CN117004594A - 一种多突变位点的檀香烯合酶突变体及其制备方法 - Google Patents

一种多突变位点的檀香烯合酶突变体及其制备方法 Download PDF

Info

Publication number
CN117004594A
CN117004594A CN202310844231.XA CN202310844231A CN117004594A CN 117004594 A CN117004594 A CN 117004594A CN 202310844231 A CN202310844231 A CN 202310844231A CN 117004594 A CN117004594 A CN 117004594A
Authority
CN
China
Prior art keywords
mutant
sansyn
mutation
seq
santalene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310844231.XA
Other languages
English (en)
Inventor
李迅
张佳
王询
王飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Forestry University
Original Assignee
Nanjing Forestry University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Forestry University filed Critical Nanjing Forestry University
Priority to CN202310844231.XA priority Critical patent/CN117004594A/zh
Publication of CN117004594A publication Critical patent/CN117004594A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y402/00Carbon-oxygen lyases (4.2)
    • C12Y402/03Carbon-oxygen lyases (4.2) acting on phosphates (4.2.3)
    • C12Y402/0305(+)-Alpha-santalene synthase ((2Z,6Z)-farnesyl diphosphate cyclizing)(4.2.3.50)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/185Escherichia
    • C12R2001/19Escherichia coli
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

本发明涉及檀香烯合酶突变酶及其在合成檀香烯中的应用。具体涉及的突变酶SanSyn(S533A)、SanSyn(S533Q)、SanSyn(Q527A&S533A),它们分别是将第533位的丝氨酸突变为丙氨酸、谷氨酰胺以及第527位的谷氨酰胺、533位的丝氨酸均突变为丙氨酸。以葡萄糖为碳源,在宿主大肠杆菌DH5α中合成α‑檀香烯的方法,主要包括构建重组质粒pETDuet‑SanSyn(S533A)、pETDuet‑SanSyn(S533Q)、pETDuet‑SanSyn(Q527A&S533A)、pMVA;构建大肠杆菌重组菌株,进一步发酵培养,本发明涉及的技术方案显著提高了α‑檀香烯的产量,蛋白可溶性表达也有所提高。为进一步代谢工程改造大肠杆菌生产α‑檀香烯奠定了基础。对萜烯类合酶的改造工作提供参考。

Description

一种多突变位点的檀香烯合酶突变体及其制备方法
本申请是分案申请,其原申请的中国国家申请号为202111085704.X,申请日为2021年9月16日,发明名称为“一种檀香烯合酶突变体及其制备方法”。
技术领域
本发明属于酶工程技术领域,具体涉及一种檀香烯合酶突变体及其制备方法。
背景技术
檀香烯,是一种倍半萜烯,是檀香醇的前体物质。檀香烯和檀香醇是檀香精油的主要成分。檀香精油多用于化妆品和香料中,并且其具有较好的抗菌、抗氧化和抗肿瘤等药理活性。此外,檀香精油在动物体内毒性较低,无致突变性,欧美多国认为是安全的食品添加剂。
目前檀香精油主要通过植物提取法获得,但由于檀香木生长条件苛刻,生长期长,树木中檀香油含量稀少,分离过程复杂繁琐,提取困难,无法满足市场需求还会造成檀香木的大量砍伐。此外,虽然已有研究报道了由溴代樟脑为底物,经过八步化学催化反应得到檀香烯,但化学反应的条件苛刻,成本高昂,路径繁琐,要想得到产物纯品,需要对中间反应产物进行一次次的分离提纯,并非理想的大规模生产檀香烯的有效手段。因此,通过微生物细胞工厂异源生物合成檀香烯和檀香醇,这对于资源稀缺、成本高昂的的萜类化合物提供了新的可持续绿色生产方式。
萜烯生物合成的关键步骤包括通过萜烯合成酶(或环化酶类)的作用将无环的GPP、FPP、GGPP环化为单帖、倍半萜或者二萜类化合物。黄皮来源的檀香烯合酶(SantaleneSynthase,SanSyn)属于植物萜烯合酶中一种,这类酶都包含相似的保守结构域DDxxD(“x”表示任意氨基酸)。目前,萜烯合酶的催化效率、对底物的特异性和稳定性等都限制着萜烯合酶的利用,我们通过对萜烯合酶的分子改造来打破这一限制。
发明内容
本部分的目的在于概述本发明的实施例的一些方面以及简要介绍一些较佳实施例。在本部分以及本申请的说明书摘要和发明名称中可能会做些简化或省略以避免使本部分、说明书摘要和发明名称的目的模糊,而这种简化或省略不能用于限制本发明的范围。
鉴于上述和/或现有技术中存在的问题,提出了本发明。
因此,本发明的目的是,克服现有技术中的不足,提供了一种多突变位点的檀香烯合酶突变体。
为解决上述技术问题,本发明提供了如下技术方案:将核苷酸序列为SEQ ID NO.1所示的野生型SanSyn酶的第533位丝氨酸突变为丙氨酸或谷氨酰胺得到突变体S533A或S533Q;
将核苷酸序列为SEQ ID NO.1所示的SanSyn酶的第527位谷氨酰胺、第533位丝氨酸均突变为丙氨酸得到突变体Q527A&S533A;
其中,所述野生型SanSyn酶来源于植物黄皮(Clausenalansium)。
作为本发明所述多突变位点的檀香烯合酶突变体的一种优选方案,其中:
所述多突变位点的檀香烯合酶突变体,还包括,
所述突变体S533A的核苷酸序列为如SEQ ID NO.3所示;
所述突变体S533Q的核苷酸序列为如SEQ ID NO.4所示;
所述突变体Q527A&S533A的核苷酸序列如SEQ ID NO.5所示。
本发明的再一目的是,克服现有技术中的不足,提供了一种多突变位点的檀香烯合酶突变体的制备方法,包括,
将核苷酸序列如SEQ ID NO.2所示的野生型SanSyn酶基因连接到质粒pETDuet-tac中,得到重组质粒pETDuet-tac-SanSyn,其中,所述连接的双酶切位点分别为NcoI和BamHI,所述质粒pETDuet-tac的核苷酸序列如SEQ ID NO.6所示;
设计突变引物核苷酸序列分别如SEQ ID NO.7~SEQ ID NO.11所示的突变引物S533A-F、S533-R、S533Q-F、Q527A&S533A-F、Q527A&S533A-R;
其中,所述引物S533A-F和S533-R用于获得突变体S533A;
引物S533Q-F和S533-R用于获得突变体S533Q;
引物Q527A&S533A-F和Q527A&S533A-R用于获得突变体Q527A&S533A;
使用突变引物并以质粒pETDuet-tac-SanSyn为模板进行PCR扩增分别得到不同位点的突变产物,转化到宿主细胞大肠杆菌TOP 10的感受态细胞中,筛选得到檀香烯合酶SanSyn突变体表达菌株,诱导表达,得到多突变位点的檀香烯合酶突变体。
本发明有益效果:
S533A突变菌株在诱导后发酵培养3天后α-檀香烯浓度达到1028mg/L,较未突变菌株产量提高1.9倍,S533Q突变菌株α-檀香烯最终浓度达到959mg/L,Q527A&S533A双点突变菌株α-檀香烯浓度达到815mg/L,较未突变菌株浓度相比均有所提高,且SanSyn的突变体S533Q的可溶性蛋白表达也得到提高。
本发明提供了含有所述的檀香烯合酶编码基因的重组菌株,并通过定点突变SanSyn基因,提高了α-檀香烯的积累量,并且提高了可溶性蛋白表达。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。其中:
图1为SanSyn酶的三维结构模拟图。
图2为实施例2中重组菌在24h、48h、72h时的α-檀香烯产量。
图3为实施例2中重组菌包含质粒。
图4为实施例4中檀香烯合酶突变体可溶性蛋白相对表达。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合说明书附图对本发明的具体实施方式做详细的说明。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是本发明还可以采用不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似推广,因此本发明不受下面公开的具体实施例的限制。
其次,此处所称的“一个实施例”或“实施例”是指可包含于本发明至少一个实现方式中的特定特征、结构或特性。在本说明书中不同地方出现的“在一个实施例中”并非均指同一个实施例,也不是单独的或选择性的与其他实施例互相排斥的实施例。
本发明所使用引物均由生工生物工程(上海)股份有限公司合成。
本发明所使用DMT酶购买于北京全式金生物技术有限公司。所使用PrimeSTARMax购自Takara公司。凝胶回收试剂盒Axygen DNA购自爱思进生物技术有限公司。WesternBlot实验相关试剂均购自上海碧云天生物技术有限公司。
本发明提供一种生产α-檀香烯的方法,方法具体为:以大肠杆菌为宿主,重组表达编码编码所述檀香烯合酶及其突变体的基因,得到重组菌;将重组大肠杆菌经种子培养基活化后转入发酵培养基,于37℃,转速200rpm条件下培养,OD600达到1.5时加入IPTG诱导酶表达,使重组菌以葡萄糖为底物生产α-檀香烯。
所使用其他原料,若无特殊说明,均为市售。
实施例1
SanSyn酶三级结构模拟模型的建立:
利用同源建模工具Swiss Model以来源于Santalumalbum的檀香烯合酶SaSS(PDB:5ZZJ)为参考模型对SanSyn进行同源建模。模型经评估后,获得可靠的三维结构模型,三维结构模型图如图1所示。
实施例2
构建定点突变文库:
利用PCR技术,以表达有野生型SanSyn的基因的质粒pETDuet-SanSyn为模板,对SanSyn酶第19、408、442、473、527和533位进行定点突变。
设计突变引物,正向和反向引物是根据不同突变位点进行相应设计的PCR上游和下游引物,具体引物信息如表1所示。
表1获得SanSyn突变体所用的引物
引物对F19Y-F和F19Y-R用于获得突变体F19Y,突变体突变体F19Y的氨基酸序列为SEQ ID NO.12。
引物对I408L-F和I408L-R用于获得突变体I408L,突变体I408L的氨基酸序列为SEQ ID NO.13。
引物对F442S-F和F442S-R用于获得突变体F442S,突变体F442S的氨基酸序列为SEQ ID NO.14。
引物对V473A-F和V473A-R用于获得突变体V473A,突变体V473A的氨基酸序列为SEQ ID NO.15。
引物对Q527A-F和Q527A-R用于获得突变体Q527A,突变体Q527A的氨基酸序列为SEQ ID NO.16。
引物对S533A-F和S533-R用于获得突变体S533A,突变体S533A的核苷酸序列为SEQID NO.3。
引物对S533Q-F和S533-R用于获得突变体S533Q,突变体S533Q的核苷酸序列为SEQID NO.4。
引物对Q527A&S533A-F和Q527A&S533A-R用于获得突变体Q527A&S533A突变体Q527A&S533A的核苷酸序列为SEQ ID NO.5。
PCR反应体系均为:PrimeSTARMax(购自Takara公司)25μL,正向引物、反向引物、模板DNA各1μL,加入灭菌水22μL。
PCR反应扩增程序为:98℃预变性5min;随后98℃变性10s,退火20s,退火温度见表1,72℃45s进行25个循环,最后72℃保温5min。回收片段大小为7000bp左右的条带。
上述片段样品进行去模板反应,去模板反应体系为DMT酶1μL,纯化产物9μL,37℃反应1h。
磷酸化在37℃下反应3h,磷酸化反应体系:T4 Polynucleotide Kinase 1μL,10×T4 Polynucleotide Kinase Buffer 1μL,ATP 1μL,样品7μL。磷酸化后70℃灭酶活5min。
连接反应在16℃下过夜进行,连接体系:T4 DNA Ligase 1μL,10×T4 DNA LigaseBuffer 1μL,样品8μL。
将10μL连接产物全部加入大肠杆菌TOP10的感受态细胞中,充分混合,在冰上放置5min,接着将混合充分的菌液与质粒在42℃的水浴中,热激90s。热激完成后,置于冰水5min,加入1mL SOC培养基,混合均匀,在37℃下复苏45min。之后将菌液涂到含有氨苄青霉素抗性的LB平板上,37℃过夜培养。挑平板上的转化子送至生工生物工程(上海)股份有限公司进行测序验证。
其中目的基因片段使用Axygen DNA凝胶回收试剂盒回收,具体步骤为:
(1)切割含有目的DNA的琼脂糖凝胶,并计算凝胶重量,一个重量作为一个凝胶体积(100mg=100μL)。
(2)加入三个凝胶体积的Buffer DE-A,混合均匀后置于75℃加热,间断混合,直至凝胶块完全熔化。
(3)加0.5个Buffer DE-A体积的Buffer DE-B,混合均匀,混合后溶液呈黄色。
(4)将混合后的黄色溶液转移至制备管中,12000rpm离心1min,弃滤液。
(5)将制备管置回离心管,加700μLBufferW1,在12000rpm离心1min,弃滤液。
(6)将制备管置回离心管,加700μLBufferW2,12000rpm离心1min,弃滤液;以同样的方法再用BufferW2洗涤一次。弃滤液。
(7)将制备管置回离心管,12000rpm离心1min,弃滤液。
(8)将制备管移入新的1.5mL离心管中,在制备管中央加20μLEluent,室温静置1min,12000rpm离心1min。即可获得目的基因片段。
实施例3
大肠杆菌重组菌株的构建:
将具体实施例1中构建的含檀香烯合酶及其突变体质粒与质粒pMVA分别转化到大肠杆菌DH5α中(构建质粒见图3),在菌株的平板上挑取三个单菌落,接种到5mL的带有氨苄青霉素和氯霉素抗性的液体LB中,37℃下过夜培养,然后接种到50mL的带有氨苄青霉素和氯霉素抗性的TB培养基(培养基成分包括20g/L葡萄糖,12g/L胰蛋白胨,24g/L酵母提取物,9.4g/L磷酸氢二钾,2.2g/L磷酸二氢钾)中,然后在37℃、200rpm的摇床中培养3~4h,重组大肠杆菌的OD600值达到1.5左右后,加入诱导剂IPTG进行诱导,其工作浓度为0.5mM,同时加入5mL肉豆蔻酸异丙酯萃取目的产物α-檀香烯,发酵过程在在25℃、200rpm的摇床中培养72h。每24h取样,用气相色谱测定α-檀香烯的浓度。结果见图2。
由图2看出,S533A突变菌株在诱导后发酵培养3天后,α-檀香烯浓度达到1028mg/L,较未突变菌株产量提高1.9倍,Q527A突变菌株α-檀香烯浓度最终达到933mg/L,S533Q突变菌株α-檀香烯最终浓度达到959mg/L,Q527A&S533A双点突变菌株α-檀香烯浓度815mg/L。与未突变菌株浓度相比均有所提高。
实施例4
檀香烯合酶及其突变体蛋白Western Blot分析:
按照本发明的实验步骤分别构建质粒pET28a-SanSyn-6His、pET28a-SanSyn(S533A)-6His、pET28a-SanSyn(S533Q)-6His和pET28a-SanSyn(Q527A)-6His。
构建上述质粒分为两步,其一,先在各檀香烯合酶C端添加6xHis标签,分别以pETDuet-SanSyn、pETDuet-SanSyn(S533A)、pETDuet-SanSyn(S533Q)、pET28a-SanSyn(Q527A)为载体,设计正向引物:5’-CATCACCATCATCACCACTAAGGATC-3’;反向引物:5’-ATCATCTAATTTAACCGGATCTTTCAGC-3’。PCR反应扩增程序为:98℃预变性5min;随后98℃变性10s,退火20s,退火温度59℃,72℃45s进行25个循环,最后72℃保温5min。回收大小7000bp-8000bp的条带,去模板、磷酸化反应、连接、热激转化的具体步骤见实施例2中描述。
其二,将C端含6xHis标签的檀香烯合酶(SanSyn)及其突变体基因插入质粒pET28a的NcoⅠ和BamHⅠ位点之间。
双酶切体系:基因片段36μL,10xKBuffer 5μL,BSA 5μL,NcoⅠ酶2μL,BamHⅠ酶2μL,37℃,3h,回收载体pET28a和SanSyn基因片段。回收步骤与实施例2中相同。
然后进行载体pET28a和SanSyn基因片段用Ligase进行连接反应。连接体系包括载体片段和目的片段各4μL,T4 DNA Ligase 1μL,T4 DNA Ligase Buffer1μL。于16℃过夜连接。
将连接好的片段转化到大肠杆菌BL21(DE3)中。在卡那霉素抗性的平板上挑取单菌落接种到5mL的带有卡那霉素抗性的液体LB中,37℃下过夜培养,接种到100mL的带有卡那霉素抗性的LB中(接种量1%),在37℃、200rpm的摇床中培养2~3h,待重组大肠杆菌的OD=600值达到0.6~0.8后,加入诱导剂IPTG进行诱导,其工作浓度为0.5mM,随后在20℃、180rpm的摇床中培养20h。
制备蛋白样品,取一定量菌液离心弃上清,用PBS缓冲冲洗菌体两次,然后每个样品添加细胞裂解液100μL,置于冰上裂解40min后,12000rpm,4℃下离心10min,吸取上清于新的EP管中,即为细胞总蛋白。
BCA法测定蛋白浓度,使用上海捷瑞生物工程有限公司的BCA法测定蛋白浓度试剂盒。将试剂A与试剂B按50:1比例混合,反应体系为200μL试剂+20μL蛋白样品,37℃反应30min,在吸光度为562nm处测定吸光值A。根据公式C=(A-0.0131)/2.378计算蛋白浓度(μg/μL),用PBS溶液将蛋白样品调整至浓度一致。上样量为20-50μg,上样量~20μL。
SDS-PAGE凝胶电泳,使用10%的SDS-PAGE凝胶跑胶,上样量为20-50μg,上样量~20μL。电泳结束后,取下凝胶,将其置于预冷的转膜液中。将PVDF膜裁至分离胶相同大小,并放入甲醇中活化15秒左右,再用转膜液清洗。
转膜,将PVDF膜裁至分离胶相同大小,并放入甲醇中活化15秒左右,再用转膜液清洗。将滤纸、海绵垫及凝胶制成“三明治夹心”电转装置,在转移槽内按负极、海绵、滤纸、分离胶、PVDF膜、滤纸、海绵、正极的顺序放置,确保各层之间精确对齐,保证无气泡存在,浸润在充满转移液的转膜槽中,并加冰袋降温,350mA恒流转膜1h。
封闭,待转膜结束以后,取下PVDF膜,将PVDF膜置于含5%脱脂牛奶的封闭液(TBST配制)中,正面朝下,常温震荡孵育1h。
抗体孵育及洗膜,1)将膜擦干水分,用PE手套封住后,按照marker的位置裁剪下合适的大小,做好标记;2)一抗孵育:用TBST稀释单克隆抗体(SanSyn及其突变体蛋白使用Histag小鼠单抗,内参GAPDH蛋白使用IgG抗体),将PVDF膜放置于配制好的一抗溶液中,4℃过夜旋转结合;3)洗膜:次日取出PVDF膜用TBST洗膜3次,每次10min。4)二抗孵育:用TBST溶液分别稀释对应的辣根过氧化物酶标记IgG,将PVDF膜置于其中(操作与一抗孵育类似),常温孵育2h;5)洗膜:TBST洗膜3次,每次10min。
显色,将ECL化学发光液(试剂盒)中的A、B液以1:1的比例进行配制,加于然后将PVDF膜,在避光条件下反应1min或根据实际情况反应更长时间。显色液现加现用,加完后用化学发光仪拍照。实验结果见图4。
其中溶液配方10×转膜液:Tris 15.18g,甘氨酸72.08g配置成500mL溶液;1×湿转液:100mL 10×转膜液,200mL甲醇,加蒸馏水定容至1000mL;封闭液为5%脱脂奶粉:1脱脂奶粉溶于20mLTBST。Western Blot实验相关试剂:PVDF膜、6xHis标签和GAPDH的一抗及二抗、10xTBST、脱脂奶粉、ECL化学发光液均购自上海碧云天生物技术有限公司。
檀香烯合酶及其突变体的Western Blot实验中可以看到,S533Q、Q527A单突变与野生型檀香烯合酶相比,蛋白可溶性表达均有所提高(以野生型檀香烯合酶的相对蛋白表达为100%)。其中Q527A突变体蛋白可溶性表达提高1.2倍。
本发明提供一种生产α-檀香烯的方法,方法具体为:以大肠杆菌为宿主,重组表达编码编码所述檀香烯合酶及其突变体的基因,得到重组菌;将重组大肠杆菌经种子培养基活化后转入发酵培养基,于37℃,转速200rpm条件下培养,OD600达到1.5时加入IPTG诱导酶表达,使重组菌以葡萄糖为底物生产α-檀香烯。
S533A突变菌株在诱导后发酵培养3天后α-檀香烯浓度达到1028mg/L,较未突变菌株产量提高1.9倍,S533Q突变菌株α-檀香烯最终浓度达到959mg/L,Q527A&S533A双点突变菌株α-檀香烯浓度815mg/L。与未突变菌株浓度相比均有所提高。
本发明提供了含有所述的檀香烯合酶编码基因的重组菌株,并通过定点突变SanSyn基因,提高了α-檀香烯的积累量。通过Western Blot实验发现SanSyn的突变体S533Q的可溶性蛋白表达也得到提高提高。
应说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (3)

1.一种多突变位点的檀香烯合酶突变体,其特征在于:包括,
将核苷酸序列为SEQ ID NO.1所示的野生型SanSyn酶的第533位丝氨酸突变为丙氨酸或谷氨酰胺得到突变体S533A或S533Q;
将核苷酸序列为SEQ ID NO.1所示的SanSyn酶的第527位谷氨酰胺、第533位丝氨酸均突变为丙氨酸得到突变体Q527A&S533A;
其中,所述野生型SanSyn酶来源于植物黄皮(Clausenalansium)。
2.如权利要求1所述的多突变位点的檀香烯合酶突变体,其特征在于:所述多突变位点的檀香烯合酶突变体,还包括,
所述突变体S533A的核苷酸序列为如SEQ ID NO.3所示;
所述突变体S533Q的核苷酸序列为如SEQ ID NO.4所示;
所述突变体Q527A&S533A的核苷酸序列如SEQ ID NO.5所示。
3.权利要求2所述的多突变位点的檀香烯合酶突变体的制备方法,其特征在于:所述制备方法,包括,
将核苷酸序列如SEQ ID NO.2所示的野生型SanSyn酶基因连接到质粒pETDuet-tac中,得到重组质粒pETDuet-tac-SanSyn,其中,所述连接的双酶切位点分别为NcoI和BamHI,所述质粒pETDuet-tac的核苷酸序列如SEQ ID NO.6所示;
设计突变引物核苷酸序列分别如SEQ ID NO.7~SEQ ID NO.11所示的突变引物S533A-F、S533-R、S533Q-F、Q527A&S533A-F、Q527A&S533A-R;
其中,所述引物S533A-F和S533-R用于获得突变体S533A;
引物S533Q-F和S533-R用于获得突变体S533Q;
引物Q527A&S533A-F和Q527A&S533A-R用于获得突变体Q527A&S533A;
使用突变引物并以质粒pETDuet-tac-SanSyn为模板进行PCR扩增分别得到不同位点的突变产物,转化到宿主细胞大肠杆菌TOP10的感受态细胞中,筛选得到檀香烯合酶SanSyn突变体表达菌株,诱导表达,得到多突变位点的檀香烯合酶突变体。
CN202310844231.XA 2021-09-16 2021-09-16 一种多突变位点的檀香烯合酶突变体及其制备方法 Pending CN117004594A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310844231.XA CN117004594A (zh) 2021-09-16 2021-09-16 一种多突变位点的檀香烯合酶突变体及其制备方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202310844231.XA CN117004594A (zh) 2021-09-16 2021-09-16 一种多突变位点的檀香烯合酶突变体及其制备方法
CN202111085704.XA CN113801868B (zh) 2021-09-16 2021-09-16 一种檀香烯合酶突变体及其制备方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN202111085704.XA Division CN113801868B (zh) 2021-09-16 2021-09-16 一种檀香烯合酶突变体及其制备方法

Publications (1)

Publication Number Publication Date
CN117004594A true CN117004594A (zh) 2023-11-07

Family

ID=78941252

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202111085704.XA Active CN113801868B (zh) 2021-09-16 2021-09-16 一种檀香烯合酶突变体及其制备方法
CN202310844231.XA Pending CN117004594A (zh) 2021-09-16 2021-09-16 一种多突变位点的檀香烯合酶突变体及其制备方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202111085704.XA Active CN113801868B (zh) 2021-09-16 2021-09-16 一种檀香烯合酶突变体及其制备方法

Country Status (1)

Country Link
CN (2) CN113801868B (zh)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL2252691T3 (pl) * 2008-03-06 2013-08-30 Firmenich & Cie Sposób otrzymywania alfa-santalenu
WO2015153501A2 (en) * 2014-03-31 2015-10-08 Allylix, Inc. Modified santalene synthase polypeptides, encoding nucleic acid molecules and uses thereof
CN111434773B (zh) * 2019-01-15 2021-06-18 天津大学 一种高产檀香油的重组酵母菌及其构建方法与应用
CN112941063B (zh) * 2021-04-22 2022-08-05 杭州师范大学 一种α-檀香烯合成酶、基因及应用

Also Published As

Publication number Publication date
CN113801868A (zh) 2021-12-17
CN113801868B (zh) 2023-07-28

Similar Documents

Publication Publication Date Title
JP6429243B2 (ja) アンブレインの製造方法
CN111979163B (zh) 一种重组罗氏真氧菌及其制备方法和应用
CN110950937B (zh) 一种改造的艾克曼菌Amuc_1100蛋白及其制备方法和应用
CN104328098B (zh) 一种β-葡萄糖苷酶及其制备方法与应用
CN107109416A (zh) 用于crm197的高水平表达的密码子优化多核苷酸
CN108912213B (zh) 肠道病毒71型vp1抗原的免疫原性多肽及其制备方法与应用
CN112501095B (zh) 一种合成3-岩藻乳糖的重组大肠杆菌构建方法及其应用
CN111575308B (zh) 梅毒螺旋体重组嵌合抗原及其制备方法、用途
CN114591939B (zh) 一种高耐热d-阿洛酮糖-3-差向异构酶突变体及其应用
CN114276445B (zh) 轮状病毒重组蛋白特异性抗体、质粒载体及方法
CN114107152A (zh) 一种高产3-岩藻糖基乳糖微生物的构建方法及应用
CN117004594A (zh) 一种多突变位点的檀香烯合酶突变体及其制备方法
CN108822195A (zh) 砀山酥梨具有促进花粉管生长功能的蛋白、编码基因PbrTTS1及其应用
CN111117942B (zh) 一种产林可霉素的基因工程菌及其构建方法和应用
CN110317765B (zh) 一种高产香叶醇葡萄糖苷的大肠杆菌表达菌株及其应用
CN111996157A (zh) 一种高效生产1,3-丙二醇的基因工程菌及其构建方法与应用
JP2009201403A (ja) ヒト型Fcレセプターをコードするポリヌクレオチド、およびそれを利用したヒト型Fcレセプターの製造方法
CN111575221B (zh) 一种基于PNTs的生产灵菌红素的方法
CN114214351A (zh) 一种志贺氏菌多糖表达质粒及其用途
CN113249352A (zh) 一种n糖基转移酶突变体p1及其应用
JP4551978B1 (ja) 酢酸菌の増殖促進機能に関与する遺伝子、該遺伝子を用いて育種された酢酸菌、及び該酢酸菌を用いた食酢の製造方法
CN111471700B (zh) 一种辅助产氢的重组载体、重组菌株及其构建方法和应用
CN111057697A (zh) 耐高温TIM barrel蛋白突变体及其应用
CN115261366B (zh) 一种耐高温纤维二糖差向异构酶突变体、工程菌及其应用
CN110343653B (zh) 一种敲除大肠杆菌醛脱氢酶基因提高1,2,4-丁三醇产量的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination