CN117004619A - 桂花OfYABBY12基因在降低大花烟草体内β-紫罗兰酮含量中的应用 - Google Patents

桂花OfYABBY12基因在降低大花烟草体内β-紫罗兰酮含量中的应用 Download PDF

Info

Publication number
CN117004619A
CN117004619A CN202310918004.7A CN202310918004A CN117004619A CN 117004619 A CN117004619 A CN 117004619A CN 202310918004 A CN202310918004 A CN 202310918004A CN 117004619 A CN117004619 A CN 117004619A
Authority
CN
China
Prior art keywords
gene
ofyabby12
tobacco
osmanthus fragrans
application
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310918004.7A
Other languages
English (en)
Inventor
施婷婷
王良桂
杨秀莲
岳远征
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Forestry University
Original Assignee
Nanjing Forestry University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Forestry University filed Critical Nanjing Forestry University
Priority to CN202310918004.7A priority Critical patent/CN117004619A/zh
Publication of CN117004619A publication Critical patent/CN117004619A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Nutrition Science (AREA)
  • Botany (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

本发明公开了桂花OfYABBY12基因在降低大花烟草体内β‑紫罗兰酮含量中的应用,属于植物分子生物学领域。本发明以日香桂盛花期花朵为材料,通过克隆得到桂花OfYABBY12基因,在此基础上构建其过量表达载体GFP::pCAMBIA1300‑OfYABBY12,转入大花烟草中,得到转基因植株。转基因大花烟草叶片成熟叶明显向下卷曲,皱缩,与野生型大花烟草相比花朵雌蕊(花柱)长度明显伸长,叶片厚度较野生型分别降低了33%,33%,57%。转基因大花烟草体内萜烯生物合成差异基因DXS、MCT、CMK、HMGS、HMGR、MVK、PMK、MVD表达量显著上调,CCD基因表达量显著下调。

Description

桂花OfYABBY12基因在降低大花烟草体内β-紫罗兰酮含量中 的应用
技术领域
本发明属于植物分子生物学领域,更具体地说,涉及桂花OfYABBY12基因在降低大花烟草体内β-紫罗兰酮含量中的应用。
背景技术
桂花(Osmanthus fragrans),木犀科(Oleaceae)木犀属(Osmanthus)园林绿化树种,是我国十大传统名花之一,也可以用于食品加工、香膏香水制造以及芳香疗法等,具有重要的观赏价值和经济价值。桂花在我国的栽培历史已有2500多年,品种资源非常丰富,且不同桂花品种间的叶形、叶色、花香、花色等性状存在着明显差异。YABBY家族是一类植物特有的转录因子。据报道,YABBY转录因子与植物多种生物过程相关。例如,参与调控植物的侧生器官远轴面细胞分化,进而影响叶器官的生长、花器官的形成和果实(种子)的发育。此外,还参与植物次生代谢物质的生物合成等。因此,研究桂花YABBY基因在叶片形态建成、侧生器官发育和花香代谢中的功能,从分子层面挖掘影响不同桂花品种间叶器官或花器官等表型差异的相关基因,为利用基因工程改良植物的观赏性状提供有用的分子工具。
发明内容
针对现有技术存在的上述问题,本发明所要解决的技术问题在于提供桂花OfYABBY12基因在降低大花烟草体内β-紫罗兰酮含量中的应用,用于植物分子改良育种。
为了解决上述技术问题,本发明所采用的技术方案如下:
桂花OfYABBY12基因在降低大花烟草体内β-紫罗兰酮含量中的应用,所述OfYABBY12基因的核苷酸序列如SEQ ID NO.1所示,包括以下步骤:
(1)构建OfYABBY12基因的载体;
(2)将所构建的OfYABBY12基因的载体转化到大花烟草中;
(3)培育筛选得到β-紫罗兰酮含量明显降低的转基因大花烟草。
所述的载体是植物表达载体。
所述的植物表达载体是GFP::pCAMBIA1300-OfYABBY12。
桂花OfYABBY12基因在使大花烟草叶片皱缩卷曲中的应用,所述OfYABBY12基因的核苷酸序列如SEQ ID NO.1所示。
桂花OfYABBY12基因在使大花烟草雌蕊花柱长度增加中的应用,所述OfYABBY12基因的核苷酸序列如SEQ ID NO.1所示。
桂花OfYABBY12基因在使大花烟草叶片厚度降低中的应用,所述OfYABBY12基因的核苷酸序列如SEQ ID NO.1所示。
桂花OfYABBY12基因在使萜烯生物合成差异基因DXS、MCT、CMK、HMGS、HMGR、MVK、PMK、MVD表达量显著上调中的应用,所述OfYABBY12基因的核苷酸序列如SEQ ID NO.1所示。
桂花OfYABBY12基因在使萜烯生物合成差异基因CCD表达量显著下调中的应用,所述OfYABBY12基因的核苷酸序列如SEQ ID NO.1所示。
桂花OfYABBY12基因在调整大花烟草叶片形态、大花烟草叶片厚度、大花烟草花朵雌蕊长度中的应用,所述OfYABBY12基因的核苷酸序列如SEQ ID NO.1所示。
相比于现有技术,本发明的有益效果为:
本发明以日香桂盛花期花朵为材料,通过克隆得到桂花OfYABBY12基因,在此基础上构建其过量表达载体GFP::pCAMBIA1300-OfYABBY12,转入大花烟草中,得到转基因植株。转基因大花烟草叶片的早期发育阶段便出现了皱缩,成熟叶明显向下卷曲,皱缩,与野生型大花烟草相比花朵雌蕊(花柱)长度明显伸长。转基因大花烟草的叶片厚度较野生型分别降低了33%,33%,57%。转基因大花烟草β-紫罗兰酮含量显著低于野生型。转基因大花烟草体内萜烯生物合成差异基因DXS、MCT、CMK、HMGS、HMGR、MVK、PMK、MVD表达量显著上调,CCD基因表达量显著下调。
附图说明
图1为目的基因OfYABBY12扩增产物琼脂糖凝胶电泳图;
图2为目的基因OfYABBY12扩增片段与pCAMBIA1300载体连接转化后阳性单菌落检测图;
图3为OfYABBY12重组载体双酶切后的载体琼脂糖凝胶电泳图;
图4为转化农杆菌GV3101后的菌检琼脂糖凝胶电泳图;
图5为OfYABBY12稳定转化大花烟草植株半定量RT-PCR电泳图(泳道L1-L7、L9、L12、L17为超量表达植株,泳道WT1-WT3为野生型植株的条带);
图6为稳定转化大花烟草表型观测图(A为OfYABBY12稳定转化大花烟草后不同发育阶段的叶片表型情况图、B为OfYABBY12稳定转化大花烟草后花朵表型情况图);
图7为OfYABBY12稳定转化大花烟草后叶片扫描电镜情况图(红色箭头表示叶片中颗粒状的内含物);
图8为OfYABBY12基因超量表达转基因株系L2、L5、L12和WT叶片厚度柱状图;
图9为OfYABBY12基因超量表达大花烟草后叶片VOCs分析图(A为OfYABBY12转基因植株和野生型叶片VOCs的PCA散点图、B为β-紫罗兰酮相对含量柱状图、C为全部VOCs相对含量柱状图);
图10为OfYABBY12基因稳定转化大花烟草植株和野生型植株叶片转录组差异基因KEGG途径注释图(A)、注释DEGs中的GO条目图(B)和萜类代谢途径中关键酶基因的表达水平分析图(C)。
具体实施方式
下面结合具体实施例对本发明进一步进行描述。以下实施例中,未详细叙述的操作均为常规生物学实验操作,可参照分子生物学实验手册以及现有公开的期刊文献等进行,或者按照试剂盒和产品说明书进行。下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
本申请所用材料为日香桂盛花期花朵,采集于南京林业大学校内。
本申请所用大花烟草‘K326’实生苗由南京林业大学王良桂课题组提供。
实施例1
1、提取RNA并反转录为cDNA
以日香桂盛花期花朵为材料,使用TIANGEN植物RNA提取试剂盒(DP432)提取植物总RNA。使用TaKaRaPrimeScriptTMRTMasterMix(PerfectRealTime)反转录试剂盒将所提取到的RNA反转录成cDNA,最后得到的cDNA加水稀释10倍后于-20℃冰箱保存。
2、目的基因片段获取
根据南京林业大学王良桂课题组已发表的桂花全基因组数据库(http://117.78.20.255/),筛选得到1个基因序列,与模式植物拟南芥的序列进行比对,判断该基因属于YABBY基因家族,根据该基因家族成员在染色体上的位置命名为OfYABBY12。
利用BioXM软件对该基因的核苷酸全长序列进行酶切位点分析,选择SmaI和KpnI作为限制性内切酶。利用CE design软件设计引物。按要求进行相关信息的填写,具体包括载体上的酶切位点附近的序列、目的基因全长、按照5′端和3′端的顺序填写酶切位点,即可得到扩增引物,设计好的序列由捷瑞生物公司合成。引物序列如下:
OfYABBY12-1300-F:
5′-AAGCTTCTGCAGGGGCCCGGGATGTCACTGGACATGACCAGTGC-3′,OfYABBY12-1300-R:
5′-GCCCTTGCTCACCATGGTACCTTGTTTATTGCCATCCGGCT-3'。
以稀释10倍的日香桂OfYABBY12cDNA为模板,进行PCR扩增,反应体系(20μL)为:正向引物OfYABBY12-1300-F 1μL;反向引物OfYABBY12-1300-R1μL;cDNA 1μL;Prime STAR 10μL(高保真PCR酶购买于北京宝日医生物技术有限公司,高速高保真PCR酶R045A);ddH2O 7μL。
PCR反应程序为:98℃变性10s;58℃退火15s;72℃延伸2min,35个循环;72℃总延伸10min;16℃终止反应。
将扩增产物进行琼脂糖电泳检测(图1),获得目的基因片段,然后利用试剂盒对目的基因片段进行切胶回收。
3、目的基因转化感受态细胞
1)提前将pCAMBIA1300载体从-80℃超低温冰箱中取出进行活化和摇菌,按照质粒提取试剂盒(北京天根生化科技有限公司)提取pCAMBIA1300载体质粒,随后进行双酶切实验,反应体系(20μL)为:限制性内切酶SmaI 1μL;限制性内切酶KpnI 1μL;Buffer 2μL(Buffer为Takara限制性内切酶附带);载体质粒XμL;ddH2O补足至20μL。
其中X(μL)=1000ng/载体质粒浓度(ng/μL)。将离心管微微震荡,使其混匀,瞬时离心6s,置于37℃的水浴锅内培养1h。将双酶切后的载体进行琼脂糖电泳(图2),然后利用试剂盒进行切胶回收(湖南艾科瑞生物工程有限公司)。
2)连接体系(20μL)如下:目的基因回收产物XμL;pCAMBIA1300载体双酶切回收产物YμL;连接酶2μL;Buffer1μL;ddH2O补足至20μL(连接酶和Buffer源于购自南京诺唯赞生物科技有限公司的同源重组试剂c112)。
其中X(μL)=200ng/目的基因回收产物浓度(ng/μL),Y(μL)=200ng/质粒双酶切回收产物浓度(ng/μL)。微微震离心管荡,使其混匀,瞬时离心6s,置于37℃的水浴锅内培养30min,冰上2min。
3)转化:超净工作台内,用移液枪取5μL的连接产物于50μL的TreliefTM5α感受态细胞,轻弹混匀,冰浴5min,42℃水浴60s,再冰浴2min,加250μL液体LB(不含Kana),37℃,200rppm的摇床内孵育30min。
4)涂板:取200μL孵育后的菌液,用灭菌的玻璃棒均匀涂布在LB固体培养基上(内含50mg/L的Kana)并晾干,用封口膜后倒置在37℃恒温培养箱内培养12-14h。
4、重组质粒筛选
当培养基上长出菌后,于超净工作台内进行单菌落检测。每个基因挑取5个饱满的单菌落,依序依次在含Kana抗性的LB固体培养基上进行备份,并用无菌牙签将相应的单菌落沾取至以下20μL体系中进行菌检:OfYABBY12-1300-F1μL,OfYABBY12-1300-R 1μL,GreenMix 10μL(Green Mix购于南京诺唯赞生物科技有限公司),ddH2O 8μL。
PCR反应条件为:94℃预变性3min;94℃变性30s;58℃退火30s;72℃延伸2min,35个循环;72℃总延伸10min;16℃终止反应。将获得的扩增产物进行琼脂糖电泳,挑取3个长度正确的阳性单菌落送测,测得OfYABBY12基因的核苷酸序列如SEQ ID NO.1所示,片段长度为498bp,编码166个氨基酸的蛋白质,该蛋白氨基酸序列如SEQ ID NO.2所示。选取碱基错配率最低且测序有重复的阳性单菌落提取质粒进行后续实验(图3)。
实施例2
1、重组质粒转化农杆菌
将保存在-80℃超低温冰箱内的GV3101感受态取出放在冰上融化;每33μL感受态加1μL质粒,吸打混匀后依次冰浴20min、液氮速冻5min、37℃水浴5min、冰浴5min;加500μL无抗性的LB液体培养基,28℃,200rpm摇床上培养1h;培养完成后,将菌液6000r,离心1min,弃去部分上清液,留100μL均匀涂布于LB固体培养基上(内含50mg/LKana),封口膜密封,倒置于28℃培养箱中培养40-48h。
结果如图4所示,菌检中的目的条带正确且亮度一致。将备份的相对应的菌落挑入LB液体培养基(内含50mg/LKana)中摇菌,再将菌液和50%甘油按3:7的体积比保菌,液氮中速冻后保存在-80℃超低温冰箱内。
2、农杆菌介导转化大花烟草
将已转入农杆菌的GFP::pCAMBIA1300-OfYABBY12目标基因融合表达载体的菌液于-80℃取出常温融化至冰水混合状态后插入冰中融化,按照200μL菌液加入20mL LB液体培养基中(含Kana10μg/mL),28℃、200rpm避光振荡培养约12-16h,至OD600为0.4-0.5;外植体选择未开花且无病虫害的健壮烟草叶片,首先将叶片清洗干净,依次使用流水冲洗20min,75%乙醇消毒30s,超纯水清洗3次,0.1%升汞浸泡消毒10min,超纯水清洗3-5次。然后用刀片快速切除叶片主脉和边缘,并切成0.5cm×0.5cm大小的方块;将切好的烟草叶片快速放入农杆菌菌液中侵染10min左右,期间每隔2min轻轻地摇晃菌液,然后用无菌滤纸将叶片表面的菌液晾干;将晾干的烟草叶片置于共生培养基上,正面朝上,25℃暗培3d;将共培后的材料转接到选择培养基上,25℃光照培养,每隔15d更换一次培养基;壮芽培养当叶盘周围的愈伤组织分化出抗性芽后,转接到壮芽培养基上,25℃光照培养,每隔15d更换一次培养基;当不定芽长到约2cm时即可切下并转接到生根培养基上进行培养;待根系发达时取出幼苗,清洗掉根部的培养基,室内放置2d后移栽到温室培养。
3、转基因阳性植株筛选与表型观测
按照植物基因组快速提取试剂盒(武汉擎科公司)说明书,使用转基因大花烟草和野生型烟草的叶片进行阳性检测,所用引物为35s-F(5′-ACGCACAATCCCACTATCCTTC-3′)和OfYABBY12-1300-R。对检测为阳性的转基因大花烟草株系和野生型转基因大花烟草植株进行半定量试验(RT-PCR),采用TIANGEN植物RNA提取试剂盒(DP432)提取植物总RNA。采用TaKaRa PrimeScriptTMRT Master Mix(Perfect Real Time)反转录试剂盒将所提取到的RNA反转录成cDNA,最后得到的cDNA加水稀释10倍后于取1μL作为模板,OfYABBY12-1300-F1μL,OfYABBY12-1300-R 1μL,Green Mix 10μL,ddH2O 7μL,配成20μL的体系进行半定量实验,半定量实验中PCR程序为:94℃预变性3min;94℃变性30s;58℃退火30s;72℃延伸45s,35个循环;72℃总延伸10min;16℃终止反应;将获得的PCR产物进行琼脂糖凝胶电泳(图5)。
结果如图6所示,大花烟草叶片最为直观的表型差异是OfYABBY12过表达烟草在叶片的早期发育阶段便出现了皱缩,成熟叶明显向下卷曲,皱缩(图6A)。大花烟草花朵与野生型相比雌蕊(花柱)长度明显伸长(图6B)。
4、扫描电镜观察
首先将新鲜收集的大花烟草叶片样品置于FAA固定液,通过抽真空使得样品在玻璃瓶中下沉,直至FAA固定液完全覆盖叶片。再将样品置于在4℃,固定48h。再依次进行梯度乙醇系列脱水,脱水后进行真空干燥、喷涂金膜层。样品处理结束后,将样品置于环境扫描电子显微镜(QUANTA 200)下进行观察并拍照。
结果如图7所示,相较于野生型烟草,过表达株系的叶片横切面明显变薄,栅栏组织和海绵组织排列更紧密。野生型烟草叶片内布满颗粒状内含物,而过表达株系中明显减少。
结果如图8所示,OfYABBY12-OE L2、L5和L12的叶片厚度较野生型分别降低了33%,33%,57%。
5、稳定转化大花烟草叶片的GC-MS测定
称取1g基因植株以及野生型烟草叶片,液氮研磨成粉末后加入3mL NaCl饱和溶液,并加入内标溶液(1/5000的癸酸乙酯),室温(25士2℃)平衡30min后,使用65μM DB/5MS的萃取头,55℃萃取30min,进行GC-MS检测,GC(TraceDSQ,ThermoFisherScientific,Waltham,MA,USA)使用毛细管TR-5MS柱(30m×0.25mm×0.25μm),载气(高纯度氦气)流速为1mL/min。GC初始温度设定为60℃,保持2min,然后以5℃/min的速度从60℃增加到150℃,再以10℃/min的速度增加到250℃,并在该温度下保持1min。MS(TraceDSQ,ThermoFisherScientific,Waltham,MA,USA)在70eV的电子电离(EI)下拍摄,质量扫描范围为33-450m/z。离子源温度和传输线温度均为250℃。将数据中的硅氧化物杂质去除后,计算出各种物质的相对含量,将物质的相对含量导入SIMCA13.0中,进行PCA分析,并基于VIP>1,P<0.05筛选关键差异物质。
结果如图9所示,结果表明野生型与OfYABBY12过表达烟草叶片具有明显的代谢差异,且转化了OfYABBY12的烟草叶片的总代谢物含量显著低于野生型,其中β-紫罗兰酮含量显著低于野生型,表明OfYABBY12对差异性p<0.05的香气物质具有重要的调控作用。
6、稳定转化大花烟草的全基因组转录水平分析
测序的样品为野生型和转基因大花烟草叶片,取三个株系进行RNA文库的构建并RNA-seq测序。RNA文库构建和测序交由基迪奥公司利用Illumina HiSeq X Ten platform完成。使用FPKM方法进行基因表达水平计算。采用GOseq Rpackage和KOBAS软件分别进行GO和KEGG富集分析。挑选差异倍数大于2,P值小于0.05的差异转录本,并进行差异转录本的GO和KEGG富集分析,筛选差异表达基因,以判定差异转录本主要影响的生物学功能或者通路。同时对差异转录本进行非监督层次聚类,利用热图的形式展示差异转录本在不同样本间的表达模式。
结果如图10所示,RNA-seq共检测到了3721个差异基因。KEGG差异基因分析表明这些DEGs主要参与植物的信号通路和代谢过程。大部分DEGs集中在次生代谢物的生物合成途径中,如萜烯类、类黄酮和苯丙烷类物质的生物合成(图10A)。GO富集分析表明,top20的富集条目中有3个GO条目与萜烯生物合成相关(图10B)。分析参与萜烯生物合成的差异基因结果表明,代谢途径中的DXS、MCT、CMK、HMGS、HMGR、MVK、PMK、MVD基因均在过表达株系中上调表达,而下游基因,TPS基因大部分都下调表达,CCD基因则均显著下调表达(图10C)。

Claims (10)

1.桂花OfYABBY12基因在降低大花烟草体内β-紫罗兰酮含量中的应用,所述OfYABBY12基因的核苷酸序列如SEQ ID NO.1所示。
2.根据权利要求1所述的桂花OfYABBY12基因在降低大花烟草体内β-紫罗兰酮含量中的应用,其特征在于,包括以下步骤:
(1)构建OfYABBY12基因的载体;
(2)将所构建的OfYABBY12基因的载体转化到大花烟草中;
(3)培育筛选得到β-紫罗兰酮含量明显降低的转基因大花烟草。
3.根据权利要求2所述的桂花OfYABBY12基因在降低大花烟草体内β-紫罗兰酮含量中的应用,其特征在于,所述的载体是植物表达载体。
4.根据权利要求3所述的桂花OfYABBY12基因在降低大花烟草体内β-紫罗兰酮含量中的应用,其特征在于,所述的植物表达载体是GFP::pCAMBIA1300-OfYABBY12。
5.桂花OfYABBY12基因在使大花烟草叶片皱缩卷曲中的应用,所述OfYABBY12基因的核苷酸序列如SEQ ID NO.1所示。
6.桂花OfYABBY12基因在使大花烟草雌蕊花柱长度增加中的应用,所述OfYABBY12基因的核苷酸序列如SEQ ID NO.1所示。
7.桂花OfYABBY12基因在使大花烟草叶片厚度降低中的应用,所述OfYABBY12基因的核苷酸序列如SEQ ID NO.1所示。
8.桂花OfYABBY12基因在使萜烯生物合成差异基因DXS、MCT、CMK、HMGS、HMGR、MVK、PMK、MVD表达量上调中的应用,所述OfYABBY12基因的核苷酸序列如SEQ ID NO.1所示。
9.桂花OfYABBY12基因在使萜烯生物合成差异基因CCD表达量下调中的应用,所述OfYABBY12基因的核苷酸序列如SEQ ID NO.1所示。
10.桂花OfYABBY12基因在调整大花烟草叶片形态、大花烟草叶片厚度、大花烟草花朵雌蕊长度中的应用,所述OfYABBY12基因的核苷酸序列如SEQ ID NO.1所示。
CN202310918004.7A 2023-07-25 2023-07-25 桂花OfYABBY12基因在降低大花烟草体内β-紫罗兰酮含量中的应用 Pending CN117004619A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310918004.7A CN117004619A (zh) 2023-07-25 2023-07-25 桂花OfYABBY12基因在降低大花烟草体内β-紫罗兰酮含量中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310918004.7A CN117004619A (zh) 2023-07-25 2023-07-25 桂花OfYABBY12基因在降低大花烟草体内β-紫罗兰酮含量中的应用

Publications (1)

Publication Number Publication Date
CN117004619A true CN117004619A (zh) 2023-11-07

Family

ID=88573857

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310918004.7A Pending CN117004619A (zh) 2023-07-25 2023-07-25 桂花OfYABBY12基因在降低大花烟草体内β-紫罗兰酮含量中的应用

Country Status (1)

Country Link
CN (1) CN117004619A (zh)

Similar Documents

Publication Publication Date Title
CN114350680B (zh) 一种增加桂花挥发性有机物质合成相关OfMYB1R70基因及其编码蛋白和应用
CN114369603B (zh) 抑制桂花香气物质合成相关OfMYB1R基因及其编码蛋白和应用
CN114164219B (zh) 一种增强桂花香气物质合成相关OfMYB1R114基因及其编码蛋白和应用
CN116814652B (zh) ‘赣彤1号’CcMYB4_LIKE基因及其表达蛋白和应用
CN116355067B (zh) 抑制核盘菌的水稻OsGLP8-12及其应用
CN117737078A (zh) MADS-box基因RhAGL6及其在调节月季花器官发育中的应用
CN116444636B (zh) 抑制核盘菌的水稻OsGLP3-6及其应用
CN116425847B (zh) 抑制核盘菌的水稻OsGLP8-10及其应用
CN116286853B (zh) 桂花OfWRKY139基因在增强香气物质合成中的应用
CN115960189B (zh) 一种文冠果蛋白及其编码基因在提高植物花瓣中花青素的含量中的应用
CN116254290B (zh) PtoPLT5a基因在提高毛白杨生物量和纤维细胞长度中的应用
CN116240218A (zh) 一种参与桂花花香物质合成OfWRKY84基因及其表达蛋白和应用
CN114106121B (zh) FvGR3蛋白及其编码基因和用途
CN117004619A (zh) 桂花OfYABBY12基因在降低大花烟草体内β-紫罗兰酮含量中的应用
CN110734917B (zh) 一种长筒石蒜LlDFRc基因及其表达的蛋白和应用
CN116375829B (zh) 桂花OfWRKY36基因在增强植物二氢-β-紫罗兰酮合成中的应用
CN113652437A (zh) 一种植物衰老基因DcWRKY75及其应用
CN112322636A (zh) 一种促进植物开花的AsFUL基因、蛋白质及其应用
CN104988176B (zh) 一种提高杜仲含胶量的方法
CN116891856B (zh) 赣彤1号CcMYB10_LIKE基因及其表达蛋白和应用
CN116515857B (zh) 一种仁用杏PaPIP1-2基因及其在提高植物抗寒性中的应用
CN116496371B (zh) 抑制核盘菌的水稻OsGLP3-5及其应用
CN116496372B (zh) 抑制核盘菌的水稻OsGLP8-11及其应用
CN116554291B (zh) 一种梨bZIP类转录因子PubZIP914及其应用
CN114672499B (zh) 一种马尾松香叶基焦磷酸合成酶基因PmGPPS及其启动子和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination