并且包含0.2质量%~5.0质量%的粒径超过45μm且为75μm以下的粒子,上述粒径的粒子含有硼(B):0.002质量%以上且小于0.020质量%、SO3:小于0.030质量%和P2O3:小于0.050质量%。

Description

退火分离剂用粉末和使用其的取向性电磁钢板的制造方法
技术领域
本发明涉及用于制造取向性电磁钢板的退火分离剂中使用的粉末,涉及最终退火后的卷材的形状保持优异的退火分离剂用粉末。另外,还涉及通过使用该退火分离剂用粉末来制造被膜的均匀性、磁特性优异的取向性电磁钢板的方法。
背景技术
取向性电磁钢板的制造一般经过对调整为规定的成分组成的钢坯实施热轧、退火、冷轧,接着实施再结晶退火和脱碳退火后实施最终退火的工序。在上述工序中,最终退火工序需要在1000℃以上的高温下进行热处理,因此为了防止卷材的烧粘,通常涂布以氧化镁的粉末为主要成分的退火分离剂。
另外,氧化镁除了作为上述防烧粘剂的作用以外,还具有与最终退火前进行的脱碳退火中钢板表面生成的以二氧化硅为主体的氧化层在最终退火时反应而形成镁橄榄石被膜的作用、在最终退火后将被称为抑制剂的控制铁的晶粒的生长的析出物(例如AlN、MnS、MnSe、Si3N4、TiN、TiC等)从钢板中除去并纯化的作用。
为了有利地发挥该作用,例如在专利文献1中提出了在氧化镁(magnesia)中以控制量添加Cl、B、CaO、P2O3等微量成分,进一步控制与该微量成分分开添加的非水溶性化合物的粒度分布的技术。
在如上所述的取向性电磁钢板的最终退火工序中,将卷绕成卷状的钢板以卷材中心的孔朝向垂直(上下)方向的方式横置,在1000℃以上的高温下进行退火。因此,在升温、冷却的过程中,容易在卷材内产生大的温度差,容易产生退火后的卷材形状变形为桶状(腹伸长)或相反上下(卷材轴向两)端部膨胀(耳伸长)等形状不良。
另外,如果以氧化镁为主要成分的退火分离剂因利用最终退火时的加热进行烧结而收缩,则成为所谓的松散卷材,在到下一工序的卷材处理时会产生问题。
作为避免该松散卷材的方法,在最终退火前以高的卷绕张力卷绕卷材。然而,如果该卷绕张力过高,则有时在卷材的内径部产生压曲(buckling)。
针对这些问题,例如在专利文献2中提出了如下技术:通过含有粒径为25μm以上且小于75μm的氧化镁(magnesia)来防止最终退火前的压曲,通过将由煅烧所致的退火分离剂的体积收缩率设为适当的值来解决松散卷材处理的问题。
现有技术文献
专利文献
专利文献1:国际公开第2013/051270号
专利文献2:日本特开2012-177148号公报
发明内容
然而,在专利文献1中,完全没有提到最终退火后的卷材形状劣化的问题、针对该问题可以采取什么方法。
另外,在专利文献2中,虽然提供了针对最终退火前的压曲的解决方法和最终退火后的松散卷材处理问题的解决方法,但仍存在对于上述最终退火后的卷材形状劣化(腹伸长、耳伸长)的问题。
本发明是鉴于上述实际情况而开发的,其目的在于提供一种适合用于退火分离剂的退火分离剂用粉末,该退火分离剂用粉末有助于通过消除上述最终退火后的卷材形状的问题,制造被膜的均匀性、磁特性优异的取向性电磁钢板。
本发明的构成主旨如下。
1.一种退火分离剂用粉末,其特征在于,具有以氧化镁为主要成分且含有B:0.020质量%~0.200质量%、SO3:0.030质量%~1.000质量%和P2O3:0.050质量%~1.000质量%的成分组成,
包含0.2质量%~5.0质量%的粒径超过45μm且为75μm以下的粒子,
该粒径超过45μm且为75μm以下的粒子中含有的B为0.002质量%以上且小于0.020质量%,硫以SO3换算计小于0.030质量%,并且磷以换算P2O3计小于0.050质量%。
2.根据上述1所述的退火分离剂用粉末,其中,上述粒径超过45μm且为75μm以下的粒子中含有的钠(Na)为0.010质量%以下。
3.根据上述1或2所述的退火分离剂用粉末,其中,上述氧化镁的纯度为95质量%以上。
4.一种取向性电磁钢板的制造方法,其特征在于,对取向性电磁钢板用的钢坯实施热轧、冷轧,接着实施再结晶退火和脱碳退火后,涂布退火分离剂后实施最终退火,在上述退火分离剂中使用上述1~3中任一项所述的退火分离剂用粉末。
5.根据上述4所述的取向性电磁钢板的制造方法,其中,上述钢板的厚度为0.05mm~0.20mm。
根据本发明,能够廉价地得到退火分离剂用粉末,其具有优异的被膜反应性,能够用于制造具有良好的被膜品质的取向性电磁钢板,同时最终退火后的卷材的形状良好且能够实现高的制造成品率。
另外,本发明可以提供使用该退火分离剂用粉末得到具有良好的被膜品质的取向性电磁钢板的制造方法。
附图说明
图1是示意性地表示最终退火后的卷材的耳伸长形状的图,(a)是从侧面观察卷材的图,(b)是从上面观察卷材的图。
图2是示意性地表示最终退火后的卷材的腹伸长形状的图,(a)是从侧面观察卷材的图,(b)是从上面观察卷材的图。
具体实施方式
以下,对导出本发明的实验结果进行说明。
首先,如下制作试样。
作为起始原料,使用Ube Material Industries,Ltd.制的气相法高纯度超微粉氧化镁2000A。该氧化镁的纯度极高,MgO为99.98质量%。
将该起始原料用纯水水合,得到氢氧化镁浆料。
接着,将该氢氧化镁浆料用压滤机压榨,得到氢氧化镁滤饼。在该氢氧化镁浆料中加入硼酸(H3BO3)、硫酸镁(MgSO4)、磷酸二铵((NH4)2HPO4)等,调整煅烧后的氧化镁中的微量成分量。
应予说明,该微量成分量的调整不仅可以通过调整向浆料中的添加量进行调整,还可以通过氢氧化镁滤饼的水洗程度、煅烧温度等适当地调整。
将得到的上述氢氧化镁滤饼400g放入氧化铝制坩埚中,在电炉(丸祥电器制SPX1518T-17)中在700℃的温度下,电炉重新加热后在空气中煅烧60分钟。将得到的煅烧物直接在炉内冷却后进行粉碎。粉碎后,使用筛调整所得到的粉末的粒度,制成供于本实验的氧化镁。
将这样得到的氧化镁的特性示于表1。应予说明,表中,“粒度(质量%)”表示过筛的粉末中有多少质量%通过了指定目数的筛。因此,100.0质量%意味着全部通过。以下,表2、4和5也相同。
将表1所示的粒度调整后的氧化镁以表2所示的配合量混合。然后,如表2所示,得到具有不同粒度分布和微量成分量的退火分离剂用粉末。
接下来,将含有C:0.045质量%、Si:3.25质量%、Mn:0.070质量%、Al:80massppm、N:40mass ppm、S:20mass ppm的电磁钢板用板坯加热到1200℃的温度后进行热轧,制成2.0mm厚的热轧板并卷绕成卷材。对该热轧板卷材实施1000℃的温度且30秒的条件的热轧板退火,除去钢板表面的氧化皮。接下来,实施冷轧,制成最终冷轧板厚0.23mm的冷轧板。进而,对该冷轧板实施在均热温度850℃下保持60秒的兼作再结晶退火的脱碳退火后,将表2所示的退火分离剂用粉末涂布于浆料后卷绕成卷状,在氮75vol%氢25vol%的混合气氛中以升温速度:25℃/h升温至1200℃,在1200℃且保持时间:20h、氢100vol%气氛的条件下进行保持,由此实施最终退火,然后实施平滑化退火,制成试样。
调查这样得到的试样的被膜外观的均匀性、被膜密合性和最终退火后的卷材形状。
在本实验中,对于被膜外观的均匀性,通过目视,将色调不同的部位为整体表面积的20%以下的情况评价为均匀,大于20%的情况评价为不均匀。
对于被膜密合性,将该试样沿轧制方向280mm轧制直角方向30mm剪切后,在820℃的氮气氛中实施3小时的去应力退火,然后将钢板按压在具有各内径(5mm单位)的圆棒上测定不产生被膜剥离的最小直径(mm)。
对于最终退火后(以下简称为“退火”时指最终退火)的卷材的形状,在将卷材冷却至室温后,对卷材的各变形方式根据图1(耳伸长形状)或图2(腹伸长形状)测定退火前后的变形量。具体而言,如图1(b)、图2(b)所记载,测定退火前卷材的外周部的内切圆的半径(r)和退火后的卷材外周部的内切圆的半径(R),计算变形量(R-r)的值,由此进行评价。如果该值为20mm以下,则评价为良好。
应予说明,图1是示意性地表示退火后的卷材的耳伸长形状的图,(a)是从侧面观察该卷材的图,(b)是从上面观察该卷材的图。另外,图2是示意性地表示退火后的卷材的腹伸长形状的图,(a)是从侧面观察该卷材的图,(b)是从上面观察该卷材的图。两个图都是虚线表示退火前的形状,实线表示退火后的形状。应予说明,由于卷材的中空部在退火前后没有明显变形,所以在(a)中,仅用虚线表示从侧面隐藏而看不见的其轮廓,在(b)中,为了方便对变形量(R-r)进行说明而省略其轮廓。
表3分别表示实验中使用的退火分离剂用粉末No.及其微量成分(表2的抄录)、具有超过45μm且为75μm以下范围的粒径的粒子(以下也简称为“超过45μm且为75μm以下的粒子”)的特性(质量比例和微量成分)、卷材的退火后形状、被膜外观的均匀性以及被膜密合性。应予说明,上述和表中的“质量比例”是指超过45μm且为75μm以下的粒子相对于退火分离剂用粉末整体的质量比例。
如表3所示,当退火分离剂用粉末整体的微量成分B、SO3和P2O3的量偏离本发明的范围时(No.3-1,3-3,3-5),即使超过45μm且为75μm以下的粒子的质量比例、微量成分量进入本发明的范围,也发生被膜外观变得不均匀或被膜密合性劣化。进而,当超过45μm且为75μm以下的粒子的质量比例过多时(No.3-5),在被膜外观产生麻点。另一方面,当超过45μm且为75μm以下的粒子中包含的微量成分B、SO3和P2O3的量偏离本发明的范围时(No.3-2,3-6),即使退火分离剂用粉末整体的成分组成、超过45μm且为75μm以下的粒子的质量比例进入本发明的范围,退火后的卷材形状也变得不良。
以下,对本发明的各构成要件的限定理由进行说明。
[退火分离剂用粉末]
本发明中作为对象的退火分离剂用粉末以氧化镁为主要成分(主体)。这里,主要成分是指以质量%(质量%)计含有50质量%以上。如果氧化镁小于50质量%,则由脱碳退火时形成的内部氧化二氧化硅与退火分离剂中的氧化镁的反应形成的镁橄榄石被膜的形成量不足。氧化镁的比例优选为60质量%以上,更优选为80质量%以上。
在本发明中,为了提高被膜外观的均匀性、被膜密合性,使退火分离剂用粉末中的B、SO3和P2O3的含量分别为B:0.020质量%~0.200质量%、SO3:0.030质量%~1.000质量%、P2O3:0.050质量%~1.000质量%。
如果B少于0.020质量%,则被膜形成变得不充分,被膜厚度变得过薄。另一方面,如果多于0.200质量%,则B侵入钢板中而引起脆化。退火分离剂用粉末中的B含量的下限优选为0.025质量%以上。另外,该B含量的上限值优选为0.180质量%以下。
B含量可以通过将测定对象的粉末酸溶解并进行ICP发射光谱分析来测定。
如果SO3少于0.030质量%,则被膜形成变得不充分,因此不优选。另一方面,如果多于1.000质量%,则过度形成被膜,点状地产生过形成部,被膜外观变得不良。退火分离剂用粉末中的SO3含量的下限优选为0.034质量%以上。另外,该SO3含量的上限优选为0.700质量%以下。
SO3含量可以通过将测定对象的粉末酸溶解并进行ICP发射光谱分析来测定S含量并换算成SO3量来求出。
如果P2O3少于0.050质量%,则被膜形成反应向高温侧移动,从而被膜密合性劣化。另一方面,如果多于1.000质量%,则被膜形成反应向低温侧移动,影响二次再结晶,导致磁性不良。退火分离剂用粉末中的P2O3含量的下限优选为0.060质量%以上。另外,该P2O3含量的上限优选为0.800质量%以下。
P2O3含量可以通过将测定对象的粉末酸溶解并进行ICP发射光谱分析来测定P含量并换算成P2O3量来求出。
为了良好地保持退火后的卷材形状,需要在用作退火分离剂的粉末中包含0.2质量%~5.0质量%的粒径超过45μm且为75μm以下的粒子。该粉末中的该粒子的比例的下限优选为0.5质量%以上,上限优选为3.0质量%以下。
由于涂布退火分离剂后卷绕成卷状的状态的钢板间距离为30~40μm左右,因此为了利用粒子支撑该钢板间,需要粒径大小超过45μm的粒子。另一方面,如果粒径大于75μm,则粒子咬入退火后的钢板表面而产生压痕。因此,退火分离剂用粉末中的粒径超过75μm的粒子的比例优选为2.00质量%以下。
另外,如果粒径超过45μm且为75μm以下的范围的粒子比例少于0.2质量%,则不能充分维持卷材形状。另一方面,如果多于5.0质量%,则被膜表面的麻点变强,因此不优选。
超过45μm且为75μm以下的粒子优选为氧化镁。这是因为烧结助剂等与退火分离剂等反应而粒径可以发生较大变化,但氧化镁因退火而引起的粒径变化小。
在本发明中,超过45μm且为75μm以下的粒子中包含的硼(B)为0.002质量%以上且小于0.020质量%、硫以换算SO3计小于0.030质量%且磷以换算P2O3计小于0.050质量%是必须的。
如果硼少于0.002质量%,则被膜形成能力变得过低。因此,点状地产生被膜过薄的部分。另一方面,如果为0.020质量%以上,则在退火中该粒子发生自烧结而收缩,不能保持卷材形状。同样,SO3为0.030质量%以上和/或P2O3为0.050质量%以上时,也由于该粒子因自烧结而收缩,因此不能良好地保持卷材形状。
应予说明,该硫、磷的下限含量没有特别限定,但工业上,硫以换算SO3计优选为0.0001质量%以上,磷以换算P2O3计优选为0.0005质量%以上。
硼、SO3(或硫)和P2O3(或磷)的含量与退火分离剂用粉末中的含量同样地可以通过将测定对象的该粒子的粉末酸溶解并对B、S、P各元素进行ICP发射光谱分析来测定。
在分析成为混合物状态的退火分离剂用粉末时,通过湿式筛分取出超过45μm且为75μm以下的粒子进行分析。优选使用JIS Z 8801记载的直径200mm高度45mm的JIS筛进行筛分。
应予说明,在本发明中,超过45μm且为75μm以下的粒子的情况是指通过JIS Z8801记载的200目筛且不通过330目筛的粒子。
另外,使用Hosokawa Micron Corporation制自动湿式筛Viblette(注册商标)VBL,在筛分粉体量100g、喷水水量5L/min、喷水旋转速度200rpm、运转时间10min、电源频率60Hz的条件下进行上述筛分。
<退火分离剂用粉末的制造方法>
本发明的退火分离剂用粉末的制造方法没有特别限制,但通常以煅烧原料而制成的氧化镁为主要成分,作为其原料,可举出氢氧化镁、碳酸镁、氯化镁。
上述B、SO3和P2O3的各成分量的调整可以通过在氧化镁等煅烧前的上述原料中包含硼酸盐、硫酸盐、磷酸盐来调整。此时,当使用Na盐时,钠残留在氧化镁中。钠与B、SO3和P2O3同样,在退火中会促进粒子的自烧结,因此超过45μm且为75μm以下的粒子中包含的钠(Na)优选小于0.010质量%。应予说明,该钠(Na)可以为0质量%。Na含量可以通过将测定对象的该粒子酸溶解并进行ICP发射光谱分析来测定。
本发明中使用的氧化镁除了MgO以外还可以包含B、SO3、P2O3、Na,并且除了这些成分以外还可以包含Cl、CaO、SiO2、Fe2O3、Al2O3、不可避免的杂质。
应予说明,作为氧化镁的纯度(氧化镁中的MgO含量),优选为95质量%以上,更优选为98质量%以上。
因此,上述氧化镁中的除MgO以外的成分的含量优选为5质量%以下,更优选为2质量%以下。
另外,上述超过45μm且为75μm以下的粒子中包含的硼(B)、硫和磷的含量还包括上述氧化镁中的B、SO3、P2O3
作为退火分离剂用粉末,除了氧化镁以外,还可以包含氧化钛、氢氧化锶等反应助剂,也可以与其他退火分离剂用粉末混合而制成退火分离剂并将其涂布于卷材。
[取向性电磁钢板的制造方法]
本发明中作为对象的钢板只要是在表面具有以镁橄榄石为主体的被膜的取向性电磁钢板,就不特别限定钢种。通常,这样的取向性电磁钢板通过如下操作制造:将含硅钢坯用公知的方法进行热轧,通过1次或夹着中间退火的多次冷轧而加工成最终板厚,然后实施一次再结晶退火和脱碳退火,接着涂布退火分离剂后进行最终退火。
这里,在本发明中,作为上述退火分离剂用粉末,使用如下粉末:以氧化镁为主要成分,包含B:0.020质量%~0.200质量%、SO3:0.030质量%~2.000质量%、P2O3:0.050质量%~1.000质量%,进而包含0.2质量%~5.0质量%的超过45μm且为75μm以下的粒子,该超过45μm且为75μm以下的粒子中包含的硼(B)为0.002质量%以上且小于0.020质量%,硫以换算SO3计小于0.030质量%,并且磷以换算P2O3计小于0.050质量%。
另外,根据需要,也可以使上述超过45μm且为75μm以下的粒子中的钠(Na)为0.010质量%以下、使上述氧化镁粉末中的MgO的纯度为95质量%以上。
另外,如果钢板的厚度变薄,则铁损改善(降低),因此优选,但如果钢板变薄,则退火后的卷材形状容易劣化。在这种情况下,优选应用本发明的退火分离剂。特别是在应用于板厚为0.20mm以下的薄钢板时,与以往公知的退火分离剂相比是优选的。应予说明,该板厚的下限为0.05mm左右。
实施例
以富士胶片和光纯药社制的碱式碳酸镁(MgCO3)4Mg(OH)2·xH2O为起始原料,将该起始原料用纯水制成浆料状后,在浆料中加入硼酸(H3BO3)、硫酸镁(MgSO4)、磷酸氢二钠(Na2HPO4·12H2O),调整煅烧后的氧化镁中的微量成分量。调整是根据向浆料中的添加量、煅烧温度、滤饼的水洗程度适当地调整。将该浆料用压滤机压榨,得到滤饼。接下来,在氧化铝制坩埚中放入上述滤饼,在箱式炉中在空气中在表4记载的温度下煅烧20分钟。煅烧后,将其粉碎,然后使用筛调整粒度,制成退火分离剂用粉末原料4-1~4-10。
将NACALAI TESQUE,INC.制的氯化镁六水合物溶解于保持在25℃的纯水中,制成饱和水溶液。使其与氢氧化钠反应而得到氢氧化镁。将这样得到的氢氧化镁过滤水洗。此时,通过改变水洗时间来调整氢氧化镁中残留的钠(Na)量。将该氢氧化镁再次投入纯水中而制成氢氧化镁浆料,在本浆料中加入硼酸(H3BO3)、硫酸镁(MgSO4)、磷酸二铵((NH4)2HPO4),调整煅烧后的氧化镁中的微量成分量。该调整可以根据向浆料中的添加量、煅烧温度、氢氧化镁滤饼的水洗程度适当地调整。将该浆料用压滤机压榨,得到滤饼。接下来,在氧化铝制坩埚中放入上述滤饼,在箱式炉中在空气中在表4所记载的温度下煅烧20分钟。煅烧后,将其粉碎,然后使用筛调整粒度,制成退火分离剂用粉末原料4-11~4-16。
将如上所述调整的退火分离剂用粉末原料4-1~4-16如表5所记载地混合,得到具有各种粒度分布和成分的退火分离剂用粉末5-1~5-28。
接下来,将含有C:0.06质量%、Si:2.95质量%、Mn:0.07质量%、S:0.015质量%、Sb:0.015质量%和Cr:0.03质量%且剩余部分为Fe和不可避免的杂质的钢坯在1350℃下加热40分钟后,进行热轧而制成2.6mm的板厚,然后实施900℃且60s的条件的热轧板退火,然后夹着1050℃且60s的条件的中间退火进行冷轧,加工成0.20mm的最终板厚,接着兼作再结晶退火的脱碳退火后,将上述表5记载的粉末(5-1~5-28)作为退火分离剂涂布,将直到1200℃的升温速度设为25℃/h,将气氛设为氮75vol%氢25vol%的混合气氛进行升温,进一步在1200℃下在氢100vol%气氛中保持20h,由此实施最终退火,然后实施平滑化退火。
调查这样得到的试样的磁通密度、反复弯曲特性、被膜外观的均匀性和被膜密合性、最终退火后卷材的形状和卷材切割比例。
磁通密度和反复弯曲特性使用JIS C 2550(2000)的方法测定。这里,磁通密度表示以800A/m励磁时的磁通密度。
应予说明,对于反复弯曲特性,如表6所示,退火分离剂用粉末5-1为2次,退火分离剂用粉末5-26为1次,除此之外,均显示10次以上的值,良好。
对于被膜外观的均匀性,通过目视,将色调不同的部位为整体表面积的20%以下的情况评价为均匀,大于20%的情况评价为不均匀。对于被膜密合性,将试样沿轧制方向280mm、轧制直角方向30mm剪切后,在820℃的氮气氛中实施3小时的去应力退火,然后将钢板按压在具有各内径(5mm单位)的圆棒上,测定不产生剥离的最小直径(mm)。如果为40mm以下,则评价为良好。
对于退火后卷材的形状,在卷材冷却至室温后,如图1(b)、图2(b)所记载在从上面观察的图中测定退火前卷材的外周部的内切圆的半径(r)(mm)和退火后的卷材外周部的内切圆的半径(R)(mm),求出(R-r)(mm)的值。如果该值(R-r)(mm)为20mm以下,则评价为良好。
表6表示实验中使用的退火分离剂用粉末及其微量成分量、超过45μm且为75μm以下的粒子的成分(质量比例和微量成分量)、卷材退火后形状、卷材切割比例、被膜外观均匀性、被膜密合性、磁通密度和反复弯曲次数。
如表6所示,当退火分离剂用粉末的微量成分量在发明的范围之外时,磁通密度劣化,或被膜外观变得不均匀,或被膜密合性劣化,另外当超过45μm且为75μm以下的粉末的质量比例多时,产生麻点。当超过45μm且为75μm以下的粉末的微量成分量超出发明的范围或该粉末的质量比例过低时,退火后的卷材形状变得不良。其结果,可知卷材切割比例(即因形状不良而成为废料的比例)变得大于1.0质量%,从而制造成本增加。
应予说明,可知当超过45μm且为75μm以下的粉末中的Na量为0.010质量%以下时,退火后形状变得更加良好。

Claims (5)

1.一种退火分离剂用粉末,其特征在于,具有以氧化镁为主要成分且含有B:0.020质量%~0.200质量%、SO3:0.030质量%~1.000质量%和P2O3:0.050质量%~1.000质量%的成分组成,
包含0.2质量%~5.0质量%的粒径超过45μm且为75μm以下的粒子,
该粒径超过45μm且为75μm以下的粒子含有B:0.002质量%以上且小于0.020质量%、SO3:小于0.030质量%和P2O3:小于0.050质量%。
2.根据权利要求1所述的退火分离剂用粉末,其中,所述粒径超过45μm且为75μm以下的粒子中含有的钠Na为0.010质量%以下。
3.根据权利要求1或2所述的退火分离剂用粉末,其中,所述氧化镁的纯度为95质量%以上。
4.一种取向性电磁钢板的制造方法,其特征在于,对取向性电磁钢板用的钢坯实施热轧、冷轧,接着实施再结晶退火和脱碳退火后,涂布退火分离剂后实施最终退火,
在所述退火分离剂中使用权利要求1~3中任一项所述的退火分离剂用粉末。
5.根据权利要求4所述的取向性电磁钢板的制造方法,其中,所述钢板的厚度为0.05mm~0.20mm。
CN202280020972.XA 2021-03-15 2022-03-14 退火分离剂用粉末和使用其的取向性电磁钢板的制造方法 Pending CN117062920A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2021041862 2021-03-15
JP2021-041862 2021-03-15
PCT/JP2022/011434 WO2022196655A1 (ja) 2021-03-15 2022-03-14 焼鈍分離剤用粉末およびそれを用いた方向性電磁鋼板の製造方法

Publications (1)

Publication Number Publication Date
CN117062920A true CN117062920A (zh) 2023-11-14

Family

ID=83320435

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202280020972.XA Pending CN117062920A (zh) 2021-03-15 2022-03-14 退火分离剂用粉末和使用其的取向性电磁钢板的制造方法

Country Status (7)

Country Link
US (1) US20240043950A1 (zh)
EP (1) EP4306663A1 (zh)
JP (1) JP7226658B2 (zh)
KR (1) KR20230145412A (zh)
CN (1) CN117062920A (zh)
BR (1) BR112023018038A2 (zh)
WO (1) WO2022196655A1 (zh)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5414566B2 (zh) * 1973-04-11 1979-06-08
WO2008047999A1 (en) * 2006-10-18 2008-04-24 Posco Annealing separating agent for grain oriented electrical steel sheet having uniform glass film and excellent magnetic properties and method of manufacturig the same
JP5418844B2 (ja) 2010-03-25 2014-02-19 新日鐵住金株式会社 方向性電磁鋼板の製造方法
JP5729009B2 (ja) 2011-02-25 2015-06-03 Jfeスチール株式会社 焼鈍分離剤
JP5786950B2 (ja) 2011-10-04 2015-09-30 Jfeスチール株式会社 方向性電磁鋼板用焼鈍分離剤
CN109348712B (zh) 2016-05-13 2023-12-26 神岛化学工业株式会社 氧化镁粉末及其制造方法

Also Published As

Publication number Publication date
WO2022196655A1 (ja) 2022-09-22
JPWO2022196655A1 (zh) 2022-09-22
BR112023018038A2 (pt) 2023-10-03
JP7226658B2 (ja) 2023-02-21
US20240043950A1 (en) 2024-02-08
KR20230145412A (ko) 2023-10-17
EP4306663A1 (en) 2024-01-17

Similar Documents

Publication Publication Date Title
KR101568627B1 (ko) 방향성 전기강판용 어닐링 분리제
JP6468208B2 (ja) 焼鈍分離剤用粉末、その製造方法、および方向性電磁鋼板
JP7010305B2 (ja) 方向性電磁鋼板
KR0157539B1 (ko) 우수한 반응성을 가진 방향성 전기강판용 아닐링 분리제 및 이의 사용방법
EP3913073A1 (en) Method for manufacturing grain-oriented electrical steel sheet
EP3913096B1 (en) Method for producing grain oriented electrical steel sheet
JP3536775B2 (ja) 方向性電磁鋼の焼鈍分離剤用マグネシアおよびその製造方法と被膜特性に優れる方向性電磁鋼板の製造方法
JP6613919B2 (ja) 焼鈍分離剤用粉末、および方向性電磁鋼板の製造方法
JPH11269555A (ja) 方向性電磁鋼板の焼鈍分離剤およびグラス被膜と磁気特性の優れた方向性電磁鋼板の製造方法
CN117062920A (zh) 退火分离剂用粉末和使用其的取向性电磁钢板的制造方法
JP6791327B2 (ja) 焼鈍分離剤用粉末の製造方法
JP3091096B2 (ja) 優れたグラス被膜と磁気特性を得るための方向性電磁鋼板用焼鈍分離剤及びスラリー
EP3913095A1 (en) Method for manufacturing grain-oriented electrical steel sheet
JP7044216B1 (ja) 焼鈍分離剤用粉末およびその製造方法ならびに方向性電磁鋼板の製造方法
JPH0225433B2 (zh)
JPH09279247A (ja) 磁束密度の高い一方向性電磁鋼板の製造方法
JPH0949028A (ja) 表面性状の優れるグラス被膜を有さない方向性電磁鋼板の製造方法
CN113260720B (zh) 方向性电磁钢板及其制造方法以及退火分离剂
EP3913084B1 (en) Method for producing grain oriented electrical steel sheet
JP5494268B2 (ja) 焼鈍分離剤および方向性電磁鋼板の製造方法
US3227587A (en) Method of annealing magnesia coated silicon-iron alloys in a vacuum
JPH09256068A (ja) 優れたグラス被膜を得るための方向性電磁鋼板の製造方法
JPH1088241A (ja) 被膜特性に優れた方向性けい素鋼板の製造方法
JP2003027251A (ja) 焼鈍分離剤及びそれを用いたグラス被膜の優れた方向性電磁鋼板の製造法
JPH11302731A (ja) 磁気特性および打抜き性に優れた方向性珪素鋼板の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination