CN117024129A - 一种铬掺杂二硅酸镧陶瓷的制备方法 - Google Patents

一种铬掺杂二硅酸镧陶瓷的制备方法 Download PDF

Info

Publication number
CN117024129A
CN117024129A CN202311033478.XA CN202311033478A CN117024129A CN 117024129 A CN117024129 A CN 117024129A CN 202311033478 A CN202311033478 A CN 202311033478A CN 117024129 A CN117024129 A CN 117024129A
Authority
CN
China
Prior art keywords
chromium
doped lanthanum
disilicate
sio
disilicate ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202311033478.XA
Other languages
English (en)
Other versions
CN117024129B (zh
Inventor
郭洪飞
赵敏
白朴存
何智慧
卜二军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inner Mongolia Academy Of Science And Technology
Jinan University
Inner Mongolia University of Technology
Original Assignee
Inner Mongolia Academy Of Science And Technology
Jinan University
Inner Mongolia University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inner Mongolia Academy Of Science And Technology, Jinan University, Inner Mongolia University of Technology filed Critical Inner Mongolia Academy Of Science And Technology
Priority to CN202311033478.XA priority Critical patent/CN117024129B/zh
Publication of CN117024129A publication Critical patent/CN117024129A/zh
Application granted granted Critical
Publication of CN117024129B publication Critical patent/CN117024129B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • C04B2235/3243Chromates or chromites, e.g. aluminum chromate, lanthanum strontium chromite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

本发明公开了一种铬掺杂二硅酸镧陶瓷的制备方法,采用不同原料配比的LaCrO3和SiO2粉末,利用放电等离子烧结技术在1300~1500℃下直接制备铬掺杂的La2Si2O7陶瓷。本发明利用LaCrO3与SiO2粉末通过放电等离子技术制备铬掺杂二硅酸镧陶瓷块材,与现有制备方法相比,有效降低烧结温度,缩短制备周期且工艺简单。另外,本发明可通过改变原料配比来调控Cr离子的掺杂位置,进而改变二硅酸镧的性质,使其满足不同的应用需求,加强其工业生产和应用。本发明制备的铬掺杂的二硅酸镧陶瓷具有良好的高温相稳定性、较高的显微硬度和较小的断裂韧性,其力学性能随原料配比差异而发生改变。

Description

一种铬掺杂二硅酸镧陶瓷的制备方法
技术领域
本发明属于无机非金属材料制备技术领域,具体涉及一种铬掺杂二硅酸镧陶瓷的制备方法。
背景技术
二硅酸镧陶瓷(La2Si2O7)是一种具有良好绝缘性和高温稳定性的陶瓷材料,其具有较高的硬度、较低的介电常数、良好的机械强度和优异的热稳定性能,可以在高温高压、较恶劣的环境下使用。由于其性能优异,被广泛应用于微波电子学、光电子学、传感器、生物技术、航空航天等领域,其中,它可以作为微波陶瓷元器件、高温导电介质、高压绝缘体、气敏元件、光学陶瓷和生物医学器械等材料。
目前关于La2Si2O7陶瓷的制备方法,主要有固相法、溶胶-凝胶法、热分解法和液相共沉淀法等方法,而这些方法存在工艺繁琐、生产成本高、产品纯度低等不足,进而限制了其工业生产和应用。比如固相法主要将SiO2和La2O3粉末按照化学计量比例混合均匀,在高温、氧气气氛下进行热处理,由于高温下原料的化学反应比较激烈,可能会出现粉末团聚、结块等问题,导致纯度较低;溶胶凝胶法将稀释的LaCl3和TEOS(四乙氧基硅烷)混合,将凝胶热处理后得到产品粉末,虽纯度较高,但成本较高,工艺时间长,且过程中可能会对人体健康有害;热分解法是将La(NO3)3和Si(OEt)4混合,蒸发干燥后在空气气氛下热处理,经过多次煅烧和研磨后得到La2Si2O7粉末,但存在高能耗、制备纯度不高等不足;共沉淀法以La(NO3)3和Si(NO3)4为原料,在碱性环境下进行共沉淀反应,得到沉淀后经过水洗、过滤、干燥、煅烧等步骤得到粉末产品,整个过程繁杂且周期长。
发明内容
由于二硅酸镧陶瓷的现有制备工艺存在些许不足,本发明提供一种有效降低烧结温度,缩短制备周期且工艺简单的铬掺杂二硅酸镧陶瓷的制备方法。
为了实现上述目的,本发明采用以下技术方案:
一种铬掺杂二硅酸镧陶瓷的制备方法,包括以下步骤:
(1)将LaCrO3和SiO2原料粉末的混合;
(2)将研磨后的粉末倒入模具中,并进行烧结;
烧结过程中全程真空处理,并施加30-45MPa的轴向压力;先以80-120℃/min的升温速率升温至1300-1500℃,然后保温≥5min后开始降温。
特别的,步骤(1)中,所述LaCrO3和SiO2的摩尔比为0.5-1.55:1。
步骤(1)中,所述LaCrO3中位粒径为0.4-0.6μm。
步骤(1)中,所述SiO2为纳米SiO2
特别的,步骤(2)中,利用放电等离子烧结炉烧结。
步骤(2)中,降温时减少放电等离子烧结炉的输出电流直到输出电流为0,然后利用冷水辅助降温。
步骤(2)中,烧结前,模具内壁涂抹脱模剂,脱模剂优选为BN脱模剂步骤(2)中,烧结前,在模具内放置碳纸,阻隔粉末与模具粘结。
与现有技术相比,本发明的有益效果为:
(1)本发明首次使用LaCrO3与SiO2粉末通过放电等离子技术制备铬掺杂二硅酸镧陶瓷块材,与现有制备方法相比,有效降低烧结温度,缩短制备周期且工艺简单。本发明通过改变原料配比可调控Cr离子的掺杂位置,La/Si原料比小于1时,Cr离子更容易进入La位,引起晶格畸变,影响其结构和形貌;La/Si原料比大于1时,Cr离子更容易进入Si位,改变其导电等性质。因此,可根据具体用途和性质需求来改变原料配比进而制备不同Cr掺杂位置的La2Si2O7陶瓷;使其满足不同的应用需求,加强其工业生产和应用。
(2)本发明制备的铬掺杂的二硅酸镧陶瓷具有良好的高温相稳定性、较高的显微硬度和较小的断裂韧性,其力学性能随原料配比差异而发生改变,当LaCrO3/SiO2原料摩尔配比为1.1-1.55时,其体积密度为为4.85-5.39g/cm3,显微硬度为8.22-9.23GPa,断裂韧性为2.24-2.80MPa·m1/2
附图说明
图1本发明中制备的铬掺杂二硅酸镧的显微形貌。
图2本发明中不同原料配比的铬掺杂二硅酸镧的XRD图谱。
图3本发明中不同原料配比的铬掺杂二硅酸镧的体积密度。
图4本发明中不同原料配比的铬掺杂二硅酸镧的显微硬度。
图5本发明中不同原料配比的铬掺杂二硅酸镧的断裂韧性。
具体实施方式
为了更好地理解本发明,下面结合具体实施例对本发明作进一步的描述,其中实施例中使用的术语是为了描述特定的具体实施方案,不构成对本发明保护范围的限制。
实施例1:
本实施例中一种铬掺杂二硅酸镧陶瓷的制备方法如下:
步骤1:LaCrO3和SiO2原料粉末的混合
首先,将LaCrO3粉末和SiO2粉末按摩尔比1.1:1的比例进行称重,以无水乙醇为介质经行星式球磨机以转速500r/min球磨0.5h,使两种粉末混合均匀;接着将混合粉末置于鼓风干燥箱90℃干燥12h,待干燥结束后通过玛瑙研钵将混合粉末再次研磨0.5h。
其中LaCrO3粉末的中位粒径为0.5μm;SiO2粉末为纳米级。
步骤2:铬掺杂二硅酸镧的制备
称取上述研磨后的混合粉末,将混合粉末倒入石墨模具中,其中模具内壁涂抹BN脱模剂和粉末与石墨压头间使用碳纸阻隔,将石墨模具置于放电等离子烧结炉中抽真空,并施加30MPa的轴向压力。
先以100℃/min的升温速率升温至1300℃,烧结过程保持真空,然后保温5min后开始降温,通过减小输出电流缓慢降温以达到减小热应力的目的,随后在冷水机的辅助下降温至室温,得到翠绿色的二硅酸镧陶瓷。
实施例2:
本实施例中一种铬掺杂二硅酸镧陶瓷的制备方法如下:
步骤1:LaCrO3和SiO2原料粉末的混合
首先,将LaCrO3粉末和SiO2粉末按摩尔比1.55:1的比例进行称重,以无水乙醇为介质经行星式球磨机以转速500r/min球磨0.5h,使两种粉末混合均匀;接着将混合粉末置于鼓风干燥箱90℃干燥12h,待干燥结束后通过玛瑙研钵将混合粉末再次研磨0.5h。
其中LaCrO3粉末的中位粒径为0.5μm;SiO2粉末为纳米级。
步骤2:铬掺杂二硅酸镧的制备
称取上述研磨后的混合粉末,将混合粉末倒入石墨模具中,其中模具内壁涂抹BN脱模剂和粉末与石墨压头间使用碳纸阻隔,将石墨模具置于放电等离子烧结炉中抽真空,并施加30MPa的轴向压力。
具体烧结工艺如下:先以100℃/min的升温速率升温至1500℃,烧结过程保持真空,然后保温5min后开始降温,通过减小输出电流缓慢降温以达到减小热应力的目的,随后在冷水机的辅助下降温至室温,得到翠绿色的二硅酸镧陶瓷。
实施例3
与实施例1类似,不同点在于,LaCrO3和SiO2的摩尔比为1.25:1。
实施例4
与实施例1类似,不同点在于,LaCrO3和SiO2的摩尔比为1.40:1。
实验结果
经检测,实施例1制备的铬掺杂的二硅酸镧陶瓷为纯相,如图1所示;XRD图谱向小角度方向发生些许偏移,如图2所示;表明Cr掺杂在了Si位,其体积密度为4.86g/cm3,显微硬度为8.22GPa,断裂韧性为2.24MPa·m1/2
实施例2制备的铬掺杂的二硅酸镧陶瓷仍为纯相,XRD图谱向小角度方向发生较多偏移,如图2所示;说明随着LaCrO3/SiO2原料摩尔比增大,更多的Cr元素掺杂在了Si位,同时其体积密度增大,值为5.39g/cm3,力学强度也进一步提高,显微硬度为8.95GPa,断裂韧性为2.80MPa·m1/2
实施例3、实施例4的二硅酸镧陶瓷仍为纯相;不同比例下的XRD图谱如图2所示;体积密度如图3所示、显微硬度如图4所示、断裂韧性如图5所示;可见随着配比的笔筒,其力学性能有着相应的变化,但其变化为非线性相关。
上述详细说明是针对本发明其中之一可行实施例的具体说明,该实施例并非用以限制本发明的专利范围,凡未脱离本发明所为的等效实施或变更,均应包含于本发明技术方案的范围内。

Claims (9)

1.一种铬掺杂二硅酸镧陶瓷的制备方法,其特征在于,包括以下步骤:
(1)将LaCrO3和SiO2原料粉末的混合;
(2)将研磨后的粉末倒入模具中,并进行烧结;
烧结过程中全程真空处理,并施加30-45MPa的轴向压力;先以80-120℃/min的升温速率升温至1300-1500℃,然后保温≥5min后开始降温。
2.根据权利要求1所述的铬掺杂二硅酸镧陶瓷的制备方法,其特征在于,步骤(1)中,所述LaCrO3和SiO2的摩尔比为0.5-1.55:1。
3.根据权利要求1所述的铬掺杂二硅酸镧陶瓷的制备方法,其特征在于,步骤(1)中,所述LaCrO3中位粒径为0.4-0.6μm。
4.根据权利要求1所述的铬掺杂二硅酸镧陶瓷的制备方法,其特征在于,步骤(1)中,所述SiO2为纳米SiO2
5.根据权利要求1所述的铬掺杂二硅酸镧陶瓷的制备方法,其特征在于,步骤(2)中,利用放电等离子烧结炉烧结。
6.根据权利要求5所述的铬掺杂二硅酸镧陶瓷的制备方法,其特征在于,步骤(2)中,降温时减少放电等离子烧结炉的输出电流直到输出电流为0,然后利用冷水辅助降温。
7.根据权利要求1所述的铬掺杂二硅酸镧陶瓷的制备方法,其特征在于,步骤(2)中,烧结前,模具内壁涂抹脱模剂。
8.根据权利要求7所述的铬掺杂二硅酸镧陶瓷的制备方法,其特征在于,步骤(2)中,所述脱模剂为BN脱模剂。
9.根据权利要求1所述的铬掺杂二硅酸镧陶瓷的制备方法,其特征在于,步骤(2)中,烧结前,在模具内放置碳纸,阻隔粉末与模具粘结。
CN202311033478.XA 2023-08-16 2023-08-16 一种铬掺杂二硅酸镧陶瓷的制备方法 Active CN117024129B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311033478.XA CN117024129B (zh) 2023-08-16 2023-08-16 一种铬掺杂二硅酸镧陶瓷的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311033478.XA CN117024129B (zh) 2023-08-16 2023-08-16 一种铬掺杂二硅酸镧陶瓷的制备方法

Publications (2)

Publication Number Publication Date
CN117024129A true CN117024129A (zh) 2023-11-10
CN117024129B CN117024129B (zh) 2024-01-16

Family

ID=88638799

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311033478.XA Active CN117024129B (zh) 2023-08-16 2023-08-16 一种铬掺杂二硅酸镧陶瓷的制备方法

Country Status (1)

Country Link
CN (1) CN117024129B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005317210A (ja) * 2004-04-26 2005-11-10 Nitsukatoo:Kk 発熱部と端子部を有するランタンクロマイト系発熱体およびその製造方法
CN110606732A (zh) * 2019-09-06 2019-12-24 西北工业大学 一种常温下无炉快速烧结制备氧化物陶瓷的方法
JP2021004168A (ja) * 2019-06-25 2021-01-14 国立大学法人 名古屋工業大学 結晶配向アパタイト及びその製造方法
CN113563098A (zh) * 2021-08-30 2021-10-29 内蒙古工业大学 一种以ZrB2复合中间层连接LaCrO3陶瓷的工艺
WO2022072705A2 (en) * 2020-10-03 2022-04-07 Heraeus Conamic North America Llc Sintered ceramic body of large dimension and method of making
CN114561114A (zh) * 2022-03-29 2022-05-31 北京理工大学 一种涂料及其制备方法和应用
CN114561720A (zh) * 2022-01-19 2022-05-31 东华大学 一种高红外发射率柔性铬酸钙镧/氧化硅复合纤维材料及其制备方法与应用
CN115073152A (zh) * 2022-07-22 2022-09-20 内蒙古工业大学 层压陶瓷复合材料及制备方法和铬酸镧陶瓷及制作工艺

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005317210A (ja) * 2004-04-26 2005-11-10 Nitsukatoo:Kk 発熱部と端子部を有するランタンクロマイト系発熱体およびその製造方法
JP2021004168A (ja) * 2019-06-25 2021-01-14 国立大学法人 名古屋工業大学 結晶配向アパタイト及びその製造方法
CN110606732A (zh) * 2019-09-06 2019-12-24 西北工业大学 一种常温下无炉快速烧结制备氧化物陶瓷的方法
WO2022072705A2 (en) * 2020-10-03 2022-04-07 Heraeus Conamic North America Llc Sintered ceramic body of large dimension and method of making
CN113563098A (zh) * 2021-08-30 2021-10-29 内蒙古工业大学 一种以ZrB2复合中间层连接LaCrO3陶瓷的工艺
CN114561720A (zh) * 2022-01-19 2022-05-31 东华大学 一种高红外发射率柔性铬酸钙镧/氧化硅复合纤维材料及其制备方法与应用
CN114561114A (zh) * 2022-03-29 2022-05-31 北京理工大学 一种涂料及其制备方法和应用
CN115073152A (zh) * 2022-07-22 2022-09-20 内蒙古工业大学 层压陶瓷复合材料及制备方法和铬酸镧陶瓷及制作工艺

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
GAO JIANYING等: "effect of La2O3 addition to modification of grain-boundary phase in MoSi2", JOURNAL OF ALLOYS AND COMPOUNDS, pages 667 - 670 *
HONGFEI GUO等: "research on purification technology of ultra-large flake graphite based on alkali-acid method", MATERIALS SCIENCE FORUM, vol. 1036, pages 104 - 13 *
周晓娟: "固相烧结法和反应烧结法制备G-La2Si2O7陶瓷的微波介电性能", 陕西师范大学学报, pages 34 - 37 *
田立朋;任志华;: "磷灰石结构硅酸镧氧离子导体的研究进展", 材料导报, no. 2 *

Also Published As

Publication number Publication date
CN117024129B (zh) 2024-01-16

Similar Documents

Publication Publication Date Title
CN108546118B (zh) 一种氧化钇稳定氧化锆粉体及其制备方法和陶瓷
US10144645B1 (en) Method for preparing spherical aluminum oxynitride powder
CN102241516B (zh) 一种水基溶胶-凝胶法制备Li4SiO4陶瓷粉体的方法
CN105272269A (zh) 一种氮化硅/六方氮化硼纳米复相陶瓷的制备方法
CN108383530A (zh) 一种ZrB2-SiC陶瓷复合粉体的前驱体转化法制备工艺
CN109336572A (zh) 一种制备氧化物陶瓷的冷压烧结方法
CN112159234A (zh) 一种高熵陶瓷粉体及其制备方法和应用
CN115536377A (zh) 一种黑滑石矿质微波介质陶瓷材料及其制备方法
CN103693957B (zh) 一种微波介质陶瓷的制备方法
US11345642B2 (en) Method for preparing alumina-based solid solution ceramic powder by using aluminum oxygen combustion synthesis water mist process
CN107867863A (zh) 氮氧化铝陶瓷粉体及其制备方法
CN104556216B (zh) 一种采用非水解溶胶-凝胶工艺制备钛酸钡纳米粉体的方法
CN111018521B (zh) 一种氧化锆-硼化锆复合陶瓷及其制备方法和应用
CN117024129B (zh) 一种铬掺杂二硅酸镧陶瓷的制备方法
CN106747574B (zh) 一种微波窑用Si2N2O透波-隔热一体化内衬材料及其制备方法
CN106268612B (zh) 一种多孔钛酸锶钡粉体的制备方法
CN114685170B (zh) 微波闪烧合成碳化硅的方法
CN100455535C (zh) 一种ZrW2O8/Al2O3纳米复合材料的制备方法
CN103232226B (zh) 低热导率高抗压强度氧化铝陶瓷的制备方法
Sun et al. Fabrication and characterization of cordierite/zircon composites by reaction sintering: formation mechanism of zircon
CN114162869A (zh) 一种具有微纳米棒状结构Li2Zn2Mo3O12材料及制备方法
CN113620329A (zh) 一种氧化铝-氧化锆纳米复合粉的制备方法
CN106495194A (zh) 一种低温制备α型氧化铝超细粉体的方法
CN102219386A (zh) SiO2基复合氧化物体系玻璃的超微细粉体的制备方法
CN112159240A (zh) 一种熔盐法合成铪酸镧粉体的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant