CN117026047B - 一种超细金刚线用钨丝基材及其制备方法 - Google Patents

一种超细金刚线用钨丝基材及其制备方法 Download PDF

Info

Publication number
CN117026047B
CN117026047B CN202310910076.7A CN202310910076A CN117026047B CN 117026047 B CN117026047 B CN 117026047B CN 202310910076 A CN202310910076 A CN 202310910076A CN 117026047 B CN117026047 B CN 117026047B
Authority
CN
China
Prior art keywords
tungsten
powder
alloy
wire
carbonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310910076.7A
Other languages
English (en)
Other versions
CN117026047A (zh
Inventor
张平
廖寄乔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Jinbo High Tech Industry Group Co ltd
Original Assignee
Hunan Jinbo High Tech Industry Group Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Jinbo High Tech Industry Group Co ltd filed Critical Hunan Jinbo High Tech Industry Group Co ltd
Priority to CN202310910076.7A priority Critical patent/CN117026047B/zh
Publication of CN117026047A publication Critical patent/CN117026047A/zh
Application granted granted Critical
Publication of CN117026047B publication Critical patent/CN117026047B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/04Alloys based on tungsten or molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/12Metallic powder containing non-metallic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • B22F3/04Compacting only by applying fluid pressure, e.g. by cold isostatic pressing [CIP]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1017Multiple heating or additional steps
    • B22F3/1021Removal of binder or filler
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1035Liquid phase sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/12Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/026Spray drying of solutions or suspensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/0058Accessories specially adapted for use with machines for fine working of gems, jewels, crystals, e.g. of semiconductor material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/04Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by tools other than rotary type, e.g. reciprocating tools
    • B28D5/045Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by tools other than rotary type, e.g. reciprocating tools by cutting with wires or closed-loop blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/059Making alloys comprising less than 5% by weight of dispersed reinforcing phases
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0031Matrix based on refractory metals, W, Mo, Nb, Hf, Ta, Zr, Ti, V or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F2003/1032Sintering only comprising a grain growth inhibitor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Fluid Mechanics (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Composite Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明公开了一种超细金刚线用钨丝基材及其制备方法。本发明钨丝基材成分包括钨和合金添加剂,所述合金添加剂包括占钨丝基材0.8~1.5wt%的氧化镧、4.0~6.0wt%的钼、0.1~0.3wt%的钴和0.1~0.3wt%的铜。本发明通过合金成分、原材料粒度及其组成和制备工艺一体化协同设计,通过Co–Cu微液相冲击活化二阶段低温烧结和氧化镧弥散相对钨晶粒生长的有效抑制,实现了钨材细晶强化、钼对钨的固溶强化、氧化镧对钨的纳米弥散相强化、Co–Cu合金纳米膜对钨晶界之间的界面强化,以及铜和氧化镧对拉丝过程中降低摩擦系数的协同效应,提高了拉丝的生产效率和成品率以及丝材强度,降低了生产成本。

Description

一种超细金刚线用钨丝基材及其制备方法
技术领域
本发明涉及一种超细金刚线用钨丝基材及其制备方法,特别是一种含氧化镧的超细金刚线用钨丝基材及其制备方法,属于有色金属合金及其制备领域中难熔金属和粉末冶金细分领域。
背景技术
金刚线是金刚石切割线的简称。采用金刚线将硅锭切割成薄片是晶体硅太阳能电池制备的一道关键工序。相对高碳钢丝基体,高强韧性钨丝基体负载金刚石能更好地满足超薄单晶硅片高效、高质量切割的需求。钨基金刚石线也称钨丝金刚线或光伏钨丝金刚线。超细金刚线是指采用线径小于等于35μm的基材制备的金刚线。提高钨材强韧性是提高超细钨丝拉拔合格品率、实现超细钨丝高质量拉丝成材和超细钨基金刚石线高效、长寿命切割超薄单晶硅片的基础。
超细金刚线用钨丝基材可通过添加稀土改善合金性能,相关的专利较多,包括申请号为202110482229.3的“一种合金线材及其制备方法与应用”。目前已公开的稀土镧的加入形式主要有金属态、氧化物、能溶于水的硝酸盐和氯化物等。直接用金属态或氧化物形式添加,不能保证其在合金中实现均匀分布,难以达到形成纳米弥散相强化效果。采用能溶于水的稀土盐为原料,通过固液(液相为稀土盐,固相通常为蓝钨)或液液(偏钨酸铵和稀土盐的水溶液)掺杂引入稀土,能实现稀土在钨中的均匀分散。但能溶于水的稀土盐均具有一定的腐蚀性。钨粉制备的还原炉炉管和舟皿通常采用含镍耐热不锈钢材质,还原上述掺杂氧化钨极易导致粉末中引入以镍为典型代表的杂质。而钨中含极少量(百万分之一)的镍时,会显著降低其的塑性。此外,传统钨材达到高致密度(相对密度大于95wt%)通常需要采用高温(通常高于1900℃)烧结工艺,而高温烧结极易导致钨晶粒的快速长大。超细金刚线用钨丝基材的现有专利方法没有注重钨合金中微观组织精细结构的控制,存在拉拔丝径≤35μm的超细钨丝成品率和丝强度偏低等问题,钨丝10万米/卷产品的成品率通常小于60%;丝径≤35μm的传统超细钨丝抗拉强度通常为5600MPa左右。
发明内容
本发明的目的之一是提供一种拉拔丝径≤35μm的超细钨丝成品率高和丝强度高的超细金刚线用钨丝基材。
为了达到上述目的,本发明的超细金刚线用钨丝基材其成分包括钨和合金添加剂,所述合金添加剂包括占钨丝基材0.8~1.5wt%的氧化镧、4.0~6.0wt%的钼、0.1~0.3wt%的钴和0.1~0.3wt%的铜,所述氧化镧以平均粒径小于40nm的形式在合金中以纳米弥散相形式存在;所述钴和铜以平均厚度小于25nm的合金纳米膜形式存在于钨晶粒之间,所述钼以替代式固溶原子形式存在于基体钨的晶格中。
上述钨合金中,氧化镧以平均粒径小于40nm的形式均匀分布在钨基体中,形成纳米弥散相强化;同时,在低温烧结过程中纳米氧化镧具有很强的抑制钨晶粒生长的功能;纳米弥散相强化和细晶强化均可显著提高钨丝强度。钴和铜以平均厚度小于25nm的合金纳米膜的形似存在于钨晶粒之间,能实现对钨晶界之间的界面强化,显著提高合金在压力加工和拉丝过程中的塑性变形能力;在拉丝过程中,钨合金中的铜和氧化镧还能形成降低摩擦系数的协同效应,从而达到显著提高拉丝成品率的双重效应。由于钨钼在整个成分范围内均可形成连续固溶体,所述优化添加量的4.0~6.0wt%钼以替代式固溶原子形式存在于基体钨的晶格中,能形成固溶强化,具有显著提高合金在压力加工和拉丝过程中的塑性变形能力和显著提高钨丝强度的功能。本发明一种超细金刚线用钨丝基材能实现35μm拉拔丝径的成品率高于90%,35μm钨合金丝抗拉强度大于6800MPa。
本发明的另一个目的是提供一种能显著提高拉拔丝径≤35μm的超细钨丝的成品率和显著提高钨合金丝材强度的超细金刚线用钨丝基材的制备方法。
为了达到上述目的,该制备方法包括以下步骤:
A.掺杂钨粉末制备:采用碳酸镧、碳酸钴、碱式碳酸铜和费氏粒度1.0~2.0μm的细钨粉为原料,根据细钨粉在钨粉原料粉末中的质量占比,以及氧化镧、钴和铜在钨丝基材中的比例进行配料,将细钨粉、碳酸镧、碳酸钴和碱式碳酸铜粉末进行干式破碎和混合,再在还原炉中进行碳酸镧的分解,以及碳酸钴和碱式碳酸铜的分解和还原,制备以细钨粉为载体的含纳米氧化镧、纳米金属钴和纳米金属铜颗粒的高烧结活性混合粉末,所述分解和还原在高纯氢气气氛、350~400℃温度保温时间2~3小时条件下进行;
B.湿磨混合料制备:将A步骤所得高烧结活性混合粉末、比表面积平均粒径为0.2~0.4μm超细钨粉和比表面积平均粒径为0.2~0.5μm的超细钼粉进行二次配料,加入占粉末总质量分数2.0~2.3%的成形剂进行湿式球磨和混合;所述二次配料的结果应满足细钨粉在钨粉原料粉末中的质量占比为20~25%,氧化镧占钨丝基材的0.8~1.5wt%、钼占4.0~6.0wt%、钴占0.1~0.3wt%、铜占0.1~0.3wt%;
C.喷雾干燥制粒,制备平均粒径小于150μm的球形混合料;
D.将喷雾干燥制粒混合料在成形压力为200~260MPa的条件下进行冷等静压成形;
E.成形剂脱除和预烧:预烧的保温温度为950~1000℃,保温时间为120~180分钟,在高纯氢气中进行;
F.微液相冲击活化二阶段低温烧结:第一阶段的烧结温度为1600~1700℃,保温时间为30~45分钟,第二阶段的烧结温度为1500~1600℃,保温时间为120~160分钟。
所述细钨粉、碳酸镧、碳酸钴和碱式碳酸铜粉末的干式破碎和混合是在立式犁刀混料机中进行的。
所述湿式球磨和混合的介质为去氧和去离子的纯水或者酒精。
所述湿式球磨和混合中添加的成形剂为聚乙二醇或石蜡。
所述湿式球磨和混合工艺参数为研磨球与混合料质量比为(1:1)~(2:1),球磨时间为10~15小时,研磨球材质为W–1~3wt%Co合金球。
所述冷等静压成形为湿袋冷等静压或者干袋冷等静压。
所述成形剂脱除在高纯氢气中进行,保温温度依次为180~200℃、260~280℃、350~380℃和420~450℃,各阶段保温时间均为80~100分钟。
所述微液相冲击活化二阶段低温烧结是在气氛烧结炉或真空烧结炉中进行,所述气氛烧结以高纯氢气作为介质。
所述高纯氢气的露点为–60℃以下。
本发明利用碳酸镧、碳酸钴、碱式碳酸铜的本征脆性和细钨粉的良好流动性,实现上述掺杂剂原料在立式犁刀混料机中的高效破碎和高效混合;在350~400℃温度条件下进行分散依附在W表面的合金添加剂的原位分解和还原,可有效抑制W、Co、Cu和氧化稀土粉体的晶粒生长;细颗粒钨粉作为载体可有效抑制依附在其表面的纳米金属钴和纳米金属铜粉体的氧化和自燃;同时采用本发明方法,实现细钨粉和超细钨粉的粒级匹配,有利于提高压坯密度和压坯密度的均匀性,有利于低温烧结致密化。
采用的Co–Cu微液相冲击活化二阶段低温烧结工艺是指能形成液相的钴、铜添加量很低,烧结时液相体积分数远低于传统液相烧结时的液相体积分数,并且烧结温度最高为1700℃,远低于1900℃以上的传统烧结温度;在第一阶段烧结温度条件下,液相获得较高的能量,以最佳的润湿性迅速在钨基体中扩散、并快速渗透至钨晶粒界面,促进钼在钨基体中快速固溶和氧化镧在钨基体中均匀分布,促进在第二阶段的烧结致密化。但当钼含量偏高时,在1700℃的最高烧结温度条件下难以实现钼在钨基体中的均匀分布。
本发明的制备方法依据相场模拟、有限元计算模拟和实验验证对合金添加剂添加量进行了最优化,并通过合金成分、原材料粒度及其组成和制备工艺的一体化协同设计,成功地实现了钨的细晶强化、钼对钨的固溶强化、氧化镧对钨基体的纳米弥散相强化、Co–Cu合金纳米膜对钨晶界之间的界面强化,以及铜和氧化镧对拉丝过程中降低摩擦系数的协同效应,从而实现35μm拉拔丝径的成品率高于90%,35μm钨合金丝抗拉强度大于6800MPa,显著降低了生产成本。
附图说明
图1是本发明实施例2制备的W–1.5La2O3–6Mo–0.2Co–0.2Cu超细金刚线用钨丝基材中位于两个钨晶粒之间的Co–Cu合金纳米膜的透射电镜照片。
具体实施方式
下面结合附图对本发明作进一步说明。
实施例1:
A.掺杂钨粉末制备:采用含70.9wt%La2O3的碳酸镧、含49.3wt%Co的碳酸钴、含57.1wt%Cu的碱式碳酸铜和费氏粒度1.0μm的细钨粉为原料,按照碳酸镧占细钨粉质量分数5.95%、碳酸钴占细钨粉质量分数1.07%、碱式碳酸铜占细钨粉质量分数2.77%进行配料,将细钨粉、碳酸镧、碳酸钴和碱式碳酸铜粉末在立式犁刀混料机中进行干式破碎和混合,再在还原炉中进行碳酸镧的分解,以及碳酸钴和碱式碳酸铜的分解和还原,制备以细钨粉为载体的含纳米氧化镧、纳米金属钴和纳米金属铜颗粒的高烧结活性混合粉末,所述分解和还原在露点为–60℃的高纯氢气气氛、400℃温度保温时间2小时条件下进行;
B.湿磨混合料制备:将A步骤所得高烧结活性混合粉末、比表面积平均粒径为0.4μm超细钨粉和比表面积平均粒径为0.5μm的超细钼粉进行二次配料,加入占粉末总质量分数2.0%的聚乙二醇成形剂进行湿式球磨和混合;采用研磨球与混合料质量比为2:1,球磨时间为12小时,采用去氧和去离子的纯水作为湿磨介质,研磨球材质为W–3wt%Co合金球,所述二次配料的结果应满足细钨粉在钨粉原料粉末中的质量占比为20%,氧化镧占钨丝基材的0.8wt%、钼占4.0wt%、钴占0.1wt%、铜占0.3wt%;
C.喷雾干燥制粒,制粒料过100目筛网以满足球形混合料平均粒径小于150μm的要求;
D.将喷雾干燥制粒混合料在成形压力为260MPa的条件下进行湿袋冷等静压成形;
E.成形剂脱除和预烧:冷等静压压坯成形剂脱除的升温速率为3℃/分钟,保温温度依次为200℃、280℃、380℃和450℃,各阶段保温时间均为60分钟;450℃至预烧温度的升温速率为6℃/分钟,预烧的保温温度为1000℃,保温时间为120分钟,在露点为–60℃的高纯氢气中进行;
F.微液相冲击活化二阶段低温烧结:在中频感应烧结炉和露点为–60℃的高纯氢气中进行,采用10℃/分钟的升温速率,第一阶段的烧结温度为1700℃,保温时间为30分钟,第二阶段的烧结温度为1600℃,保温时间为120分钟。
实施例2:
A.掺杂钨粉末制备:采用含70.9wt%La2O3的碳酸镧、含49.3wt%Co的碳酸钴、含57.1wt%Cu的碱式碳酸铜和费氏粒度1.5μm的细钨粉为原料,按照碳酸镧占细钨粉质量分数9.19%、碳酸钴占细钨粉质量分数1.76%、碱式碳酸铜占细钨粉质量分数1.52%进行配料,将细钨粉、碳酸镧、碳酸钴和碱式碳酸铜粉末在立式犁刀混料机中进行干式破碎和混合,再在还原炉中进行碳酸镧的分解,以及碳酸钴和碱式碳酸铜的分解和还原,制备以细钨粉为载体的含纳米氧化镧、纳米金属钴和纳米金属铜颗粒的高烧结活性混合粉末,所述分解和还原在露点为–63℃的高纯氢气气氛、350℃温度保温时间3小时条件下进行;
B.湿磨混合料制备:将A步骤所得高烧结活性混合粉末、比表面积平均粒径为0.3μm超细钨粉和比表面积平均粒径为0.2μm的超细钼粉进行二次配料,加入占粉末总质量分数2.2%的聚乙二醇成形剂进行湿式球磨和混合;采用研磨球与混合料质量比为1:1,球磨时间为15小时,采用去氧和去离子的纯水作为湿磨介质,研磨球材质为W–1wt%Co合金球,所述二次配料的结果应满足细钨粉在钨粉原料粉末中的质量占比为25%,氧化镧占钨丝基材的1.5wt%、钼占6.0wt%、钴占0.2wt%、铜占0.2wt%;
C.喷雾干燥制粒,制粒料过100目筛网以满足球形混合料平均粒径小于150μm的要求;
D.将喷雾干燥制粒混合料在成形压力为200MPa的条件下进行干袋冷等静压成形;
E.成形剂脱除和预烧:冷等静压压坯成形剂脱除的升温速率为3℃/分钟,保温温度依次为180℃、260℃、350℃和420℃,各阶段保温时间均为100分钟;420℃至预烧温度的升温速率为6℃/分钟,预烧的保温温度为950℃,保温时间为180分钟,在露点为–63℃的高纯氢气中进行;
F.微液相冲击活化二阶段低温烧结:在中频感应烧结炉和露点为–63℃的高纯氢气中,采用10℃/分钟的升温速率,第一阶段的烧结温度为1650℃,保温时间为40分钟,第二阶段的烧结温度为1550℃,保温时间为140分钟。
实施例3:
A.掺杂钨粉末制备:采用含70.9wt%La2O3的碳酸镧、含49.3wt%Co的碳酸钴、含57.1wt%Cu的碱式碳酸铜和费氏粒度2.0μm的细钨粉为原料,按照碳酸镧占细钨粉质量分数8.33%、碳酸钴占细钨粉质量分数2.99%、碱式碳酸铜占细钨粉质量分数0.86%进行配料,将细钨粉、碳酸镧、碳酸钴和碱式碳酸铜粉末在立式犁刀混料机中进行干式破碎和混合,再在还原炉中进行碳酸镧的分解,以及碳酸钴和碱式碳酸铜的分解和还原,制备以细钨粉为载体的含纳米氧化镧、纳米金属钴和纳米金属铜颗粒的高烧结活性混合粉末,所述分解和还原在露点为–62℃的高纯氢气气氛、380℃温度保温时间2.5小时条件下进行;
B.湿磨混合料制备:将A步骤所得高烧结活性混合粉末、比表面积平均粒径为0.2μm超细钨粉和比表面积平均粒径为0.3μm的超细钼粉进行二次配料,加入占粉末总质量分数2.3%的石蜡成形剂进行湿式球磨和混合;采用研磨球与混合料质量比为2:1,球磨时间为10小时,采用工业酒精作为湿磨介质,研磨球材质为W–2wt%Co合金球,所述二次配料的结果应满足细钨粉在钨粉原料粉末中的质量占比为22%,氧化镧占钨丝基材的1.2wt%、钼占5.0wt%、钴占0.3wt%、铜占0.1wt%;
C.喷雾干燥制粒,制粒料过100目筛网以满足球形混合料平均粒径小于150μm的要求;
D.将喷雾干燥制粒混合料在成形压力为230MPa的条件下进行湿袋冷等静压成形;
E.成形剂脱除和预烧:冷等静压压坯成形剂脱除的升温速率为3℃/分钟,保温温度依次为180℃、280℃、370℃和440℃,各阶段保温时间均为80分钟;440℃至预烧温度的升温速率为6℃/分钟,预烧的保温温度为980℃,保温时间为150分钟,在露点为–62℃的高纯氢气中进行;
F.微液相冲击活化二阶段低温烧结:在真空烧结炉中进行,采用10℃/分钟的升温速率,第一阶段的烧结温度为1600℃,保温时间为45分钟,第二阶段的烧结温度为1500℃,保温时间为180分钟。烧结过程中烧结炉内最高真空度为25Pa。
将实施例1至3制备的合金基材进行随机取样,随后制备透射电镜观察样品。透射电镜观察结果表明,三种合金中氧化镧以平均粒径小于40nm的纳米弥散相形式存在;钴和铜以平均厚度小于25nm的合金纳米膜的形式存在于钨晶粒之间,钼以替代式固溶原子形式存在于基体钨的晶格中。
图1是实施例2制备的超细金刚线用钨丝基材合金(W–1.5La2O3–6Mo–0.2Co–0.2Cu)的透射电镜照片。测试结果表明,图1中Co–Cu合金纳米膜的最大和最小厚度分别是24.5和15.1nm,平均厚度为17.6nm。
将实施例1至3制备的合金基材分别按照传统工艺,即钨合金棒材→旋锻开坯→连续旋锻→电解清洗→高频退火→焊接→连续旋锻→拉丝工艺进行拉丝。按照GB/T 4181–2017《钨丝》国家标准测量线径为35μm钨合金丝的抗拉强度。上述三组合金毛坯相对密度测试结果在98~99%之间,在测量误差范围之内变化。采用上述三组基材拉拔成线径为35μm、10万米/卷超细丝的成品率和线径为35μm钨合金丝抗拉强度的测试结果见表1,合金具有拉拔成丝的成品率高和抗拉强度高等典型特征。
表1各实施例合金基材拉拔成丝的成品率和抗拉强度
样品 合金成分wt% 成品率 抗拉强度MPa
实施例1 W–0.8La2O3–4Mo–0.1Co–0.3Cu 96% 7010
实施例2 W–1.5La2O3–6Mo–0.2Co–0.2Cu 95% 7301
实施例3 W–1.2La2O3–5Mo–0.3Co–0.1Cu 95% 7282
对比例1
对比合金成分见表2。细钨粉在钨粉原料粉末中的质量占比为20%,细钨粉费氏粒度分别为1.0μm,超细钨粉和超细钼粉的比表面积平均粒径均为0.2μm。掺杂钨粉还原温度为400℃温度,保温时间2小时。湿磨混合料制备采用研磨球与混合料质量比为2:1,球磨时间为12小时,采用去氧和去离子的纯水作为湿磨介质,聚乙二醇成形剂的添加量为2.3wt%,研磨球材质为W–3wt%Co合金球。合金喷雾干燥制粒料在250MPa压力下进行湿袋冷等静压。冷等静压压坯成形剂脱除的升温速率为3℃/分钟,保温温度依次为200℃、280℃、380℃和450℃,各阶段保温时间均为80分钟;450℃至预烧温度的升温速率为6℃/分钟,保温温度为1000℃,保温时间为120分钟。合金的烧结在中频感应烧结炉中进行,采用10℃/分钟的升温速率,第一阶段的烧结温度为1700℃,保温时间为30分钟,第二阶段的烧结温度为1600℃,保温时间为120分钟。其它原料、工艺参数和设备与实施例1相同。
测试结果表明,表2中合金A和合金B毛坯的相对密度分别为75%和74%,不能满足拉拔成丝的工艺要求。合金C、D和E毛坯的相对密度分别为96%、91%和96%,拉拔成线径为35μm、10万米/卷超细丝的成品率分别为80%、62%和88%,线径为35μm钨合金丝的抗拉强度分别为5569MPa、6217MPa和5745MPa。由于存在明显的过烧,合金F烧结体表面存在肉眼可见的孔洞,不能满足拉拔成丝的工艺要求。
表2对比合金成分
序号 合金成分,wt%
A W–0.8La2O3–1Mo
B W–1.5La2O3
C W–1.5La2O3–0.3Co–0.3Cu
D W–1.5La2O3–10Mo–0.2Co–0.2Cu
E W–1.5La2O3–1Mo–0.2Co–0.2Cu
F W–1.5La2O3–4Mo–0.5Co–1Cu
对比例2
采用单一粒径的超细钨粉为原料,按W–1.5La2O3–6Mo–0.2Co–0.2Cu进行配料,将含70.9wt%La2O3的碳酸镧、含49.3wt%Co的碳酸钴和含57.1wt%Cu的碱式碳酸铜,比表面积平均粒径分别为0.3μm和0.4μm的超细钨粉和超细钼粉的混合料在还原炉中于370℃进行分解和还原,出炉时发现混合料出现了自燃现象。
对比例3
除烧结工艺参数不同之外,其余工艺参数均同实施例第1组合金W–0.8La2O3–4Mo–0.1Co–0.3Cu合金制备的工艺参数,预烧合金坯的烧结在中频感应烧结炉中进行,采用10℃/分钟的升温速率,直接升温至1700℃,保温120分钟。测试结果表明,合金存在过烧现象,合金毛坯的相对密度仅为93%,拉拔成线径为35μm、10万米/卷超细丝的成品率仅为72%,线径为35μm钨合金丝的抗拉强度仅为5701MPa。

Claims (10)

1.一种超细金刚线用钨丝基材,其特征在于:所述钨丝基材成分由钨和合金添加剂组成,所述合金添加剂由占钨丝基材0.8~1.5wt%的氧化镧、4.0~6.0wt%的钼、0.1~0.3wt%的钴和0.1~0.3wt%的铜组成,所述氧化镧以平均粒径小于40nm的形式在合金中以纳米弥散相形式存在;所述钴和铜以平均厚度小于25nm的合金纳米膜的形式存在于钨晶粒之间,所述钼以替代式固溶原子形式存在于基体钨的晶格中。
2.一种超细金刚线用钨丝基材的制备方法,其特征在于:包括以下步骤,
A.掺杂钨粉末制备:采用碳酸镧、碳酸钴、碱式碳酸铜和费氏粒度1.0~2.0μm的细钨粉为原料,根据细钨粉在钨粉原料粉末中的质量占比,以及氧化镧、钴和铜在钨丝基材中的比例进行配料,将细钨粉、碳酸镧、碳酸钴和碱式碳酸铜粉末进行干式破碎和混合,再在还原炉中进行碳酸镧的分解,以及碳酸钴和碱式碳酸铜的分解和还原,制备以细钨粉为载体的含纳米氧化镧、纳米金属钴和纳米金属铜颗粒的高烧结活性混合粉末,所述分解和还原在高纯氢气气氛、350~400℃温度保温时间2~3小时条件下进行;
B.湿磨混合料制备:将A步骤所得高烧结活性混合粉末、比表面积平均粒径为0.2~0.4μm超细钨粉和比表面积平均粒径为0.2~0.5μm的超细钼粉进行二次配料,加入占粉末总质量分数2.0~2.3%的成形剂进行湿式球磨和混合;所述二次配料的结果应满足细钨粉在钨粉原料粉末中的质量占比为20~25%,氧化镧占钨丝基材的0.8~1.5wt%、钼占4.0~6.0wt%、钴占0.1~0.3wt%、铜占0.1~0.3wt%;
C.混合料干燥制粒:采用喷雾干燥制粒,制备平均粒径小于150μm的球形混合料;
D.毛坯成形:将喷雾干燥制粒混合料在成形压力为200~260MPa的条件下进行冷等静压成形;
E.成形剂脱除和预烧:成形剂脱除后,压坯预烧的保温温度为950~1000℃,保温时间为120~180分钟,在高纯氢气中进行;
F.烧结:采用微液相冲击活化二阶段低温烧结,第一阶段的烧结温度为1600~1700℃,保温时间为30~45分钟;第二阶段的烧结温度为1500~1600℃,保温时间为120~180分钟。
3.根据权利要求2所述一种超细金刚线用钨丝基材的制备方法,其特征在于:细钨粉、碳酸镧、碳酸钴和碱式碳酸铜粉末的干式破碎和混合是在立式犁刀混料机中进行的。
4.根据权利要求2所述一种超细金刚线用钨丝基材的制备方法,其特征在于:所述湿式球磨和混合的介质为去氧和去离子的纯水或者酒精。
5.根据权利要求2所述一种超细金刚线用钨丝基材的制备方法,其特征在于:所述湿式球磨和混合中添加的成形剂为聚乙二醇或石蜡。
6.根据权利要求2所述一种超细金刚线用钨丝基材的制备方法,其特征在于:所述湿式球磨和混合工艺参数为研磨球与混合料质量比为(1:1)~(2:1),球磨时间为10~15小时,研磨球材质为W–1~3wt%Co合金球。
7.根据权利要求2所述一种超细金刚线用钨丝基材的制备方法,其特征在于:所述成形剂脱除在高纯氢气中进行,保温温度依次为180~200℃、260~280℃、350~380℃和420~450℃,各阶段保温时间为60~100分钟。
8.根据权利要求2所述一种超细金刚线用钨丝基材的制备方法,其特征在于:所述冷等静压成形为湿袋冷等静压或者干袋冷等静压。
9.根据权利要求2所述一种超细金刚线用钨丝基材的制备方法,其特征在于:所述微液相冲击活化二阶段低温烧结是在气氛烧结炉或真空烧结炉中进行,所述气氛烧结以高纯氢气作为介质。
10.根据权利要求2或者权利要求7或者权利要求9所述一种超细金刚线用钨丝基材的制备方法,其特征在于:所述高纯氢气的露点为–60℃以下。
CN202310910076.7A 2023-07-24 2023-07-24 一种超细金刚线用钨丝基材及其制备方法 Active CN117026047B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310910076.7A CN117026047B (zh) 2023-07-24 2023-07-24 一种超细金刚线用钨丝基材及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310910076.7A CN117026047B (zh) 2023-07-24 2023-07-24 一种超细金刚线用钨丝基材及其制备方法

Publications (2)

Publication Number Publication Date
CN117026047A CN117026047A (zh) 2023-11-10
CN117026047B true CN117026047B (zh) 2024-01-12

Family

ID=88627178

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310910076.7A Active CN117026047B (zh) 2023-07-24 2023-07-24 一种超细金刚线用钨丝基材及其制备方法

Country Status (1)

Country Link
CN (1) CN117026047B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090117372A1 (en) * 2004-10-12 2009-05-07 Yuri Zhuk Alloyed tungsten produced by chemical vapour deposition
CN110699584A (zh) * 2019-11-28 2020-01-17 西北有色金属研究院 脉冲冲击吸能用高密度低强度低塑性合金材料的制备方法
CN112496319A (zh) * 2019-09-16 2021-03-16 宿迁启祥电子科技有限公司 一种烧结装置及钨合金材料的制备方法
CN113136515A (zh) * 2021-04-10 2021-07-20 广州市华司特合金制品有限公司 一种高导热钨铜合金材料及其制备方法和应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62224495A (ja) * 1986-03-24 1987-10-02 Toho Kinzoku Kk タングステン電極材料

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090117372A1 (en) * 2004-10-12 2009-05-07 Yuri Zhuk Alloyed tungsten produced by chemical vapour deposition
CN112496319A (zh) * 2019-09-16 2021-03-16 宿迁启祥电子科技有限公司 一种烧结装置及钨合金材料的制备方法
CN110699584A (zh) * 2019-11-28 2020-01-17 西北有色金属研究院 脉冲冲击吸能用高密度低强度低塑性合金材料的制备方法
CN113136515A (zh) * 2021-04-10 2021-07-20 广州市华司特合金制品有限公司 一种高导热钨铜合金材料及其制备方法和应用

Also Published As

Publication number Publication date
CN117026047A (zh) 2023-11-10

Similar Documents

Publication Publication Date Title
CN1986116B (zh) 含稀土预合金粉末
CN110358941B (zh) 一种钨基合金材料及其制备方法
EP0270509B1 (en) Cemented carbonitride alloy with improved plastic deformation resistance
CN109108273A (zh) NbZrTiTa难熔高熵合金粉末制备方法及NbZrTiTa难熔高熵合金粉末
CN115679174B (zh) 一种超强钨丝及其制备方法
CN112063905B (zh) 一种高性能WC-WCoB-Co复相硬质合金及其制备方法
CN111378860A (zh) 超细晶硬质合金及其制备方法
CN102409215A (zh) 大切削量刀具用超细硬质合金及其制备方法
CN111910114A (zh) 一种内生纳米碳化物增强多尺度fcc高熵合金基复合材料及其制备方法
CN108277412A (zh) 一种纳米钨合金材料及其制备方法
CN108746656B (zh) 用于金刚石制品的预合金粉及其制备方法
CN117026047B (zh) 一种超细金刚线用钨丝基材及其制备方法
JP2005150503A (ja) 焼結磁石の製造方法
CN110218926B (zh) 一种超粗晶WC-Co硬质合金制备方法
CN110788318B (zh) 一种高致密度稀土钨电极的制备方法
CN116949334A (zh) 一种无粘结相硬质合金及其制备方法和应用
CN116904821B (zh) 一种含二元稀土复合氧化物的钨丝基材及其制备方法
CN111763843A (zh) 一种多元掺杂高比重钨铜镍合金的制备方法及制备的高比重钨铜镍合金
CN111020337B (zh) 一种应用于超细碳化钨制备的抑制剂及其制备方法
CN115070042A (zh) 一种稀土氧化物改性硬质合金车刀片及其制备方法
JP3318887B2 (ja) 微粒超硬合金及びその製造方法
CN111101042B (zh) 一种超细晶粒Ti(C,N)金属陶瓷材料及其制备方法
CN114293053A (zh) 一种钨钢陶瓷硬质合金及其制备方法
CN107058841A (zh) 一种高机械强度钨合金材料及其制备方法
CN109609793B (zh) 含钌硬质合金的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant