CN111018521B - 一种氧化锆-硼化锆复合陶瓷及其制备方法和应用 - Google Patents

一种氧化锆-硼化锆复合陶瓷及其制备方法和应用 Download PDF

Info

Publication number
CN111018521B
CN111018521B CN201911243160.8A CN201911243160A CN111018521B CN 111018521 B CN111018521 B CN 111018521B CN 201911243160 A CN201911243160 A CN 201911243160A CN 111018521 B CN111018521 B CN 111018521B
Authority
CN
China
Prior art keywords
powder
zro
zirconia
heating
zirconium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911243160.8A
Other languages
English (en)
Other versions
CN111018521A (zh
Inventor
刘秋宇
郭伟明
吴利翔
牛文彬
朱林林
林华泰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Technology
Original Assignee
Guangdong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Technology filed Critical Guangdong University of Technology
Priority to CN201911243160.8A priority Critical patent/CN111018521B/zh
Publication of CN111018521A publication Critical patent/CN111018521A/zh
Application granted granted Critical
Publication of CN111018521B publication Critical patent/CN111018521B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • C04B35/58064Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
    • C04B35/58078Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides based on zirconium or hafnium borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/62Heating elements specially adapted for furnaces
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/443Nitrates or nitrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Products (AREA)

Abstract

本发明无机复合陶瓷材料技术领域,公开了一种氧化锆‑硼化锆陶瓷发热体及其制备方法和应有,该氧化锆‑硼化锆复合陶瓷是锆化合物、硝酸钇和聚乙二醇加入到无水乙醇中,氨水调节pH,在60~80℃加热,得到干凝胶;在空气气氛下,升温至750~850℃煅烧,得到四方ZrO2粉体;将四方ZrO2粉体和无定形B混合后,压成坯体后在真空或N2气氛下升温至800~1350℃烧结,得ZrO2‑ZrB2复合粉体;该ZrO2‑ZrB2复合粉体压成坯体后在真空或N2气氛下升温至1500~1700℃烧结,随炉降温后制得。ZrO2‑ZrB2复合陶瓷具有抗热震性,同时高温下具有优异的力学性能和抗热震性能。

Description

一种氧化锆-硼化锆复合陶瓷及其制备方法和应用
技术领域
本发明属于无机复合陶瓷材料技术领域,更具体地,涉及一种氧化锆-硼化锆(ZrO2-ZrB2)复合陶瓷及其制备方法和应用。
背景技术
高温发热体常见的有硅钼棒,硅碳棒和铬酸镧三种。其中,铬酸镧发热体在高温使用时会生成二氧化铬污染烧结的样品,硅钼棒的使用温度最高也只有1700℃。氧化锆高温发热体是一种能在1800℃以上氧化气氛的电炉中使用的发热元件,在高温导热导电发热性能上是其他很多耐火材料所不可比拟的,但是氧化锆发热体缺点在于低温时,其导电性较差,并且抗热震性较差,容易发生开裂的情况。
在超高温陶瓷家族中,ZrB2基超高温陶瓷具有高熔点、高强度、高导热和低密度等优异的特性。因此,需要提供氧化锆-硼化锆的复合材料可有效解决上述氧化锆发热体存在的问题。
发明内容
为了解决上述现有技术存在的不足和缺点,本发明首要目的在于提供一种氧化锆-硼化锆(ZrO2-ZrB2)复合陶瓷发热体。该陶瓷发热体有较好的力学性能和不错的抗氧化性。
本发明另一目的在于提供一种上述氧化锆-硼化锆复合陶瓷发热体的制备方法。该方法以四方相ZrO2与无定形B粉为原料,烧结制备ZrO2-ZrB2复合陶瓷发热体。
本发明再一目的在于提供一种上述氧化锆-硼化锆复合陶瓷发热体的应用。
本发明的目的通过下述技术方案来实现:
一种氧化锆-硼化锆复合陶瓷,所述氧化锆-硼化锆复合陶瓷是将锆化合物、硝酸钇和聚乙二醇加入到无水乙醇中,滴加氨水调节pH到9~10,在60~80℃水浴加热后,研磨成粉得到干凝胶;在空气气氛下,升温至750~850℃煅烧,随炉冷却至室温,得到四方ZrO2粉体;将四方ZrO2粉体和无定形B粉体均匀混合后,压成坯体,在真空或N2气氛下升温至800~1350℃烧结,随炉降温后研磨过筛,得到ZrO2-ZrB2复合粉体;将该复合粉体压成坯体,在真空或N2气氛下升温至1500~1700℃烧结,随炉降温后制得。
优选地,所述锆化合物为水合氢氧化锆、硝酸锆或氧氯化锆。
优选地,所述锆化合物、硝酸钇、聚乙二醇和无水乙醇的用量摩尔比为0.97:(0.05~0.08):(0.0001~0.001):(0.15~0.3)。
优选地,所述四方ZrO2:B的体积比为1:(1.0~1.2),所述四方ZrO2粉体的粒径为30~50nm,所述无定形B粉体的粒径为0.5~2μm;所述无定形B的纯度为95~100%;所述四方ZrO2粉体的纯度为95~100%。
优选地,所述四方ZrO2粉体为含2.7~3mol%Y2O3的ZrO2粉体。
优选地,所述在800~1350℃烧结的时间为0.5~1.5h,所述在1500~1700℃烧结的时间为1~3h。
所述的氧化锆-硼化锆复合陶瓷的制备方法,包括如下具体步骤:
S1.将锆化合物、硝酸钇与聚乙二醇加入到无水乙醇中,滴加氨水调节pH到9~10,在60~80℃水浴加热后得到干凝胶;将所得干凝胶研磨成粉,在空气气氛下,升温至750~850℃煅烧,随炉冷却至室温,得到四方ZrO2粉体;
S2.将四方ZrO2粉体和无定形B粉体均匀混合后,在压片机上1~2t力干压成坯体,在真空或N2气氛下升温至800~1350℃烧结,随炉降温后研磨过筛,得到ZrO2-ZrB2复合粉体;
S3.将ZrO2-ZrB2复合粉体在压片机上1~2t力干压成坯体,在真空或N2气氛下升温至1500~1700℃烧结,随炉降温,得到ZrO2-ZrB2复合陶瓷。
优选地,步骤S2中所述升温的速率为5~10℃/min,所述烧结的时间为0.5~1.5h。
优选地,步骤S3中所述升温的速率为5~10℃/min,所述烧结的时间为1~3h。
所述氧化锆-硼化锆复合陶瓷在发热体材料领域中的应用。
与现有技术相比,本发明具有以下有益效果:
1.本发明制备的ZrO2-ZrB2复合陶瓷高温下具有优异的力学性能和抗热震性能,由于ZrB2的存在有效改善纯ZrO2陶瓷低温时候得抗热震性,并且能承受更高的温度,使用温度最高为2000℃,能有效解决加热设备的可靠性问题。
2.本发明采用自合成化学法制备四方ZrO2(Y-TZP)粉体,其工艺简便,粒径较细。
3.本发明中ZrB2作为超高温陶瓷材料具有高熔点、高硬度、导电性良好等特点,制备ZrO2-ZrB2复合陶瓷能有效解决ZrO2在低温导电性较差的问题,并且提高其作为发热体的使用温度。
附图说明
图1为实施例1制备的四方ZrO2(Y-TZP)粉体的XRD。
图2为实施例1所得的Y-TZP粉体的SEM照片。
图3为实施例1所得ZrO2-ZrB2复合陶瓷在1000℃的抗热震性能。
具体实施方式
下面结合具体实施例进一步说明本发明的内容,但不应理解为对本发明的限制。若未特别指明,实施例中所用的技术手段为本领域技术人员所熟知的常规手段。除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。
实施例1
1.将15.45g水合氢氧化锆、2.3g硝酸钇和0.0242g聚乙二醇加入到8.6205g无水乙醇中,滴加氨水调节pH到10,在80℃磁力加热搅拌器中搅拌1h,得到干凝胶。在空气气氛下,采用箱式炉156min到780℃,恒温煅烧2h,得到四方ZrO2粉体(Y-TZP)。
2.将四方ZrO2粉体与B粉,按照ZrO2:B体积比为1:1.1进行混合,充分搅拌混合均匀后,在压片机上用2t力干压成坯体,在真空采用高温真空气氛烧结炉中以10℃/min升温至1000℃,保温1h,随炉降温,得到ZrO2-ZrB2复合粉体。
3.将ZrO2-ZrB2复合粉体在压片机上2t力干压成坯体,在真空气氛下采用高温真空气氛烧结炉中以10℃/min升温至1550℃,保温1h,随炉降温后研磨过筛,得到ZrO2-ZrB2复合陶瓷。
图1为本实施例所得的四方ZrO2(Y-TZP)粉体的XRD;从图1中可知,所得到的ZrO2全为四方相。图2为实施例1所得的Y-TZP粉体的SEM照片。根据图2可得知,四方ZrO2粉体的粒径为30~50nm。图3为所得ZrO2-ZrB2复合陶瓷在1000℃的抗热震性能。从图3中可知,该复合陶瓷在多次急速降温的情况下强度略微降低,抗弯强度减少不到10%,说明制备的ZrO2-ZrB2复合陶瓷高温下具有优异的力学性能和抗热震性能。
实施例2
1.将15.45g水合氢氧化锆、2.3g硝酸钇和0.0242g聚乙二醇加入到8.6205g无水乙醇中,滴加氨水调节PH到10,在80℃磁力加热搅拌器中搅拌1h,得到干凝胶。在空气气氛下,采用箱式炉156min到780℃,恒温煅烧2h,得到四方ZrO2粉体。
2.将四方ZrO2粉体与B粉,按照ZrO2:B体积比为1:1.1进行混合,充分搅拌混合均匀后,在压片机上用2t力干压成坯体,在真空采用高温真空气氛烧结炉在10℃/min升温至1050℃,保温1h,随炉降温后,得到ZrO2-ZrB2复合粉体。
3.将ZrO2-ZrB2复合粉体在压片机上1~2t力干压成坯体,在N2气氛下采用高温真空气氛烧结炉在10℃/min升温至1550℃并保温1h,随炉降温后研磨过筛,得到ZrO2-ZrB2复合陶瓷。
实施例3
1.将15.45g水合氢氧化锆、2.3g硝酸钇和0.0242g聚乙二醇加入到8.6205g无水乙醇中,滴加氨水调节PH到10,在80℃磁力加热搅拌器中搅拌1h,得到干凝胶。在空气气氛下,采用箱式炉156min到780℃,恒温煅烧2h,得到四方ZrO2粉体。
2.将四方ZrO2粉体与B粉,按照ZrO2:B=1:1.1进行混合,充分搅拌混合均匀后,在压片机上用2t力干压成坯体,在真空采用高温真空气氛烧结炉在10℃/min升温至1000℃,保温1h,随炉降温后,得到ZrO2-ZrB2复合粉体。
3.将ZrO2-ZrB2复合粉体在压片机上1~2t力干压成坯体,在真空气氛下采用高温真空气氛烧结炉在10℃/min升温至1600℃,保温1h,随炉降温后研磨过筛,得到ZrO2-ZrB2复合陶瓷。
实施例4
1.将15.45g水合氢氧化锆、2.3g硝酸钇和0.0242g聚乙二醇加入到8.6205g无水乙醇中,滴加氨水调节PH到10,在80℃磁力加热搅拌器中搅拌1h,得到干凝胶。在空气气氛下,采用箱式炉156min到780℃,恒温煅烧2h,得到四方ZrO2粉体。
2.将四方ZrO2粉体与B粉,按照ZrO2:B=1:1.1进行混合,充分搅拌混合均匀后,在压片机上用2t力干压成坯体,在真空采用高温真空气氛烧结炉在10℃/min升温至1000℃,保温1h,随炉降温后,得到ZrO2-ZrB2复合粉体。
3.将ZrO2-ZrB2复合粉体在压片机上1~2t力干压成坯体,在真空气氛下采用高温真空气氛烧结炉在10℃/min升温至1600℃,保温2h,随炉降温后研磨过筛,得到ZrO2-ZrB2复合陶瓷。
实施例5
1.将15.45g水合氢氧化锆、2.3g硝酸钇和0.0242g聚乙二醇加入到8.6205g无水乙醇中,滴加氨水调节PH到10,在80℃磁力加热搅拌器中搅拌1h,得到干凝胶。在空气气氛下,采用箱式炉156min到780℃,恒温煅烧2h,得到四方ZrO2粉体。
2.将四方ZrO2粉体与B粉,按照ZrO2:B=1:1.1进行混合,充分搅拌混合均匀后,在压片机上用2t力干压成坯体,在真空采用高温真空气氛烧结炉在10℃/min升温至1000℃,保温1h,随炉降温后,得到ZrO2-ZrB2复合粉体。
3.将ZrO2-ZrB2复合粉体在压片机上1~2t力干压成坯体,在真空气氛下采用高温真空气氛烧结炉在10℃/min升温至1700℃,保温1h,随炉降温后研磨过筛,得到ZrO2-ZrB2复合陶瓷。
实施例6
1.将15.45g水合氢氧化锆、2.3g硝酸钇和0.0242g聚乙二醇加入到8.6205g无水乙醇中,滴加氨水调节PH到10,在80℃磁力加热搅拌器中搅拌1h,得到干凝胶。在空气气氛下,采用箱式炉156min到780℃,恒温煅烧2h,得到四方ZrO2粉体。
2.将四方ZrO2粉体与B粉,按照ZrO2:B=1:1.1进行混合,充分搅拌混合均匀后,在压片机上用2t力干压成坯体,在真空采用高温真空气氛烧结炉在10℃/min升温至1000℃,保温1h,随炉降温后,得到ZrO2-ZrB2复合粉体。
3.将ZrO2-ZrB2复合粉体在压片机上1~2t力干压成坯体,在真空下采用高温真空气氛烧结炉在10℃/min升温至1700℃,保温1h,随炉降温后研磨过筛,得到ZrO2-ZrB2复合陶瓷。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合和简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (7)

1.一种氧化锆-硼化锆复合陶瓷的制备方法,其特征在于,包括如下具体步骤:
S1.将锆化合物、硝酸钇与聚乙二醇加入到无水乙醇中,滴加氨水调节pH到9~10,在60~80℃水浴加热后得到干凝胶;将所得干凝胶研磨成粉,在空气气氛下,升温至750~850℃煅烧,随炉冷却至室温,得到四方ZrO2粉体;所述四方ZrO2粉体的粒径为30~50nm;所述四方ZrO2粉体为含2.7~3mol%Y2O3的ZrO2粉体;所述锆化合物、硝酸钇、聚乙二醇和无水乙醇的摩尔比为0.97:(0.05~0.08):(0.0001~0.001):(0.15~0.3);
S2.将四方ZrO2粉体和无定形B粉体均匀混合后,在压片机上1~2t力干压成坯体,在真空或N2气氛下升温至800~1350℃烧结,随炉降温后研磨过筛,得到ZrO2-ZrB2复合粉体;
S3.将ZrO2-ZrB2复合粉体在压片机上1~2t力干压成坯体,在真空或N2气氛下升温至1500~1700℃烧结,随炉降温,得到ZrO2-ZrB2复合陶瓷。
2.根据权利要求1所述的氧化锆-硼化锆复合陶瓷的制备方法,其特征在于,步骤S2中所述升温的速率为5~10℃/min,所述烧结的时间为0.5~1.5h。
3.根据权利要求1所述的氧化锆-硼化锆复合陶瓷的制备方法,其特征在于,步骤S3中所述升温的速率为5~10℃/min,所述烧结的时间为1~3h。
4.根据权利要求1所述的氧化锆-硼化锆复合陶瓷的制备方法,其特征在于,步骤S1中所述锆化合物为水合氢氧化锆、硝酸锆或氧氯化锆。
5.根据权利要求1所述的氧化锆-硼化锆复合陶瓷的制备方法,其特征在于,步骤S2中所述四方ZrO2:无定形B粉体的体积比为1:(1~1.2),四方ZrO2粉体的纯度为95~100%;所述无定形B粉体的粒径为0.5~2μm,无定形B的纯度为95~100%。
6.一种氧化锆-硼化锆复合陶瓷,其特征在于,所述氧化锆-硼化锆复合陶瓷是由权利要求1-5任一项所述方法制备得到。
7.权利要求6所述氧化锆-硼化锆复合陶瓷在发热体材料领域中的应用。
CN201911243160.8A 2019-12-06 2019-12-06 一种氧化锆-硼化锆复合陶瓷及其制备方法和应用 Active CN111018521B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911243160.8A CN111018521B (zh) 2019-12-06 2019-12-06 一种氧化锆-硼化锆复合陶瓷及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911243160.8A CN111018521B (zh) 2019-12-06 2019-12-06 一种氧化锆-硼化锆复合陶瓷及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN111018521A CN111018521A (zh) 2020-04-17
CN111018521B true CN111018521B (zh) 2022-03-25

Family

ID=70204582

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911243160.8A Active CN111018521B (zh) 2019-12-06 2019-12-06 一种氧化锆-硼化锆复合陶瓷及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN111018521B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112159234A (zh) * 2020-08-31 2021-01-01 广东工业大学 一种高熵陶瓷粉体及其制备方法和应用
CN113754431B (zh) * 2021-09-09 2023-03-21 浙江大学 一种超高压/高温相变法制备纳米多晶复合相氧化锆的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59227771A (ja) * 1983-06-10 1984-12-21 旭硝子株式会社 高導電性ジルコニア質焼結体
US5827470A (en) * 1996-11-13 1998-10-27 Eastman Kodak Company Method for preparing a zirconia/zirconium diboride composite
WO2001081271A1 (de) * 2000-04-20 2001-11-01 Wacker-Chemie Gmbh Feuerfester werkstoff mit verbessertem widerstand gegen schlackenangriffe
CN101708829A (zh) * 2009-11-24 2010-05-19 华东理工大学 一种氧化钇稳定氧化锆粉体的制备方法
CN103011827A (zh) * 2012-12-20 2013-04-03 复旦大学 一种原位引入硼为添加剂的二硼化锆陶瓷的制备方法
CN106478111A (zh) * 2016-10-12 2017-03-08 黑龙江科技大学 一种ZrB2陶瓷的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59227771A (ja) * 1983-06-10 1984-12-21 旭硝子株式会社 高導電性ジルコニア質焼結体
US5827470A (en) * 1996-11-13 1998-10-27 Eastman Kodak Company Method for preparing a zirconia/zirconium diboride composite
US5827470B1 (en) * 1996-11-13 1999-12-07 Eastman Kodak Co Method for preparing a zirconia/zirconium diboride composite
WO2001081271A1 (de) * 2000-04-20 2001-11-01 Wacker-Chemie Gmbh Feuerfester werkstoff mit verbessertem widerstand gegen schlackenangriffe
CN101708829A (zh) * 2009-11-24 2010-05-19 华东理工大学 一种氧化钇稳定氧化锆粉体的制备方法
CN103011827A (zh) * 2012-12-20 2013-04-03 复旦大学 一种原位引入硼为添加剂的二硼化锆陶瓷的制备方法
CN106478111A (zh) * 2016-10-12 2017-03-08 黑龙江科技大学 一种ZrB2陶瓷的制备方法

Also Published As

Publication number Publication date
CN111018521A (zh) 2020-04-17

Similar Documents

Publication Publication Date Title
Vasylkiv et al. Low‐temperature processing and mechanical properties of zirconia and zirconia–alumina nanoceramics
CN109678523B (zh) 一种具有高温强度和硬度的高熵陶瓷及其制备方法和应用
CN109516812A (zh) 一种超细高熵固熔体粉末及其制备方法和应用
CN111018521B (zh) 一种氧化锆-硼化锆复合陶瓷及其制备方法和应用
CN103130508B (zh) 一种制备织构化硼化物基超高温陶瓷的方法
CN109095916B (zh) 一种sps烧结制备yag透明陶瓷的方法
CN107512912A (zh) 高纯度MoAlB陶瓷粉体及致密块体的制备方法
CN112028635A (zh) 一种超高温陶瓷复合材料及制备方法
CN112159234A (zh) 一种高熵陶瓷粉体及其制备方法和应用
CN104418608B (zh) 碳化硅多孔陶瓷的低温烧成方法
US20200308060A1 (en) Al2O3-ZrO2-Y2O3-TiN Nancomposite Ceramic Powder And Preparation Method Thereof
CN109053192B (zh) 一种MgAlON透明陶瓷粉体的制备方法
CN104178652A (zh) 镍钴合金/四方多晶氧化锆复合陶瓷材料及其制备方法
CN114835473B (zh) 一种氧化铝陶瓷及其制备方法
CN1199907C (zh) 常压低温烧结高性能氧化铝生物陶瓷
CN102557638B (zh) 锆钛铝硅碳固溶体材料及其制备方法
CN106007728B (zh) 一种抗热震超高温陶瓷及其制备方法
CN107417271A (zh) 一种稀土铝(硅)酸盐棒状晶增强镁铝尖晶石材料的制备方法
CN109019624B (zh) 一种低温合成片状ZrB2超细粉体的方法
CN112830792A (zh) 一种高硬度的铪基三元固溶体硼化物陶瓷及其制备方法和应用
CN113105216A (zh) 一种注塑成型的锆铝复合陶瓷及其制备方法
CN117024129B (zh) 一种铬掺杂二硅酸镧陶瓷的制备方法
CN104163628A (zh) 一种制备HfC-SiC复相陶瓷的方法
CN109305804A (zh) 氧化铝陶瓷材料及其制备方法
JP2011195429A (ja) ゼロ膨張係数の高強度で低誘電率のβ−ユ−クリプタイトセラミックス

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant