CN116854600A - p型有机半导体掺杂剂及制备和钙钛矿半导体器件 - Google Patents

p型有机半导体掺杂剂及制备和钙钛矿半导体器件 Download PDF

Info

Publication number
CN116854600A
CN116854600A CN202310346255.2A CN202310346255A CN116854600A CN 116854600 A CN116854600 A CN 116854600A CN 202310346255 A CN202310346255 A CN 202310346255A CN 116854600 A CN116854600 A CN 116854600A
Authority
CN
China
Prior art keywords
type semiconductor
layer
perovskite
semiconductor dopant
organic cation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310346255.2A
Other languages
English (en)
Other versions
CN116854600B (zh
Inventor
徐勃
罗鑫
黄静
黄锦海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Huinasi Optoelectronic Technology Co ltd
Original Assignee
Shanghai Huinasi Optoelectronic Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Huinasi Optoelectronic Technology Co ltd filed Critical Shanghai Huinasi Optoelectronic Technology Co ltd
Priority to CN202310346255.2A priority Critical patent/CN116854600B/zh
Publication of CN116854600A publication Critical patent/CN116854600A/zh
Application granted granted Critical
Publication of CN116854600B publication Critical patent/CN116854600B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • H10K30/15Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/62Quaternary ammonium compounds
    • C07C211/64Quaternary ammonium compounds having quaternised nitrogen atoms bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C213/00Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C215/00Compounds containing amino and hydroxy groups bound to the same carbon skeleton
    • C07C215/74Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton
    • C07C215/76Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton of the same non-condensed six-membered aromatic ring
    • C07C215/82Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton of the same non-condensed six-membered aromatic ring having the nitrogen atom of at least one of the amino groups further bound to a carbon atom of another six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C217/00Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton
    • C07C217/78Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton
    • C07C217/80Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of non-condensed six-membered aromatic rings
    • C07C217/82Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of non-condensed six-membered aromatic rings of the same non-condensed six-membered aromatic ring
    • C07C217/92Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of non-condensed six-membered aromatic rings of the same non-condensed six-membered aromatic ring the nitrogen atom of at least one of the amino groups being further bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C311/00Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups
    • C07C311/48Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups having nitrogen atoms of sulfonamide groups further bound to another hetero atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C323/00Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups
    • C07C323/23Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton
    • C07C323/31Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton having the sulfur atom of at least one of the thio groups bound to a carbon atom of a six-membered aromatic ring of the carbon skeleton
    • C07C323/33Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton having the sulfur atom of at least one of the thio groups bound to a carbon atom of a six-membered aromatic ring of the carbon skeleton having at least one of the nitrogen atoms bound to a carbon atom of the same non-condensed six-membered aromatic ring
    • C07C323/34Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton having the sulfur atom of at least one of the thio groups bound to a carbon atom of a six-membered aromatic ring of the carbon skeleton having at least one of the nitrogen atoms bound to a carbon atom of the same non-condensed six-membered aromatic ring the thio group being a mercapto group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C323/00Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups
    • C07C323/23Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton
    • C07C323/31Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton having the sulfur atom of at least one of the thio groups bound to a carbon atom of a six-membered aromatic ring of the carbon skeleton
    • C07C323/33Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton having the sulfur atom of at least one of the thio groups bound to a carbon atom of a six-membered aromatic ring of the carbon skeleton having at least one of the nitrogen atoms bound to a carbon atom of the same non-condensed six-membered aromatic ring
    • C07C323/35Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton having the sulfur atom of at least one of the thio groups bound to a carbon atom of a six-membered aromatic ring of the carbon skeleton having at least one of the nitrogen atoms bound to a carbon atom of the same non-condensed six-membered aromatic ring the thio group being a sulfide group
    • C07C323/36Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton having the sulfur atom of at least one of the thio groups bound to a carbon atom of a six-membered aromatic ring of the carbon skeleton having at least one of the nitrogen atoms bound to a carbon atom of the same non-condensed six-membered aromatic ring the thio group being a sulfide group the sulfur atom of the sulfide group being further bound to an acyclic carbon atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D285/00Heterocyclic compounds containing rings having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by groups C07D275/00 - C07D283/00
    • C07D285/15Six-membered rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D309/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings
    • C07D309/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings having no double bonds between ring members or between ring members and non-ring members
    • C07D309/04Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings having no double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • H10K50/155Hole transporting layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/165Electron transporting layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/15Deposition of organic active material using liquid deposition, e.g. spin coating characterised by the solvent used
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Materials Engineering (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明涉及一种p型半导体掺杂剂及其制备方法和在光电器件领域的应用,所述掺杂剂具如下的化学结构通式该p型半导体掺杂剂通过三芳胺类有机小分子与阴离子金属盐进行简单离子交换制得。本发明提供的p型半导体掺杂剂具有较深的LUMO能级和强氧化性,有利于p型半导体中的电子转移至掺杂剂中,通过溶液处理的方式掺杂到p型半导体中,可以提高空穴传输材料在器件中的电导率和空穴迁移率,实现电池制备工艺的简捷、高效。

Description

p型有机半导体掺杂剂及制备和钙钛矿半导体器件
技术领域
本发明属于半导体技术领域,具体涉及一种基于有机阳离子盐类的p型半导体掺杂剂及其制备方法和半导体器件。
背景技术
有机半导体材料由于具备溶液可加工、成本低廉、材料合成简单、结构/种类多样、性能可调控、易于制备大面积及柔性光电子器件等独特的优势,而受到产学研界的广泛关注,在新一代高性能超低成本光伏发电、平板显示、生物传感和柔性可穿戴器件等领域显现出广阔的应用前景。
有机半导体材料主要分为p型有机半导体和n型有机半导体。其中,有机空穴传输材料作为新型光电子器件的重要组成部分,承担着器件中空穴的产生、收集与传输,对器件的光电转化效率和稳定性起着至关重要的作用,尤其是新兴的钙钛矿太阳能电池和发光二极管,以及未来柔性、半透明和可穿戴光电子器件不可或缺的p型半导体功能材料。在钙钛矿发光器件和钙钛矿太阳能电池中,有机薄膜的电导率直接影响着器件的最终性能。所以为了进一步提高有机薄膜的电导率,掺杂是最为常见的方法之一。
本世纪以来,数种有效的化学p型掺杂剂已被成功开发出来,如F4-TCNQ(Phys.Chem.Chem.Phys.2012,14,11689)和AgTFSI(J.Am.Chem.Soc.2014,136,10996)。这些掺杂剂很大程度上地提高了薄膜的导电性和空穴传输能力,并使它们在钙钛矿发光二极管和太阳能电池上表现出优异的器件性能。然而,这些p型掺杂剂在可见光区出现吸收竞争,对空气中的水分和氧气非常敏感,造成离子迁移和钙钛矿组分逃逸;同时较差的溶解度,使它们不适合用于制造溶液处理的光电/伏设备。此外,大多数p型掺杂剂的合成过程复杂、成本高,限制了其大规模生产。
发明内容
针对现有技术中存在的p型掺杂剂品种较少、对空气中的水分和氧气过于敏感以及溶解度较差的技术问题,本发明的第一个目的在于提供一种基于有机离子盐类的p型半导体掺杂剂,本发明提供的p型半导体掺杂剂具有较深的LUMO能级和强氧化性,有利于p型半导体中的电子转移至掺杂剂中,提高薄膜的导电性和空穴传输能力,并且可以通过溶液处理的方式掺杂到p型半导体中,从而使半导体器件的制备工艺简捷、高效。
同时,针对现有技术中存在的p型掺杂剂的合成过程复杂、成本高的技术问题,本发明的第二个目的是提供一种基于有机离子盐类的p型半导体掺杂剂的制备方法。
此外,本发明的第三个目的在于基于上述的p型半导体掺杂剂获得一种半导体器件。
本发明的目的通过以下技术方案实现的:
一种基于有机阳离子盐类的p型半导体掺杂剂,通过三芳胺的取代基和阴离子的调控而获得的一系列适合于改善空穴传输材料功能的p型半导体掺杂剂,其具有如式Ⅰ所示的结构式:
其中,X为氢、烷基、烷氧基、羟基、苯氧基、巯基、巯醚基、卤素、烯基、炔基或芳基中的任意一种;其中,每个X可以相同或不同;Z-为含卤素磺酸阴离子、含卤素硼酸阴离子、含卤素锑酸阴离子或含卤素磷酸阴离子中的任意一种。
本发明的一种基于有机阳离子盐类的p型半导体掺杂剂是一种呈蓝黑色粉末状的有机离子盐类,其尤其对空穴传输材料X55和Spiro-OMeTAD具有较强的氧化性。试验结果表明,本发明制备的有机离子盐类p型半导体掺杂剂在溶液状态下,对空穴传输材料具有10~22%的掺杂效率。具体地,在氯苯溶液中,3TPATFSI掺杂X55的掺杂效率为12.5%,3TPATFSI掺杂Spiro-OMeTAD的掺杂效率为21.5%;3TPABF4掺杂X55的掺杂效率为11.5%,3TPABF4掺杂Spiro-OMeTAD的掺杂效率为18.0%;3TPAPF6掺杂X55的掺杂效率为10.4%,3TPAPF6掺杂Spiro-OMeTAD的掺杂效率为15.4%。
一种优选的技术方案为,本发明所述的具有化学结构通式I的有机离子盐类p型半导体掺杂剂,优选以下化合物:
本发明还涉及如上所述的一种基于有机阳离子盐类p型半导体掺杂剂的合成方法,合成路线如下所示:
合成路线包括以下步骤:
S1、取三(4-R取代基苯)胺(命名为3TPAR)和卤代烃溶于N,N-二甲基甲酰胺(别名为DMF)中,再加入氢氧化钾并进行加热反应,经第一次后处理得到三(4-X取代基苯)胺(命名为3TPAX);
S2、取步骤S1得到的三(4-X取代基苯)胺溶于二氯甲烷中,再加入阴离子金属盐进行反应,经第二次后处理得到三(4-X取代基苯)胺有机离子盐(命名为3TPAZ)。
进一步地,步骤S1中,三(4-R取代苯)胺、卤代烃、氢氧化钾和N,N-二甲基甲酰胺的摩尔体积比为(1.0~1.71)mmol:(6~10.24)mmol:(6~10.24)mmol:(15~20)mL。
进一步地,步骤S1中,加热反应的温度为80~100℃,加热反应的时间为12~24h。
进一步地,步骤S1中,第一次后处理具体为:待反应结束之后,冷却至室温,依次加入乙醚、饱和食盐水和无水Na2SO4分别进行萃取、洗涤和干燥,最后用100-200目硅胶层析柱提纯。所述的硅胶层析柱的洗脱剂优选石油醚/乙酸乙酯,体积比为20/1。
进一步地,步骤S2中,所述的三(4-X取代基苯)胺、阴离子金属盐和二氯甲烷的摩尔体积比为(1~1.2)mmol:(1.1~1.2)mmol:(0.026~0.028)mmol:(10~15)mL。
进一步地,步骤S2中,反应的温度为20~40℃,反应的时间为2~4h。
进一步地,步骤S2中,进行反应时采用氮气鼓泡脱除氧气。
进一步地,步骤S2中,第二次后处理具体为:待反应结束后,过滤除去固体残渣,有机相浓缩后得到深色固体粗产物,然后溶于少量二氯甲烷并用乙醚沉淀两次,最后在真空干燥箱中干燥。
优选地,上述的合成路线中,在反应时均进行搅拌。
本发明还涉及基于有机阳离子盐类的p型半导体掺杂剂的半导体器件,至少包括空穴传输层,以及可选的导电电极、可选的空穴注入层、可选的发光层、可选的吸收层、可选的电子传输层和可选的电子阻挡层。所述的半导体器件是将本发明的基于有机阳离子盐类的p型半导体掺杂剂掺杂到半导体器件的空穴传输层中,从而提高了器件的性能。
一种具体的实施方案为所述的半导体器件为钙钛矿发光器件和钙钛矿太阳能电池器件。制备过程为,将本发明的p型掺杂剂和空穴传输材料溶于氯苯,然后按照不同掺杂摩尔浓度比例混合,通过溶液旋涂法旋涂于涂有PEDOT:PSS的ITO基片上,并旋涂上钙钛矿,然后在钙钛矿层的表面依次蒸镀电子传输层、电子注入层和铝电极得到完整的钙钛矿发光二极管器件。测试结果表明,本发明的基于有机阳离子盐类的p型半导体掺杂剂的钙钛矿发光二极管器件表现出较高的最大外量子效率和发光亮度。或者将本发明的p型半导体掺杂剂和空穴传输材料溶于氯苯,然后按照不同掺杂摩尔浓度比例混合。通过溶液旋涂法将混合溶液旋涂于沉积有钙钛矿层和SnO2层的FTO基片上,得到掺杂本发明的p型半导体掺杂剂的空穴传输层器件中间物。然后在器件中间物的表面蒸镀金电极,得到钙钛矿太阳能电池器件。测试结果表明,本发明的基于有机阳离子盐类的p型半导体掺杂剂的钙钛矿太阳能电池器件能够有效提升钙钛矿太阳能电池的光电转换效率和填充因子。
本发明的所有实施例中,在制造半导体器件时,P型半导体掺杂剂可以利用溶液涂布法来形成空穴传输掺杂层,所述的溶液涂布法是指,旋涂法、浸涂法、刮涂法、喷墨印刷法、丝网印刷法、喷雾法、辊涂法等,但并非仅限于此。
相对于现有技术而言,本发明的有益技术效果在于:本发明以三芳胺为母体,引入不同烷基、烷氧基、羟基、苯氧基、巯基、巯醚基、卤素、烯基、炔基或芳基作为三芳胺的电子调节部分,形成不同有机阳离子,与不同阴离子进行结合,获得具有不同LUMO能级的P型掺杂剂。这些掺杂剂对空穴传输材料X55、Spiro-OMeTAD等小分子表现出良好的氧化特性,具有10-20%的掺杂效率。进一步地,通过溶液处理的方式将这些掺杂剂掺杂在X55和Spiro-OMeTAD传输层中,构建钙钛矿发光器件和钙钛矿太阳能电池器件,p型掺杂剂的添加可以使有机薄膜的导电率和空穴迁移能力明显提升,从而改善了钙钛矿发光器件和钙钛矿太阳能电池的性能。
本发明提供的基于有机阳离子盐类的p型半导体掺杂剂的合成方法简单,获得的P型半导体掺杂剂具有较深的LUMO能级和良好的溶解性,解决了现有技术中掺杂剂合成难度大、成本高、掺杂能力弱以及半导体器件可溶液处理等技术难题。同时,本发明的p型半导体掺杂剂具有较深的LUMO能级有利于p型半导体中的电子转移至掺杂剂中,提高空穴传输层的电导率和空穴迁移率,通过溶液处理的方式掺杂到p型半导体中,能够很大程度地降低制造成本,简捷、高效地制得半导体器件。
附图说明
图1为实施例1制备的3TPATFSI掺杂X55的紫外-可见吸收图;
图2为实施例2制备的3TPABF4掺杂X55的紫外-可见吸收图;
图3为实施例3制备的3TPAPF6掺杂X55的紫外-可见吸收图;
图4为实施例1制备的3TPATFSI掺杂Spiro-OMeTAD的紫外-可见吸收图;
图5为实施例2制备的3TPATBF4掺杂Spiro-OMeTAD的紫外-可见吸收图;
图6为实施例3制备的3TPAPF6掺杂Spiro-OMeTAD的紫外-可见吸收图;
图7为实施例1制备的3TPATFSI掺杂X55的电流密度随电压变化图;
图8为实施例2制备的3TPABF4掺杂X55的电流密度随电压变化图;
图9为实施例3制备的3TPAPF6掺杂X55的电流密度随电压变化图;
图10为实施例1制备的3TPATFSI掺杂Spiro-OMeTAD的电流密度随电压变化图;
图11为实施例2制备的3TPATBF4掺杂Spiro-OMeTAD的电流密度随电压变化图;
图12为实施例3制备的3TPAPF6掺杂Spiro-OMeTAD的电流密度随电压变化图;
图13为实施例1制备的3TPATFSI掺杂X55的钙钛矿发光器件电流密度和发光亮度随电压变化图;
图14为实施例1制备的3TPATFSI掺杂X55的钙钛矿发光器件最大外量子效率随电流密度变化图;
图15为实施例2制备的3TPABF4掺杂X55的钙钛矿发光器件电流密度随电压变化图;
图16为实施例2制备的3TPABF4掺杂X55的钙钛矿发光器件电致发光强度随电压变化图;
图17为实施例3制备的3TPAPF6掺杂X55的钙钛矿发光器件电流密度随电压变化图;
图18为实施例3制备的3TPAPF6掺杂X55的钙钛矿发光器件电致发光强度随电压变化图;
图19为实施例1制备的3TPATFSI掺杂X55的钙钛矿太阳能电池电流密度随电压变化图;
图20为实施例2制备的3TPABF4掺杂X55的钙钛矿太阳能电池电流密度随电压变化图;
图21为实施例3制备的3TPAPF6掺杂X55的钙钛矿太阳能电池电流密度随电压变化图;
图22为实施例1~3制备的钙钛矿器件结构图。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。
一种基于有机阳离子盐类的p型半导体掺杂剂,具有式Ⅰ所示的结构式:
式中,X为氢、烷基、烷氧基、卤素、烯基、炔基或芳基;Z-为含卤素磺酸阴离子、含卤素硼酸阴离子、含卤素锑酸阴离子或含卤素磷酸阴离子的任意一种。
一种如上述所述的基于有机阳离子盐类的p型半导体掺杂剂的制备方法,所述制备方法具体包括以下步骤:
(a)取三(4-R取代基苯)胺和卤代烃溶于N,N-二甲基甲酰胺中,再加入氢氧化钾在80-100℃下进行加热反应12-24h,反应结束之后,冷却至室温,再加入乙醚和水萃取,得到有机相用氯化钠溶液洗涤并且用无水硫酸钠干燥,最后用100-200目硅胶层析柱提纯,得到三(4-X取代基苯)胺,其中三(4-R取代基苯)胺、卤代烃、氢氧化钾和N,N-二甲基甲酰胺的摩尔体积比为(1.0-1.71)mmol:(6-10.24)mmol:(6-10.24)mmol:(15-20)mL。
(b)取步骤(a)得到的三(4-X取代基苯)胺溶于二氯甲烷中,再加入阴离子金属盐在室温下氮气鼓泡脱除氧气,搅拌2-4h,待反应结束后,过滤除去固体残渣,有机相浓缩后得到深色固体粗产物,然后溶于少量二氯甲烷并用乙醚沉淀两次,最后在真空干燥箱中干燥,得到三(4-X取代基苯)胺有机阴离子盐。其中三(4-X取代基苯)胺、阴离子金属盐和二氯甲烷的摩尔体积比为(1-1.2)mmol:(1.1-1.2)mmol:(0.026-0.028)mmol:(10-15)mL。本发明采用的三(4-R取代基苯)胺和卤代烃为市售化合物,也可采用文献常规方法进行制备,本发明不再赘述。
一种如上述所述的基于有机阳离子盐类的p型半导体掺杂剂的应用,包括包括钙钛矿发光器件和钙钛矿太阳能电池。
下面通过实施例对本发明作进一步阐述,其目的仅在于更好地理解本发明的内容。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例,因此所举之例并不限制本发明的保护范围。
实施例1
一种基于有机阳离子盐类的p型半导体掺杂剂,具有式Ⅰ所示的结构式:
其中,X为-OCH3,Z为TFSI,采用以下步骤制备得到:
(1)3TPAOMe的合成
将三(4-羟基苯)胺(3TPAHO)(5.00g,17.05mmol)、碘甲烷(14.52g,102.28mmol)和KOH(5.74g,102.28mmol)混合到圆底烧瓶中。加入DMF(50ml),反应混合物加热至80℃过夜。反应冷却至室温,用乙醚/水萃取。有机相用盐水洗涤,用MgSO4干燥,最后减压除去溶剂。用石油醚/乙酸乙酯(20:1,v/v)快速色谱法纯化,得到白色固体产物5.08g,化学名为三(4-甲氧基苯)胺,收率为89%。1H-NMR(300MHz,CDCl3),δppm:6.94(6H,d,J=8.9Hz),6.79(6H,d,J=8.9Hz),3.73(9H,s).13C-NMR(75MHz,CDCl3),δppm:154.99,142.07,124.87,114.59,55.52.HRMS(ESI+):calcd for C21H22NO3[M+H]+:336.1594,Found 336.1651.
(2)3TPATFSI的合成
将三(4-甲氧基苯)胺(3TPAOMe)(2.00g,5.96mmol)、双(三氟甲磺酰基)亚胺银(AgTFSI)(3.44g,11.93mmol)和搅拌棒装入干燥的100mL Schlenk烧瓶中,并将反应瓶抽去空气并通入氮气。然后加入脱气的二氯甲烷20mL,室温搅拌24h。反应溶解在二氯甲烷中,通过滤纸过滤得到滤液,旋转蒸发除去溶剂,留下蓝黑色固体。固体在极少量的二氯甲烷中溶解,并在干燥的乙醚中沉淀,产生的蓝黑色粉末通过滤纸过滤收集。最后将固体在真空下干燥,得到蓝黑色固体产物3.44g,命名为三(4-甲氧基苯)胺-双(三氟甲磺酰基)亚胺盐,产率为93%。
(3)钙钛矿发光器件的制备
a、ITO阳极:将涂层厚度为150nm的ITO(氧化铟锡)玻璃基板用乙醇擦洗,然后用丙酮清洗两次,超声波洗涤20min,洗涤结束后,然后转移至等热台烘干,烘烤结束后降温,转移至UV-O3处理15min;
b、然后将PEDOT:PSS作为空穴注入层,以3000rpm/45s,加速度为1500的旋涂速度旋于ITO上,并且140℃退火15min后,转移至手套箱进行下一步操作;
c、将空穴传输层材料和P型掺杂剂3TPATFSI配制成等摩尔浓度的溶液,然后按照不同的摩尔比例分别得到不同掺杂浓度的掺杂混合溶液,以3000rpm/45s,加速度为1500的旋涂速度旋于覆盖PEDOT:PSS的ITO上成膜,120℃退火20min形成掺杂传输层;
d、将钙钛矿量子点以2000rpm/45s,加速度为1000的旋涂速度旋于掺杂传输层上,并转移至蒸镀机,进行蒸镀器件工艺,在其上依次蒸镀其它功能层;电子传输层:以的蒸镀速率,在钙钛矿发光层上面真空蒸镀45nm的TPBi作为电子传输层;电子注入层:以的蒸镀速率,真空蒸镀电子注入层材料LiF,所述LiF的蒸镀厚度为1nm;阴极:以的蒸镀速率,在电子注入层上面真空蒸镀100nm的Al作为电极;
e、将蒸镀完成的基板进行封装;首先采用涂胶设备将清洗后盖板用UV胶进行涂覆工艺,然后将涂覆完成的盖板移至压合工段,将蒸镀完成的基板置于盖板上端,最后将基板和盖板在贴合设备作用下进行贴合,同时完成对UV胶光照固化。
器件结构如下:ITO/PEDOT:PSS/X55&3TPATFSI/PeQDs/TPBi/LiF/Al。
上述使用材料结构如下:
采用上述所得的3TPATFSI掺杂空穴传输层的钙钛矿发光器件进行I-V-L测试,得到掺杂条件下,其电流密度和发光亮度随电压的变化特性曲线,如图13所示(横坐标为电压,单位伏特;纵坐标为电流密度和发光亮度,单位为毫安/平方厘米和坎德拉/平方米),掺杂之后,电流密度和发光亮度均出现增加的趋势。而对于钙钛矿发光器件的最大外量子效率和电流密度的关系曲线显示,如图14所示(横坐标为电流密度,单位毫安/平方厘米;纵坐标为最大外量子效率,单位为1),掺杂之后,器件最大外量子效率明显提升。
(4)钙钛矿太阳能电池器件的制备
a、将掺杂氟的氧化锡玻璃(FTO)依次用异丙醇、丙酮、去离子水分别超声清洗,干燥后接着用UV-O3处理20min;
b、在上述FTO上,以4000rpm/60s的条件旋涂含0.2mol.L-1SnCl2的乙醇溶液,180℃热退火1h,得到厚度为30nm的SnO2致密层,然后将10mg/mL的PCBM层在3000r下旋涂30秒。
c、将CH3NH3I和PbI2以1mol.L-1:1.08mol L-1的摩尔比溶解在DMF和DMSO(体积比为4:1)中制备MAPbI3前驱体溶液。并以1500rpm/15s的转速旋涂在制备好的SnO2/PCBM衬底上,100℃热退火45min。
d、随后,在1毫升氯苯中加入72mg的Spiro-OMeTAD和17μL p型掺杂剂溶液(5mg3TPATFSI在1毫升氯苯)得到掺杂溶液,将50μL掺杂溶液以4000rpm/30s旋涂于钙钛矿层。
e、最后通过热蒸发法蒸镀80nm金作为电极。
器件结构如下:FTO/SnO2/PCBM/Perovskite/Spiro-OMeTAD&3TPATFSI/Au。
上述使用材料结构如下:
实施例2
一种基于有机阳离子盐类的p型半导体掺杂剂,具有式(Ⅰ)所示的结构式:
其中,X为-OCH3,Z为BF4,采用以下步骤制备得到:
(1)3TPAOMe的合成
将三(4-羟基苯)胺(3TPAHO)(5.00g,17.05mmol)、碘甲烷(14.52g,102.28mmol)和KOH(5.74g,102.28mmol)混合到圆底烧瓶中。加入DMF(50ml),反应混合物加热至80℃过夜。反应冷却至室温,用乙醚/水萃取。有机相用盐水洗涤,用MgSO4干燥,最后减压除去溶剂。用石油醚/乙酸乙酯(20:1,v/v)快速色谱法纯化,得到白色固体产物5.08g,化学名为三(4-甲氧基苯)胺,收率为89%。1H-NMR(300MHz,CDCl3),δppm:6.94(6H,d,J=8.9Hz),6.79(6H,d,J=8.9Hz),3.73(9H,s).13C-NMR(75MHz,CDCl3),δppm:154.99,142.07,124.87,114.59,55.52.HRMS(ESI+):calcd for C21H22NO3[M+H]+:336.1594,Found 336.1651.
(2)3TPABF4的合成
将三(4-甲氧基苯)胺(3TPAOMe)(2.00g,5.96mmol)、四氟硼酸锂(LiBF4)(1.12g,11.93mmol)和搅拌棒装入干燥的250mL Schlenk烧瓶中,并将反应瓶抽去空气并通入氮气。然后加入脱气的二氯甲烷50mL,室温搅拌24h。反应溶解在二氯甲烷中,通过滤纸过滤得到滤液,旋转蒸发除去溶剂,留下蓝黑色固体。固体在极少量的二氯甲烷中溶解,并在干燥的乙醚中沉淀,产生的蓝黑色粉末通过滤纸过滤收集。最后将固体在真空下干燥,得到蓝黑色固体产物2.10g,命名为三(4-甲氧基苯)胺-四氟硼酸盐,产率为83%。
(3)钙钛矿发光器件的制备
a、ITO阳极:将涂层厚度为150nm的ITO(氧化铟锡)玻璃基板用乙醇擦洗,然后用丙酮清洗两次,超声波洗涤20min,洗涤结束后,然后转移至等热台烘干,烘烤结束后降温,转移至UV-O3处理15min;
b、然后将PEDOT:PSS作为空穴注入层,以3000rpm/45s,加速度为1500的旋涂速度旋于ITO上,并且140℃退火15min后,转移至手套箱进行下一步操作;
c、将空穴传输层材料和P型掺杂剂3TPABF4配制成等摩尔浓度的溶液,然后按照不同的摩尔比例分别得到不同掺杂浓度的掺杂混合溶液,以3000rpm/45s,加速度为1500的旋涂速度旋于覆盖PEDOT:PSS的ITO上成膜,120℃退火20min形成掺杂传输层;
d、将钙钛矿量子点以2000rpm/45s,加速度为1000的旋涂速度旋于掺杂传输层上,并转移至蒸镀机,进行蒸镀器件工艺,在其上依次蒸镀其它功能层;电子传输层:以的蒸镀速率,在钙钛矿发光层上面真空蒸镀45nm的TPBi作为电子传输层;电子注入层:以的蒸镀速率,真空蒸镀电子注入层材料LiF,所述LiF的蒸镀厚度为1nm;阴极:以的蒸镀速率,在电子注入层上面真空蒸镀100nm的Al作为电极;
e、将蒸镀完成的基板进行封装;首先采用涂胶设备将清洗后盖板用UV胶进行涂覆工艺,然后将涂覆完成的盖板移至压合工段,将蒸镀完成的基板置于盖板上端,最后将基板和盖板在贴合设备作用下进行贴合,同时完成对UV胶光照固化。
器件结构如下:ITO/PEDOT:PSS/X55&3TPABF4/PeQDs/TPBi/LiF/Al。
上述使用材料结构如下:
采用上述所得的3TPABF4掺杂空穴传输层的钙钛矿发光器件进行I-V-L测试,得到掺杂情况下,其电流密度和发光亮度随电压的变化特性曲线,如图15和图16所示(横坐标为电压,单位伏特;纵坐标为电流密度和发光亮度,单位分别为mA/cm2和cd/m2),掺杂之后,电流密度和发光亮度均出现增加的趋势。
(4)钙钛矿太阳能电池器件的制备
a、将掺杂氟的氧化锡玻璃(FTO)依次用异丙醇、丙酮、去离子水分别超声清洗,干燥后接着用UV-O3处理20min;
b、在上述FTO上,以4000rpm/60s的条件旋涂含0.2mol.L-1SnCl2的乙醇溶液,180℃热退火1h,得到厚度为30nm的SnO2致密层,然后将10mg/mL的PCBM层在3000r下旋涂30秒。
c、将CH3NH3I和PbI2以1mol.L-1:1.08mol.L-1的摩尔比溶解在DMF和DMSO(体积比为4:1)中制备MAPbI3前驱体溶液。并以1500rpm/15s的转速旋涂在制备好的SnO2/PCBM衬底上,100℃热退火45min。
d、随后,在1毫升氯苯中加入72mg的Spiro-OMeTAD和17μL p型掺杂剂溶液(5mg3TPABF4在1毫升氯苯)得到掺杂溶液,将50μL掺杂溶液以4000rpm/30s旋涂于钙钛矿层。
e、最后通过热蒸发法蒸镀80nm金作为电极。
器件结构如下:FTO/SnO2/PCBM/Perovskite/Spiro-OMeTAD&3TPABF4/Au。
上述使用材料结构如下:
实施例3
一种基于有机阳离子盐类的p型半导体掺杂剂,具有式(Ⅰ)所示的结构式:
其中,X为-OCH3,Z为PF6,采用以下步骤制备得到:
(1)3TPAOMe的合成
将三(4-羟基苯)胺(3TPAHO)(5.00g,17.05mmol)、碘甲烷(14.52g,102.28mmol)和KOH(5.74g,102.28mmol)混合到圆底烧瓶中。加入DMF(50ml),反应混合物加热至80℃过夜。反应冷却至室温,用乙醚/水萃取。有机相用盐水洗涤,用MgSO4干燥,最后减压除去溶剂。用石油醚/乙酸乙酯(20:1,v/v)快速色谱法纯化,得到白色固体产物5.08g,化学名为三(4-甲氧基苯)胺,收率为89%。1H-NMR(300MHz,CDCl3),δppm:6.94(6H,d,J=8.9Hz),6.79(6H,d,J=8.9Hz),3.73(9H,s).13C-NMR(75MHz,CDCl3),δppm:154.99,142.07,124.87,114.59,55.52.HRMS(ESI+):calcd for C21H22NO3[M+H]+:336.1594,Found 336.1651.
(2)3TPAPF6的合成
将三(4-甲氧基苯)胺(3TPAOMe)(2.00g,5.96mmol)、六氟磷酸锂(LiPF6)(1.81g,11.93mmol)和搅拌棒装入干燥的250mL Schlenk烧瓶中,并将反应瓶抽去空气并通入氮气。然后加入脱气的二氯甲烷50mL,室温搅拌24h。反应溶解在二氯甲烷中,通过滤纸过滤得到滤液,旋转蒸发除去溶剂,留下蓝黑色固体。固体在极少量的二氯甲烷中溶解,并在干燥的乙醚中沉淀,产生的蓝黑色粉末通过滤纸过滤收集。最后将固体在真空下干燥,得到蓝黑色固体产物2.50g,命名为三(4-甲氧基苯)胺-六氟磷酸盐,产率为87%。
(3)钙钛矿发光器件的制备
a、ITO阳极:将涂层厚度为150nm的ITO(氧化铟锡)玻璃基板用乙醇擦洗,然后用丙酮清洗两次,超声波洗涤20min,洗涤结束后,然后转移至等热台烘干,烘烤结束后降温,转移至UV-O3处理15min;
b、然后将PEDOT:PSS作为空穴注入层,以3000rpm/45s,加速度为1500的旋涂速度旋于ITO上,并且140℃退火15min后,转移至手套箱进行下一步操作;
c、将空穴传输层材料和P型掺杂剂3TPAPF6配制成等摩尔浓度的溶液,然后按照不同的摩尔比例分别得到不同掺杂浓度的掺杂混合溶液,以3000rpm/45s,加速度为1500的旋涂速度旋于覆盖PEDOT:PSS的ITO上成膜,120℃退火20min形成掺杂传输层;
d、将钙钛矿量子点以2000rpm/45s,加速度为1000的旋涂速度旋于掺杂传输层上,并转移至蒸镀机,进行蒸镀器件工艺,在其上依次蒸镀其它功能层;电子传输层:以的蒸镀速率,在钙钛矿发光层上面真空蒸镀45nm的TPBi作为电子传输层;电子注入层:以的蒸镀速率,真空蒸镀电子注入层材料LiF,所述LiF的蒸镀厚度为1nm;阴极:以的蒸镀速率,在电子注入层上面真空蒸镀100nm的Al作为电极;
e、将蒸镀完成的基板进行封装;首先采用涂胶设备将清洗后盖板用UV胶进行涂覆工艺,然后将涂覆完成的盖板移至压合工段,将蒸镀完成的基板置于盖板上端,最后将基板和盖板在贴合设备作用下进行贴合,同时完成对UV胶光照固化。
器件结构如下:ITO/PEDOT:PSS/X55&3TPAPF6/PeQDs/TPBi/LiF/Al。
上述使用材料结构如下:
采用上述所得的3TPAPF6掺杂空穴传输层的钙钛矿发光器件进行I-V-L测试,得到掺杂情况下,其电流密度和发光亮度随电压的变化特性曲线,如图17和图18所示(横坐标为电压,单位伏特;纵坐标为电流密度和发光亮度,单位分别为mA/cm2和cd/m2),掺杂之后,电流密度和发光亮度均出现增加的趋势。
(4)钙钛矿太阳能电池器件的制备
a、将掺杂氟的氧化锡玻璃(FTO)依次用异丙醇、丙酮、去离子水分别超声清洗,干燥后接着用UV-O3处理20min;
b、在上述FTO上,以4000rpm/60s的条件旋涂含0.2mol.L-1SnCl2的乙醇溶液,180℃热退火1h,得到厚度为30nm的SnO2致密层,然后将10mg/mL的PCBM层在3000r下旋涂30秒。
c、将CH3NH3I和PbI2以1mol.L-1:1.08mol.L-1的摩尔比溶解在DMF和DMSO(体积比为4:1)中制备MAPbI3前驱体溶液。并以1500rpm/15s的转速旋涂在制备好的SnO2/PCBM衬底上,100℃热退火45min。
d、随后,在1毫升氯苯中加入72mg的Spiro-OMeTAD和17μL p型掺杂剂溶液(5mg3TPAPF6在1毫升氯苯)得到掺杂溶液,将50μL掺杂溶液以4000rpm/30s旋涂于钙钛矿层。
e、最后通过热蒸发法蒸镀80nm金作为电极。
器件结构如下:FTO/SnO2/PCBM/Perovskite/Spiro-OMeTAD&3TPAPF6/Au。
上述使用材料结构如下:
以上结果证明,P型掺杂剂3TPATFSI、3TPABF4和3TPAPF6具有较深的LUMO能级,表现出对X55和Spiro-OMeTAD良好的氧化性,掺杂效率在10-20%,当它们掺杂至空穴传输层中时,构建的钙钛矿发光器件和钙钛矿太阳能电池表现出提升的器件性能。此外,这类p型掺杂剂合成步骤简单,成本低,在有机溶剂中表现出良好的溶解性,有利于溶液法处理多层半导体器件,在未来光电显示、光伏转换以及柔性穿戴光电储能等领域具有良好的应用前景。
上述对实施例的描述是为便于该技术领域的普通技术人员能理解本发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于上述实施例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之内。

Claims (14)

1.一种基于有机阳离子盐类的p型半导体掺杂剂,其特征在于,所述p型半导体掺杂剂具有式(I)所示的化学结构通式:
式中,X为氢、烷基、烷氧基、羟基、苯氧基、巯基、巯醚基、卤素、烯基、炔基或芳基中的任意一种;其中,每个X可以相同或不同;
Z-为含卤素磺酸阴离子、含卤素硼酸阴离子、含卤素锑酸阴离子或含卤素磷酸阴离子中的任意一种。
2.根据权利要求1所述的有机阳离子盐类的p型半导体掺杂剂,其特征在于,化学结构通式(I)优选以下的化合物:
3.一种基于有机阳离子盐类的p型半导体掺杂剂的合成方法,其特征在于:
合成路线为:
所述合成路线中,3TPAR表示三(4-R取代基苯)胺,R2Br表示并非限定于溴代肪烃的卤代脂肪烃,DMF表示N,N-二甲基甲酰胺,3TPAX表示三(4-X取代基苯)胺,MZ表示阴离子金属盐,DCM表示二氯甲烷,3TPAZ表示三(4-X取代基苯)胺阴离子盐;
第一步反应的反应条件优选反应溶剂为DMF、催化剂为KOH、加热温度为80~100℃、反应时间12~24h;
第二步反应的反应条件优选反应溶剂为DCM、反应温度为20~40℃、反应的时间为2~4h;反应过程是在非氧化条件下进行。
4.根据权利要求3所述的一种基于有机阳离子盐类的p型半导体掺杂剂的合成方法,其特征在于,所述的合成方法中,3TPAR、R2Br、KOH和DMF的摩尔体积比为(1.0~1.71)mmol:(6~10.24)mmol:(6~10.24)mmol:(15~20)mL。
5.根据权利要求3所述的一种基于有机阳离子盐类的p型半导体掺杂剂的合成方法,其特征在于,第一步反应后产物的处理过程为:待反应结束之后,冷却至室温,再加入乙醚和水萃取,得到有机相用氯化钠溶液洗涤并且用无水硫酸钠干燥,最后用100-200目硅胶层析柱提纯。
6.根据权利要求3所述的一种基于有机阳离子盐类的p型半导体掺杂剂的合成方法,其特征在于,所述的合成方法中,3TPAX、MZ和DCM的摩尔体积比优选为(1~1.2)mmol:(1.1~1.2)mmol:(0.026~0.028)mmol:(10~15)mL。
7.根据权利要求3所述的一种基于有机阳离子盐类的p型半导体掺杂剂的合成方法,其特征在于,第二步反应后产物的处理过程为:待反应结束后,过滤除去固体残渣,有机相浓缩后得到深色固体粗产物,然后溶于少量DCM并用乙醚沉淀两次,最后在真空干燥箱中干燥。
8.根据权利要求3所述的一种基于有机阳离子盐类的p型半导体掺杂剂的合成方法,其特征在于,第二步反应的过程中,所述的非氧化条件采用氮气鼓泡脱除反应体系中的氧气。
9.一种半导体器件,包括空穴传输层,以及可选的导电电极、可选的空穴注入层、可选的发光层、可选的吸收层、可选的电子传输层和可选的电子阻挡层;其中,所述空穴传输层包含权利要求1或2中任一项所述的基于有机阳离子盐类的p型半导体掺杂剂。
10.一种半导体器件的制备方法,其特征在于,包括以下步骤:
(a)在导电电极上引入空穴注入层;
(b)将所述基于有机离子盐类的p型半导体掺杂剂掺杂至空穴传输层中形成P型掺杂层;
(c)在所述P型掺杂层上引入发光层或吸收层;
(d)在发光层或吸收层上引入电子传输层和电子注入层,最后蒸镀上导电电极;
所述的基于有机离子盐类的P型半导体掺杂剂采用权利要求1或2中所述的基于有机阳离子盐类的P型半导体掺杂剂。
11.一种钙钛矿半导体器件,其特征在于,所述的钙钛矿半导体器件中的电子传输层中含有适量的权利要求1或2所述的基于有机阳离子盐类的P型半导体掺杂剂。
12.一种钙钛矿半导体器件的制备方法,其特征在于,含有将适量的权利要求1或2所述的基于有机阳离子盐类的P型半导体掺杂剂与适量的空穴传输材料混合均匀,溶于一定量的有机溶剂中,得到混合溶液;然后将所述的混合溶液利用溶液涂布法旋涂于透明导电的基片表面,获得含有所述P型半导体掺杂剂的电子传输层的步骤。
13.如权利要求12所述的钙钛矿半导体器件的制备方法,其特征在于,包括如下步骤:
S1、将适量的权利要求1或2所述的基于有机阳离子盐类的P型半导体掺杂剂与适量的空穴传输材料混合均匀,溶于一定量的氯苯溶剂中,得到混合溶液;
S2、将S1得到的混合溶液旋涂于涂有PEDOT:PSS的ITO基片上,加热退火处理,在其表层旋涂钙钛矿层,然后在钙钛矿层的表面依次蒸镀电子传输层、电子注入层和铝电极得到一种钙钛矿半导体发光器件;或者将S1得到的混合溶液旋涂于沉积有钙钛矿层和SnO2层的FTO基片上,得到钙钛矿器件中间物,然后在所述钙钛矿器件中间物的表面蒸镀金电极,得到一种钙钛矿太阳能电池器件。
14.如权利要求13所述的钙钛矿半导体器件的制备方法,其特征在于,所述的溶液涂布法为旋涂法、浸涂法、刮涂法、喷墨印刷法、丝网印刷法、喷雾法、辊涂法中的任意一种。
CN202310346255.2A 2023-04-03 2023-04-03 p型有机半导体掺杂剂及制备和钙钛矿半导体器件 Active CN116854600B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310346255.2A CN116854600B (zh) 2023-04-03 2023-04-03 p型有机半导体掺杂剂及制备和钙钛矿半导体器件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310346255.2A CN116854600B (zh) 2023-04-03 2023-04-03 p型有机半导体掺杂剂及制备和钙钛矿半导体器件

Publications (2)

Publication Number Publication Date
CN116854600A true CN116854600A (zh) 2023-10-10
CN116854600B CN116854600B (zh) 2024-07-02

Family

ID=88227368

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310346255.2A Active CN116854600B (zh) 2023-04-03 2023-04-03 p型有机半导体掺杂剂及制备和钙钛矿半导体器件

Country Status (1)

Country Link
CN (1) CN116854600B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4503195A (en) * 1981-11-02 1985-03-05 Board Of Regents, The University Of Texas System Di- and triphenylated cation radical polymers and their use as Diels-Alder catalysts
CN102077381A (zh) * 2008-06-27 2011-05-25 通用显示公司 可交联的离子掺杂剂
JP2016106393A (ja) * 2011-11-30 2016-06-16 日立化成株式会社 有機エレクトロニクス材料、インク組成物、及び有機エレクトロニクス素子
US20170373251A1 (en) * 2014-12-16 2017-12-28 Novaled Gmbh Substituted 1,2,3-Triylidenetris(cyanomethanylylidene) Cyclopropanes for VTE, Electronic Devices and Semiconducting Materials Using Them
US20200013965A1 (en) * 2017-02-28 2020-01-09 Rohm And Haas Electronic Materials Korea Ltd. Organic electroluminescent compound and organic electroluminescent device comprising the same
CN113416201A (zh) * 2021-05-10 2021-09-21 复旦大学 p掺杂有机小分子及其制备方法和应用
CN115241374A (zh) * 2017-02-20 2022-10-25 诺瓦尔德股份有限公司 电子半导体器件和制备所述电子半导体器件的方法
CN115768222A (zh) * 2022-12-14 2023-03-07 浙江大学 一种钙钛矿太阳电池及其快速制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4503195A (en) * 1981-11-02 1985-03-05 Board Of Regents, The University Of Texas System Di- and triphenylated cation radical polymers and their use as Diels-Alder catalysts
CN102077381A (zh) * 2008-06-27 2011-05-25 通用显示公司 可交联的离子掺杂剂
JP2016106393A (ja) * 2011-11-30 2016-06-16 日立化成株式会社 有機エレクトロニクス材料、インク組成物、及び有機エレクトロニクス素子
US20170373251A1 (en) * 2014-12-16 2017-12-28 Novaled Gmbh Substituted 1,2,3-Triylidenetris(cyanomethanylylidene) Cyclopropanes for VTE, Electronic Devices and Semiconducting Materials Using Them
CN115241374A (zh) * 2017-02-20 2022-10-25 诺瓦尔德股份有限公司 电子半导体器件和制备所述电子半导体器件的方法
US20200013965A1 (en) * 2017-02-28 2020-01-09 Rohm And Haas Electronic Materials Korea Ltd. Organic electroluminescent compound and organic electroluminescent device comprising the same
CN113416201A (zh) * 2021-05-10 2021-09-21 复旦大学 p掺杂有机小分子及其制备方法和应用
CN115768222A (zh) * 2022-12-14 2023-03-07 浙江大学 一种钙钛矿太阳电池及其快速制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JOSHUA P. BARHAM等: ""Contra-thermodynamic Hydrogen Atom Abstraction in the Selective C−H Functionalization of Trialkylamine N‑CH3 Groups"", 《J. AM. CHEM. SOC.》, vol. 138, 3 November 2016 (2016-11-03), pages 15482 - 15487 *
V. G. KOSHECHKO等: ""Polymerization of pyrrole and phenylacetylene under the action of stable radical ions"", 《SYNTHETIC METALS》, vol. 59, 17 April 2003 (2003-04-17), pages 273 - 278, XP024171482, DOI: 10.1016/0379-6779(93)91037-3 *

Also Published As

Publication number Publication date
CN116854600B (zh) 2024-07-02

Similar Documents

Publication Publication Date Title
CN108484569B (zh) 一种噻吩桥联四胺芘空穴传输材料及其在钙钛矿太阳能电池中的应用
KR101811243B1 (ko) Pb 이온 누출 방지를 위한 신규한 전도성 화합물, 그를 포함하는 페로브스카이트 태양전지
CN105968126B (zh) 一类含联吡啶/菲啰啉鎓盐的水/醇溶性共轭小分子及其制备方法与应用
US20170154735A1 (en) Organic-inorganic hybrid perovskite compound, its preparation method and solar cell comprising the same
CN107954884B (zh) 高玻璃化转变温度空穴注入材料及其制备与应用
CN108922971B (zh) 一种快速提升基于有机空穴传输层钙钛矿太阳能电池性能的工艺
CN113880862B (zh) 一种具备协同组装特性的非富勒烯受体及其制备方法与应用
CN110343119B (zh) 一种含苯并噻二唑单元的非掺杂空穴传输材料及制备与应用
CN110581221A (zh) 一种掺杂离子添加剂的钙钛矿太阳能电池的电子传输层及制备方法和应用
CN108503655B (zh) 一种杂环化合物及使用该杂环化合物的有机电子装置
CN116854600B (zh) p型有机半导体掺杂剂及制备和钙钛矿半导体器件
JP2012084250A (ja) 光電変換素子及び太陽電池
CN116731074A (zh) 含大π对称氮杂环基元的自组装空穴选择材料及应用
CN114349771B (zh) 一种六苯并蔻基非富勒烯受体材料及其制备和应用
CN112151685B (zh) 一种离子型主体材料及其在固态发光电化学池中的应用
CN102807554A (zh) 含萘、蒽、二苯并噻吩砜单元的有机半导体材料及其制备方法和应用
CN111171046B (zh) 一种基于四噻吩并吡咯的免掺杂空穴传输材料及其合成方法和应用
CN111454262B (zh) 阴极界面修饰层材料以及钙钛矿太阳能电池
CN111138454B (zh) 一种基于茚并[1,2-b]咔唑的空穴传输材料及其制备方法和应用
CN111153914A (zh) 一种非对称空穴传输材料及其制备方法和应用
CN115448873B (zh) 一种dj相2d钙钛矿材料和制备方法及其应用
CN113651971B (zh) 一种多钼氧簇材料及其制备方法和应用、太阳能电池和有机发光二极管
CN102807555B (zh) 萘基蒽取代的二苯并噻吩砜有机半导体材料及其制备方法和应用
CN105837495A (zh) 芳胺类衍生物取代苯酚或烷氧基苯小分子空穴传输材料的制备与应用
CN117164631A (zh) 有机小分子功能化合物、掺杂体及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant