CN116790628B - 油菜BnLAZY1.A03基因及等位变异位点的应用 - Google Patents
油菜BnLAZY1.A03基因及等位变异位点的应用 Download PDFInfo
- Publication number
- CN116790628B CN116790628B CN202310979228.9A CN202310979228A CN116790628B CN 116790628 B CN116790628 B CN 116790628B CN 202310979228 A CN202310979228 A CN 202310979228A CN 116790628 B CN116790628 B CN 116790628B
- Authority
- CN
- China
- Prior art keywords
- rape
- bnlazy1
- gene
- seq
- angle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 108090000623 proteins and genes Proteins 0.000 title claims abstract description 52
- 241000196324 Embryophyta Species 0.000 claims abstract description 27
- 238000000034 method Methods 0.000 claims abstract description 18
- 230000009418 agronomic effect Effects 0.000 claims abstract description 14
- 235000013399 edible fruits Nutrition 0.000 claims abstract description 7
- 230000001105 regulatory effect Effects 0.000 claims abstract description 7
- 230000035772 mutation Effects 0.000 claims abstract description 6
- 230000002018 overexpression Effects 0.000 claims description 12
- 238000012408 PCR amplification Methods 0.000 claims description 10
- 239000003550 marker Substances 0.000 claims description 8
- 229910021642 ultra pure water Inorganic materials 0.000 claims description 6
- 239000012498 ultrapure water Substances 0.000 claims description 6
- 230000003321 amplification Effects 0.000 claims description 4
- 238000006243 chemical reaction Methods 0.000 claims description 4
- 239000012295 chemical reaction liquid Substances 0.000 claims description 4
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 4
- 240000000385 Brassica napus var. napus Species 0.000 claims description 3
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 claims description 3
- 230000001276 controlling effect Effects 0.000 claims description 3
- 238000007865 diluting Methods 0.000 claims description 3
- 238000002156 mixing Methods 0.000 claims description 3
- 239000002773 nucleotide Substances 0.000 claims description 3
- 125000003729 nucleotide group Chemical group 0.000 claims description 3
- 238000003205 genotyping method Methods 0.000 claims description 2
- 239000003147 molecular marker Substances 0.000 abstract description 11
- 240000002791 Brassica napus Species 0.000 abstract description 6
- 235000011293 Brassica napus Nutrition 0.000 abstract description 3
- 238000011160 research Methods 0.000 abstract description 3
- 238000010353 genetic engineering Methods 0.000 abstract description 2
- 230000008303 genetic mechanism Effects 0.000 abstract description 2
- 239000000463 material Substances 0.000 description 25
- 230000005484 gravity Effects 0.000 description 9
- 230000009261 transgenic effect Effects 0.000 description 9
- 101100127669 Arabidopsis thaliana LAZY1 gene Proteins 0.000 description 8
- 238000005452 bending Methods 0.000 description 8
- 238000009395 breeding Methods 0.000 description 7
- 230000001488 breeding effect Effects 0.000 description 7
- 238000001514 detection method Methods 0.000 description 7
- 239000012634 fragment Substances 0.000 description 7
- 229930192334 Auxin Natural products 0.000 description 5
- 239000002363 auxin Substances 0.000 description 5
- 230000001580 bacterial effect Effects 0.000 description 5
- 239000001963 growth medium Substances 0.000 description 5
- SEOVTRFCIGRIMH-UHFFFAOYSA-N indole-3-acetic acid Chemical compound C1=CC=C2C(CC(=O)O)=CNC2=C1 SEOVTRFCIGRIMH-UHFFFAOYSA-N 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 235000004977 Brassica sinapistrum Nutrition 0.000 description 4
- 239000011162 core material Substances 0.000 description 4
- 230000002068 genetic effect Effects 0.000 description 4
- 238000011084 recovery Methods 0.000 description 4
- 238000012163 sequencing technique Methods 0.000 description 4
- 235000006008 Brassica napus var napus Nutrition 0.000 description 3
- 108090000790 Enzymes Proteins 0.000 description 3
- 102000004190 Enzymes Human genes 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 235000013339 cereals Nutrition 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 230000014509 gene expression Effects 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 230000001404 mediated effect Effects 0.000 description 3
- 239000002609 medium Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000013612 plasmid Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 102000004169 proteins and genes Human genes 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 241000589158 Agrobacterium Species 0.000 description 2
- 235000014698 Brassica juncea var multisecta Nutrition 0.000 description 2
- 235000006618 Brassica rapa subsp oleifera Nutrition 0.000 description 2
- YQYJSBFKSSDGFO-UHFFFAOYSA-N Epihygromycin Natural products OC1C(O)C(C(=O)C)OC1OC(C(=C1)O)=CC=C1C=C(C)C(=O)NC1C(O)C(O)C2OCOC2C1O YQYJSBFKSSDGFO-UHFFFAOYSA-N 0.000 description 2
- 240000007594 Oryza sativa Species 0.000 description 2
- 235000007164 Oryza sativa Nutrition 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 229940088710 antibiotic agent Drugs 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 210000003855 cell nucleus Anatomy 0.000 description 2
- 210000000349 chromosome Anatomy 0.000 description 2
- 239000002872 contrast media Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000003208 gene overexpression Methods 0.000 description 2
- 230000035784 germination Effects 0.000 description 2
- 239000003292 glue Substances 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 102000005962 receptors Human genes 0.000 description 2
- 108020003175 receptors Proteins 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 108091008146 restriction endonucleases Proteins 0.000 description 2
- 235000009566 rice Nutrition 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 238000011426 transformation method Methods 0.000 description 2
- 238000012795 verification Methods 0.000 description 2
- 235000010585 Ammi visnaga Nutrition 0.000 description 1
- 244000153158 Ammi visnaga Species 0.000 description 1
- 241000219194 Arabidopsis Species 0.000 description 1
- 101100540847 Arabidopsis thaliana WRKY12 gene Proteins 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 235000008694 Humulus lupulus Nutrition 0.000 description 1
- 244000025221 Humulus lupulus Species 0.000 description 1
- 101150032688 IAA7 gene Proteins 0.000 description 1
- 102000003960 Ligases Human genes 0.000 description 1
- 108090000364 Ligases Proteins 0.000 description 1
- 235000007688 Lycopersicon esculentum Nutrition 0.000 description 1
- 241000249055 Nettastomatidae Species 0.000 description 1
- 235000016496 Panda oleosa Nutrition 0.000 description 1
- 240000000220 Panda oleosa Species 0.000 description 1
- 240000003768 Solanum lycopersicum Species 0.000 description 1
- 241000209140 Triticum Species 0.000 description 1
- 235000021307 Triticum Nutrition 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000016383 Zea mays subsp huehuetenangensis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 238000012098 association analyses Methods 0.000 description 1
- 239000002551 biofuel Substances 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 230000004186 co-expression Effects 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000008157 edible vegetable oil Substances 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 238000001976 enzyme digestion Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 102000054766 genetic haplotypes Human genes 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000009630 liquid culture Methods 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 235000009973 maize Nutrition 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- AKPLHCDWDRPJGD-UHFFFAOYSA-N nordazepam Chemical compound C12=CC(Cl)=CC=C2NC(=O)CN=C1C1=CC=CC=C1 AKPLHCDWDRPJGD-UHFFFAOYSA-N 0.000 description 1
- 235000015816 nutrient absorption Nutrition 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 108091005706 peripheral membrane proteins Proteins 0.000 description 1
- 230000000243 photosynthetic effect Effects 0.000 description 1
- 238000004382 potting Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000031877 prophase Effects 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 230000004960 subcellular localization Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 230000017260 vegetative to reproductive phase transition of meristem Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/415—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01H—NEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
- A01H1/00—Processes for modifying genotypes ; Plants characterised by associated natural traits
- A01H1/04—Processes of selection involving genotypic or phenotypic markers; Methods of using phenotypic markers for selection
- A01H1/045—Processes of selection involving genotypic or phenotypic markers; Methods of using phenotypic markers for selection using molecular markers
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8201—Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
- C12N15/8202—Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
- C12N15/8205—Agrobacterium mediated transformation
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6844—Nucleic acid amplification reactions
- C12Q1/6858—Allele-specific amplification
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6888—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
- C12Q1/6895—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/13—Plant traits
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/156—Polymorphic or mutational markers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A40/00—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
- Y02A40/10—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
- Y02A40/146—Genetically Modified [GMO] plants, e.g. transgenic plants
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Biotechnology (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- General Engineering & Computer Science (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Analytical Chemistry (AREA)
- Botany (AREA)
- Cell Biology (AREA)
- Immunology (AREA)
- Plant Pathology (AREA)
- Gastroenterology & Hepatology (AREA)
- Mycology (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Developmental Biology & Embryology (AREA)
- Environmental Sciences (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
本发明公开了油菜BnLAZY1.A03基因及等位变异位点的应用,属于植物基因工程技术领域。本发明通过在油菜中过表达BnLAZY1.A03基因,得知其可调整油菜的多种农艺性状,包括分枝角、分枝数、主花序长度、角果数以及单株产量,本发明还利用特异性引物研究了BnLAZY1.A03基因的SNP突变位点在紧凑型和松散型油菜鉴定中的应用。本发明为开展油菜分子标记辅助选择,培育高密度栽培甘蓝型油菜高产紧凑型品种和明确油菜分枝角度的遗传机制奠定了基础。
Description
技术领域
本发明属于植物基因工程技术领域,尤其涉及油菜BnLAZY1.A03基因及等位变异位点的应用。
背景技术
油菜是世界上最重要的油料作物之一。随着全球食用油和生物燃料需求的增长,油菜籽产量持续增长。产量是受多种形态、生理和农艺性状影响的综合性状(Degenhart和Kondra,1984)。Donald(1968)首次提出“理想株型(ideotype)”的概念,期望理想株型减少作物内部竞争,提高作物产量。全株各器官的分布特点和空间结构在一定程度上决定了光合产物的分配,合理的空间配置将有利于提高光能利用率,促进养分吸收和调节源库关系,从而提高产量和改善作物品质。
油菜是多分枝(6-10个分枝)的习性。在实践中,株型影响栽培密度,与油菜高产密切相关。它也是油菜育种的重要选择标准之一。矮秆、多分枝、分枝角度小是育种机械化栽培的理想株型。油菜理想型育种鲜有报道。对油菜株高的研究较多,但分枝角度的研究较少。
在植物中,缺乏重力的上部显示出匍匐生长。人们将这种表现型命名为“懒惰”。长期以来,在不同的物种中发现了懒惰突变体,例如玉米懒惰植株1(la1)突变体(Jenkins和Gerhardt1931Overbeek 1936范·奥弗贝克1938),水稻懒惰突变体(琼斯和王茂林1938),番茄懒惰-1和懒惰-2突变体(罗伯特,1984;Gaiser和Lomax,1993),小麦懒惰serpentina突变体(苏格和图尔坎1991),短柄懒惰突变体(德比郡和伯恩2013)。生长素介导的侧向极性运输相应的水稻和拟南芥懒惰突变体表现出茎向重力性反应降低和分蘖角度增加(李等2007;吉原和利诺2007;Yoshihara等人2013年)。研究人员最近提出了重力弯曲生长过程中的“尖端”机制。一定的倾斜角度可以作为触发点,引起生长素极性运输流动逆转,这充分证明生长素极性运输和重力响应直接相关(Band et al.2012)。
在油菜中,有学者利用遗传群体和自然群体,通过全基因组关联分析定位到调控油菜分枝角的功能基因BnaYUCCA6,证明其变异受生长素合成而控制分枝角度。刘克德课题组也鉴定出一个分枝角调节基因BnaA3.IAA7,其保守modif区域内一个单碱基的突变,影响生长素的结合和茎的向重力性。而BnLAZY1候选基因也曾被通过混合线性模型在A03和C03染色体上定位到,其中A03染色体上的BnLAZY1基因便是本发明的对象。同时,后续学者又定位到油菜BnLAZY1的两个同源基因BnaA10g19550D(BnLAZY1.A10)和BnaC03g06250D(BnLAZY1.C03),证明了油菜BnLAZY1.A03和BnLAZY1.A10同源基因能显著减小侧枝夹角,通过亚细胞定位发现对应的BnLAZY1蛋白作用于细胞核,且该蛋白与BnaCnng05760D和BnaC03g75880D在细胞核中存在相互作用,利用生物信息手段,发现BnLAZY1与WRKY12存在共表达,且该基因参与细胞壁生物合成基因,也印证了之前学者发现LAZY1是一种外周膜蛋白。
发明内容
本发明的目的之一在于提供油菜BnLAZY1.A03基因在调控油菜农艺性状中的应用,所述BnLAZY1.A03基因的核苷酸序列如SEQ ID NO.1所示,序列全长1586bp,其CDS长1110bp,序列如SEQ ID NO.9所示,其蛋白序列如SEQ ID NO.10所示。
优选地,所述农艺性状包括分枝角、分枝数、主花序长度、角果数以及单株产量。
更优选地,所述应用是通过在油菜植株中过表达BnLAZY1.A03基因实现的。
更优选地,所述调控农艺性状为减小分枝角、增加单株产量。
本发明的目的之二在于提供上述油菜BnLAZY1.A03基因的SNP变异位点在鉴定油菜分枝角大小中的应用,所述BnLAZY1.A03基因第一外显子启动子后14bp处存在SNP变异位点,当SNP位点为C时,判定油菜为分枝角小的品种;当SNP位点为T时,判定油菜为分枝角大的品种。
优选地,所述SNP变异位点的鉴定包括以下步骤:
(1)提取待测油菜样品的基因组DNA;
(2)KASP辅助选择标记的扩增:将三条引物用超纯水稀释到10μm浓度后,按照体积比LA1.A03-F6:LA1.A03-H6:LA1.A03-C6:超纯水=6:6:15:23的比例进行混合,形成10μm的primer mix混合引物,并按照反应液体系和程序进行PCR扩增;所述LA1.A03-F6的序列如SEQ ID NO.6所示,LA1.A03-H6的序列如SEQ ID NO.7所示,LA1.A03-C6的序列如SEQ IDNO.8所示;
(3)分枝角基因型的鉴定:扩增完成后放在Bio-Rad CFX96 Real-Time System中37℃,1min读取荧光信号,查看基因分型结果。
优选地,所述步骤(1)中提取待测样品基因组DNA的方法为CTAB法。
更优选地,所述步骤(2)中反应液体系如下:
更优选地,所述步骤(2)中PCR扩增反应程序如下:
与现有技术相比,本发明具有如下有益效果:
本发明为开展分子标记辅助选择,培育高密度栽培甘蓝型油菜高产紧凑型品种和明确油菜分枝角度的遗传机制奠定了基础。
附图说明
图1为实施例1中的pCambia1301载体图谱。
图2为实施例1中转入植物体内的片段示意图。
图3为实施例2中过表达BnLAZY1.A03基因油菜生长间表型结果鉴定。A:5份油菜超表达基因系与对照系相比的BnLAZY1.A03相对表达量;B:对照材料Zhongshuang6(CK)和超表达株系花期盆栽对照表型;C:对照材料Zhongshuang6(CK)和超表达株系苗期下胚轴在黑暗水平处理下0h、2h、4h、6h、8h、10h的茎曲率检测差异。
图4为实施例2中过表达BnLAZY1.A03基因油菜大田成熟期分枝角表型差异。A:对照材料Zhongshuang6与超表达BnLAZY1.A03田间种植单株表型;B和D:对照材料Zhongshuang6与超表达BnLAZY1.A03顶端分枝角(Apical branch angle)取样对比和实际角度差异网箱图比较;C和E:对照材料Zhongshuang6与超表达BnLAZY1.A03底端分枝角(Bottom branch angle)取样对比和实际角度差异网箱图比较。*:p<0.05;**:p<0.01;***:p<0.001。
图5为实施例2中过表达BnLAZY1.A03基因油菜大田成熟期产量性状鉴定。A:对照材料油菜Zhongshuang6与BnLAZY1.A03过表达系种子大小比较;对照材料油菜Zhongshuang6与BnLAZY1.A03过表达系千粒重TSW(B)、单株角果数PN(C)、每角果粒数SN(D)和单株产量SY(E)差异比较。*:p<0.05;**:p<0.01;***:p<0.001
图6为实施例2中过表达BnLAZY1.A03基因油菜大田成熟期其他农艺性状鉴定。对照材料油菜Zhongshuang6与BnLAZY1.A03过表达系株高PH(A)、分枝部位高度BH(B)、有效分枝数BN(C)、主花序有效长MIL(D)、鼠尾长AL(E)、和角果长PL(F)差异比较。ns:notsignificant;*:p<0.05;**:p<0.01;***:p<0.001
图7为实施例4中不同油菜株系等位变异位点的分型结果。
图8为实施例4中自然群体核心材料田间农艺性状考种分析和BnLAZY1.A03基因型统计相关性。自然群体核心材料中BnLAZY1.A03基因关键位点等位变异T/C与群体农艺性状表型差异变异统计分析,包括表型分枝角度BA(A)、株高PH(B)、分枝部位高度FBH(C)、分枝数BN(D)、主花序长MIL(E)、主花序角果数PNMI(F)、单株角果数PN(G)、重心高度GH(H)、千粒重TSW(I)和产量性状SY(J)。ns:not significant;*:p<0.05;**:p<0.01;***:p<0.001。
具体实施方式
实施例1过表达BnLAZY1.A03基因载体的构建
本发明所用的过表达载体是本实验室保存的pCAMBIA1301,通过在该载体的CaMV35S启动子后面的Gus片段进行切除,并插入序列如SEQ ID NO.1所示的BnLAZY1.A03片段(图1),得到pCAMBIA1301-BnLAZY1.A03的过表达载体。
BnLAZY1.A03的过表达载体的构建步骤如下:通过CTAB法提取油菜分枝角极端差异品系(Purler,分枝角BA=27°)的DNA,并以此为模板PCR扩增BnLAZY1.A03基因组片段(1586bp),将PCR扩增产物点胶检测后,参照天根生化科技有限公司胶回收试剂盒,将扩增的目的片段回收保存。将pCAMBIA1301载体和限制性内切酶NcoI+BstEII加入到0.2ml的离心管中,然后放到37℃恒温箱中8h,再进行跑胶电泳,观察其载体酶切片段的大小与位置,用来判断酶切情况,并回收正确的片段大小。参照天根生化科技有限公司的胶回收试剂盒说明书,将扩增的基因BnLAZY1.A03和酶切的载体片段进行胶回收。将回收的目的基因和线性化载体加到0.2ml的离心管中,并加入T4连接酶和缓冲液,37℃处理30min,放入-20℃保存备用。将连接产物转进大肠杆菌中,在超净工作台中,往提前灭菌的1.5ml离心管中加入500μl无抗生素的液体LB培养基,用提前灭菌的枪头或牙签挑取单个菌落至2ml培养基中混匀培养,可以取2μl作为PCR模板。用潮霉素抗性标记引物、载体引物1301-F/R以及通用引物M13-F/R检测菌液,并送武汉奥科鼎盛生物科技有限公司测序验证。若测序正确后,在超净工作台中,用灭菌的枪头吸取测序正确的菌液,分别接种在加有卡那抗生素的液体培养基锥形瓶内中,并将其全部放在37℃摇床上,200rpm转速、12h晃动培养,参照天根生化科技有限公司质粒提取试剂盒的方法提取质粒。将提取的质粒pCAMBIA1301-BnLAZY1.A03(P),用限制性内切酶NcoI+BstEII酶切跑胶,观察酶切后的条带大小是否符合插入片段的大小,且切取的对应的目的条带,并参照回收试剂盒说明书回收纯化,送公司测序验证酶切片段,结果正确即完成过表达的构建(图2)。
实施例2油菜遗传转化
用受体材料中双6号的种子进行发芽,利用农杆菌GV3101介导的遗传转化法侵染油菜的下胚轴,在抗性培养基上筛选和分化,将分化出的小苗切下,促使在培养基中正常生根,正常生长的转化苗移栽到地下室培养,以转化苗的DNA作为模板,利用潮霉素抗性标记筛选阳性转基因植株,成功将过表达载体pCAMBIA1301-35S:BnLAZY1.A03转化至中双6号油菜中,以阳性苗的cDNA为模板,利用基因特异定量引物(LA1A3-qRT-F2/R2)和内参引物BnActin进行实时荧光定量检测,筛选阳性植株中BnLAZY1基因高表达的油菜株系,套袋自交收种,T2代获得过表达BnLAZY1.A03的纯合株系。以受体材料中双6号油菜作为对照。
LA1A3-qRT-F2(SEQ ID NO.2):CCCAGGACCCAAGGATGAGAG;
LA1A3-qRT-R2(SEQ ID NO.3):TACTTCTGCATTATCTGCCGCC;
BnActin-qRT-F(SEQ ID NO.4):CTGGAATTGCTGACCGTATGAG;
BnActin-qRT-R(SEQ ID NO.5):ATCTGTTGGAAAGTGCTGAGGG。
实施例3BnLAZY1.A03基因过表达油菜和中双6号表型比较
1.BnLAZY1.A03基因过表达油菜和中双6号苗期表型比较
先将实施例2中的转基因材料和对照中双6号种子种在加有营养土和水的1.5ml离心管中,待其发芽生长,至下胚轴均生长1cm左右,将其放在离心管盒中水平放置,进行黑暗生长,每2小时暗生长拍照保存图片,并用Image J软件测量下胚轴弯曲程度,统计在Excel表格中,并计算油菜下胚轴的茎曲率值(0小时重力方向与弯曲方向的夹角-每次拍照测量后重力方向与弯曲方向的的夹角),用GraphPadPrism8.0软件做出折线图。
通过农杆菌介导的油菜遗传转化方法侵染油菜中双6号的下胚轴,对过表达油菜进行阳性鉴定,筛选到10株OE-BnLAZY1.A03(P)阳性植株,通过基因表达定量分析(图3A),筛选到与对照组转化受体表达量差异显著的株系3个株系,且对过表达油菜的表型进行观察(图3B),从图中的表型可以看出,OE-BnLAZY1.A03(P)材料可以明显减小分枝角度。将收获的转基因材料进行茎曲率测定实验。发现在油菜初始发芽阶段,转基因材料OE-BnLAZY1.A03(P)相比对照组中双6号在前10个小时水平黑暗生长条件下,下胚轴更迅速的向负重力方向弯曲生长,同时,测定的茎曲率也增加的更快(图3C),表明转基因材料在受到重力作用时,能够更快的对重力刺激做出反应,更迅速的向负重力方向弯曲生长,且存在显著的反向向地性生长的能力。因此,推测油菜侧枝在生长过程中也存在类似的情况,间接的证明了BnLAZY1基因过表达能够响应重力刺激,使作物的枝条向负重力方向生长,有效减小分枝角度。
2.BnLAZY1.A03基因过表达油菜成熟期性状考察
在油菜株系成熟期收获,剪取油菜株系的分枝部位,进行图像采集和处理,利用Image J软件进行分枝角度的测量。同时,对角果数和单株产量等其他农艺性状进行考种统计,利用GraphPadprism 8生物统计分析软件对测量的数据进行分析。
通过大田表型观察和考种分析,相比野生型中双6号,发现转基因材料OE-BnLAZY1.A03不仅显著减小顶端分枝角和底端分枝角(图4),表明该基因具有显著调节分枝角的功能。同时,该转基因材料相比野生型中双6号,虽然会减小角果长和每角果粒数,但在不影响主花序有效长、有效分枝数、分枝部位高度、鼠尾长等农艺性状的条件下,仍能够显著增加单株角果数、千粒重以及单株产量(图5和图6)。通过将转基因材料收获的30粒种子排成一列,可以明显看出OE-BnLAZY1.A03材料30粒种子的直径显著大于野生型中双6号,表明该基因也能显著增加油菜籽粒的大小,极大的丰富了油菜优异基因资源。
实施例4BnLAZY1.A03基因分子标记的开发与应用
利用前期的单倍型分析结果确定关键有效的SNP位点,设计KASP分子标记引物序列,包括2条正向引物,1条反向引物,并在正向引物上加上HEX和FAM荧光标签,其等位变异基因型为C/T,利用KASP酶进行PCR扩增,采用荧光检测仪收集检测扩增产物发出的荧光信号,用于检测油菜BnLAZY1.A03基因5’端SNP的变异。
BnLAZY1.A03基因5’端14bp处由T转换成C变异,导致油菜分枝夹角基因BnLAZY1.A03发生改变的关键SNP,该标记为KASP高通量SNP标记,包括2条正向引物,1条反向引物;引物序列如下:
表1.根据BnLAZY1.A03关键等位变异开发的KASP标记引物序列
GAAGGTGACCAAGTTCATGCTGG-下划线的是FAM荧光标签;
GAAGGTCGGAGTCAACGGATT-波浪线的是HEX荧光标签。
具体如下步骤:
(1)用2*CTAB法提取待测油菜样品的DNA,并加入灭菌的水100μl进行溶解;
(2)将三条引物用超纯水稀释到10μM后,按照体积比LA1.A03-F6:LA1.A03-H6:LA1.A03-C6:超纯水=6:6:15:23的比例加到一个新的离心管中进行混合,形成10μm的primer mix混合引物;
(3)取以上的DNA模板1.5μl,混合引物primer mix1.4μl,2×KASP Mix 5μl,ddH2O2.2μl进行PCR扩增,反应体系如下表2;
(4)将PCR板置于Bio-Rad Q-Cycler 96PCR仪上进行PCR扩增,程序如下表3,并在Bio-Rad CFX96 Real-Time System荧光信号检测系统上进行SNP分型检测;
表2KASP分子标记的PCR扩增体系配制
表3KASP分子标记的PCR扩增反应程序
对不同分枝角材料中的BnLAZY1.A03基因进行KASP分型。判定的标准是以发光信号点的颜色和聚集在横轴或纵轴的位置进行判定:点的信号如果为黄色,那么会聚集在横轴附近,且分枝夹角大的材料和对照亲本6098B聚集在一起,判定为松散株型油菜基因型;点的信号如果为蓝色,那么会聚集在纵轴附近,且分枝夹角小的材料和对照亲本Purler聚集在一起,判定为紧凑株型油菜的基因型。靠近坐标轴交接下象限的4个空点为样品水,作为空白对照。
选取核心种质资源材料中40份分枝角差异的油菜株系,对其材料中的BnLAZY1.A03基因序列进行KASP标记检测,检测基因第一外显子启动子后14bp处的SNP变异和分枝角和其他农艺性状的表型差异。在分枝角小品种中基因型分别是C,在分枝角大的品种中基因型是T。发现从图7中可以看出该基因特异性KASP分子标记可以将分枝角度不同的品种进行有效的基因分型,分枝角大的基因型显现在右下角区域,而分枝角小的基因型则呈现在左上角区域。因此,该KASP分子标记能够有效区分不同分枝角基因的油菜群体材料,且在大田中快速筛选分枝角小的材料。另外发现该KASP标记检测的等位变异与分枝角、分枝数、角果数、千粒重以及单株产量等农艺性状等性状有显著关联(图8)。将该分子标记应用于油菜株型改良分子标记辅助选择育种中,对不同的油菜种质资源进行检测,可以快速筛选出分枝角差异的油菜种子资源,选取所需分枝角大小的种质资源作为育种亲本,并在杂交后代进行标记辅助选择,可以加速育种工作进程,有效提高油菜株型改良的育种效率。
表4利用KASP分子标记检测核心材料BnLAZY1.A03基因型
>BnLAZY1.A03-gDNA(SEQ ID NO.1)
ATGAAGGTACGTTCTATATTTACAAATATATCAACTAACTTTGTAGCCAATACTTACCAATG
CTTAATTTTCTGGCAGTTTTGGGGCTGGATTCATCATCATAAGTTCCCGGAGAATAGCAA
AGAGCAATTCAAAGATGCTACAACTGGTAACTTCTCTTACTCTATATGCTTCTTTTCCTGT
CAAATATGTGGGAACAAAAATAGTTAGGGCGTGTATTCTAGAAGAATGGCAATAGGACTT
AGCAAGCACTTTAGGTGTAGTAATTGTCTCACTACTTCAACTCCATTGGTAGAAAATTAA
ACTGCTGACATGATAAAAAGCTTAAGTTTGTCTTGGCTGTATGTAAATGCCATGTCTCCA
CCTGCCTGTTGCAACAAACTCAAATGCATTTTTTTTTCCAACCTTGAGCCATCAGTGTCT
GTTCATACTTTCTGAATAAACATTTCTTTCAGGTAACAGCCGTTTCTCCCTTTCATCTCAT
CCATCCCTTGATAGCAACGATGTTTACCCGGCAGCATGTGCTGGCCCCAGATACAGTACT
GGGATAACCAAGCAGCTTAACAGGTTCCAGGAAAACTCCTTCCCAGGACCCAAGGATG
AGAGAAACAGTGATTTTTTTGATGGGTTTCTTGCCATTGGAACCCTTGGTGGAGAAACAT
ATCTGGATGAACCAGCAACACCGACATTTGGGGACCCGGCGGCAGATAATGCAGAAGTA
ACAGAGAATGATCTGAAGCTCATTAGCGATGAATTGGAGAAGTTCCTTGAGGCTGAAGC
TAAAGAAGGAAACAACCAGCCATCAGGAAGGAACAGTGACACTAACACTATTGCATCC
ACCATTGAGGCTGCTGAGGGACTAGATGCTGAAGAAGATAATCAGCCAATGAAGTTCCC
ACTCCAAGAGTATCTTTTTGGTTCTCTAATCGAATTATCTGAAACAAAGGTTGCAGGGAA
GAAGGAACGGGCATCACTTGGAGAGCTGTTTCAGGCAGCAGAAATGCAAGATAAACAT
TCAGAAAACAAATATGGGGAGAAAAAGAAGCAAACCAGTACAACCCACAAATCTGCAA
AGCATCTTGTGAAGAAGGTACTGAAGAAGCTACACCCATCCTCCAAGAGTCCTAGCAGT
GGTAAAACTGAAGTGGCTTCCACAAAGAAGAAGTTCCAAAAGGTTGCTCAGCTTTTTC
AGAACCTATTATCAATAGAGCCTGCATGAAATATTCACCAAATGATTAATCCCTTACTTAG
ATAGCATTAACTAGAGCACATCTATAGTACAGTTTGCATAATTAGCTCTAGTGAAAAAGCT
TGCTTCTAACAAACATATATTGTGAGTGCAGATGGCACAAGTTTTTCAGAGAAAAGTATA
TCCAGAAGACTCCATCATGGAAAGCGAAATACACAGCAGCATGACAGATCCAAAAAAC
AGCCAAGCGAATTCTACTGGATTAATGTCTGAGAAGGTGAGCACCTGTAACGAGGGAAG
TAAACCATGGATCCAGTATGAGCTAGGAAGTTCCGATTCAGCTAAAAACGGAGAACACTGGATCAAAACAGACGAAGACTGTAAGTTCACCATCTGA。
>BnLAZY1.A03-CDS(SEQ ID NO.9)
ATGAAGGTACGTTCTATATTTACAAATATATCAACTAACTTTGTAGCCAATACTTACCA
ATGCTTAATTTTCTGGCAGTTTTGGGGCTGGATTCATCATCATAAGTTCCCGGAGAATA
GCAAAGAGCAATTCAAAGATGCTACAACTGGTAACAGCCGTTTCTCCCTTTCATCTCAT
CCATCCCTTGATAGCAACGATGTTTACCCGGCAGCATGTGCTGGCCCCAGATACAGTAC
TGGGATAACCAAGCAGCTTAACAGGTTCCAGGAAAACTCCTTCCCAGGACCCAAGGAT
GAGAGAAACAGTGATTTTTTTGATGGGTTTCTTGCCATTGGAACCCTTGGTGGAGAAAC
ATATCTGGATGAACCAGCAACACCGACATTTGGGGACCCGGCGGCAGATAATGCAGAA
GTAACAGAGAATGATCTGAAGCTCATTAGCGATGAATTGGAGAAGTTCCTTGAGGCTG
AAGCTAAAGAAGGAAACAACCAGCCATCAGGAAGGAACAGTGACACTAACACTATTG
CATCCACCATTGAGGCTGCTGAGGGACTAGATGCTGAAGAAGATAATCAGCCAATGAA
GTTCCCACTCCAAGAGTATCTTTTTGGTTCTCTAATCGAATTATCTGAAACAAAGGTTG
CAGGGAAGAAGGAACGGGCATCACTTGGAGAGCTGTTTCAGGCAGCAGAAATGCAAG
ATAAACATTCAGAAAACAAATATGGGGAGAAAAAGAAGCAAACCAGTACAACCCACA
AATCTGCAAAGCATCTTGTGAAGAAGGTACTGAAGAAGCTACACCCATCCTCCAAGAG
TCCTAGCAGTGGTAAAACTGAAGTGGCTTCCACAAAGAAGAAGTTCCAAAAGATGGCA
CAAGTTTTTCAGAGAAAAGTATATCCAGAAGACTCCATCATGGAAAGCGAAATACACA
GCAGCATGACAGATCCAAAAAACAGCCAAGCGAATTCTACTGGATTAATGTCTGAGAA
GGTGAGCACCTGTAACGAGGGAAGTAAACCATGGATCCAGTATGAGCTAGGAAGTTCC
GATTCAGCTAAAAACGGAGAACACTGGATCAAAACAGACGAAGACTGTAAGTTCACCATCTGA。
>BnLAZY1.A03-protein(SEQ ID NO.10)
MKVRSIFTNISTNFVANTYQCLIFWQFWGWIHHHKFPENSKEQFKDATTGNSRFSLSSHPSL
DSNDVYPAACAGPRYSTGITKQLNRFQENSFPGPKDERNSDFFDGFLAIGTLGGETYLDEPA
TPTFGDPAADNAEVTENDLKLISDELEKFLEAEAKEGNNQPSGRNSDTNTIASTIEAAEGLD
AEEDNQPMKFPLQEYLFGSLIELSETKVAGKKERASLGELFQAAEMQDKHSENKYGEKKK
QTSTTHKSAKHLVKKVLKKLHPSSKSPSSGKTEVASTKKKFQKMAQVFQRKVYPEDSIME
SEIHSSMTDPKNSQANSTGLMSEKVSTCNEGSKPWIQYELGSSDSAKNGEHWIKTDEDCKFTI*。
以上所述的实施例仅是对本发明的优选方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。
Claims (8)
1.油菜BnLAZY1.A03基因在调控油菜农艺性状中的应用,其特征在于,所述BnLAZY1.A03基因的核苷酸序列如SEQ ID NO.1所示;所述农艺性状为分枝角、角果数以及单株产量。
2.根据权利要求1所述的应用,其特征在于,所述应用是通过在油菜植株中过表达BnLAZY1.A03基因实现的。
3.根据权利要求2所述的应用,其特征在于,所述调控农艺性状为减小分枝角、增加单株产量。
4.权利要求1所述油菜BnLAZY1.A03基因的SNP变异位点在鉴定油菜分枝角大小中的应用,其特征在于,所述BnLAZY1.A03基因的SNP变异位点位于SEQ ID NO.1所示核苷酸序列的第14bp处,当SNP位点为C时,判定油菜为分枝角小的品种;当SNP位点为T时,判定油菜为分枝角大的品种。
5.根据权利要求4所述的应用,其特征在于,所述SNP变异位点的鉴定包括以下步骤:
(1)提取待测油菜样品的基因组DNA;
(2)KASP辅助选择标记的扩增:将三条引物用超纯水稀释到10μm浓度后,按照体积比LA1.A03-F6:LA1.A03-H6:LA1.A03-C6:超纯水=6:6:15:23的比例进行混合,形成10μm的primer mix混合引物,并按照反应液体系和程序进行PCR扩增;所述LA1.A03-F6的序列如SEQ ID NO.6所示,LA1.A03-H6的序列如SEQ ID NO.7所示,LA1.A03-C6的序列如SEQ IDNO.8所示;
(3)分枝角基因型的鉴定:扩增完成后放在Bio-Rad CFX96 Real-Time System中37℃,1min读取荧光信号,查看基因分型结果。
6.根据权利要求5所述的应用,其特征在于,所述步骤(1)中提取待测样品基因组DNA的方法为CTAB法。
7.根据权利要求6所述的应用,其特征在于,所述步骤(2)中反应液体系如下:
8.根据权利要求7所述的应用,其特征在于,所述步骤(2)中PCR扩增反应程序如下:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310979228.9A CN116790628B (zh) | 2023-08-05 | 2023-08-05 | 油菜BnLAZY1.A03基因及等位变异位点的应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310979228.9A CN116790628B (zh) | 2023-08-05 | 2023-08-05 | 油菜BnLAZY1.A03基因及等位变异位点的应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN116790628A CN116790628A (zh) | 2023-09-22 |
CN116790628B true CN116790628B (zh) | 2024-02-06 |
Family
ID=88034689
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310979228.9A Active CN116790628B (zh) | 2023-08-05 | 2023-08-05 | 油菜BnLAZY1.A03基因及等位变异位点的应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116790628B (zh) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018064058A1 (en) * | 2016-09-30 | 2018-04-05 | The United States Of America, As Represented By The Secretary Of Agriculture | Dro1 related genes influence lateral root orientation and growth in arabidopsis and prunus species |
CN109402139A (zh) * | 2017-08-18 | 2019-03-01 | 天津大学 | 佛甲草耐盐基因sllazy1及其应用 |
CN110592102A (zh) * | 2019-10-18 | 2019-12-20 | 青岛农业大学 | 调控花生侧枝角度、生长习性和株型的基因lba5及其应用 |
CN110592264A (zh) * | 2019-10-17 | 2019-12-20 | 青岛农业大学 | 花生株型相关基因位点的分子标记方法及其应用 |
CN112210562A (zh) * | 2020-11-12 | 2021-01-12 | 内蒙古农业大学 | 沙柳分枝型调控基因在木本植物枝型调控中的应用 |
CN116004708A (zh) * | 2022-07-15 | 2023-04-25 | 西部(重庆)科学城种质创制大科学中心 | 甘蓝型油菜BnaA01.SnRK1.1基因的应用 |
CN116064900A (zh) * | 2022-09-05 | 2023-05-05 | 中国农业科学院油料作物研究所 | 一种与油菜株型角果倾斜角度大小关联的snp分子标记及应用 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170088846A1 (en) * | 2015-09-25 | 2017-03-30 | The United States Of America, As Represented By The Secretary Of Agriculture | Functional Analysis of LAZY1 in Arabidopsis thaliana and Prunus Trees |
-
2023
- 2023-08-05 CN CN202310979228.9A patent/CN116790628B/zh active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018064058A1 (en) * | 2016-09-30 | 2018-04-05 | The United States Of America, As Represented By The Secretary Of Agriculture | Dro1 related genes influence lateral root orientation and growth in arabidopsis and prunus species |
CN109402139A (zh) * | 2017-08-18 | 2019-03-01 | 天津大学 | 佛甲草耐盐基因sllazy1及其应用 |
CN110592264A (zh) * | 2019-10-17 | 2019-12-20 | 青岛农业大学 | 花生株型相关基因位点的分子标记方法及其应用 |
CN110592102A (zh) * | 2019-10-18 | 2019-12-20 | 青岛农业大学 | 调控花生侧枝角度、生长习性和株型的基因lba5及其应用 |
WO2021073466A1 (zh) * | 2019-10-18 | 2021-04-22 | 青岛农业大学 | 调控花生侧枝角度、生长习性和株型的基因lba5及其应用 |
CN112210562A (zh) * | 2020-11-12 | 2021-01-12 | 内蒙古农业大学 | 沙柳分枝型调控基因在木本植物枝型调控中的应用 |
CN116004708A (zh) * | 2022-07-15 | 2023-04-25 | 西部(重庆)科学城种质创制大科学中心 | 甘蓝型油菜BnaA01.SnRK1.1基因的应用 |
CN116064900A (zh) * | 2022-09-05 | 2023-05-05 | 中国农业科学院油料作物研究所 | 一种与油菜株型角果倾斜角度大小关联的snp分子标记及应用 |
Non-Patent Citations (11)
Title |
---|
BSA-seq and genetic mapping identified candidate genes for branching habit in peanut;Jiaowen Pan等;《Theoretical and Applied Genetics》;第135卷;第4457-4468页 * |
Identification of BnaYUCCA6 as a candidate gene for branch angle in Brassica napus by QTL-seq;Hui Wang等;《Scientific Reports》;第6卷;全文 * |
IGT基因家族调控作物株型研究进展;徐崟海;《生物技术进展》;第12卷(第5期);第673-682页 * |
LAZY1通过油菜素内酯途径调控水稻叶夹角的发育;张晓琼;王晓雯;田维江;张孝波;孙莹;李杨羊;谢佳;何光华;桑贤春;;作物学报(第12期);全文 * |
PREDICTED: Brassica napus protein LAZY 1-like (LOC111216033), mRNA;NCBI;《NCBI GenBank database》;XM_022720313 * |
William,W.Brassica rapa genome, scaffold: A03.《NCBI GenBank database》.2018,LR031572.1. * |
几个影响植物分枝角度的关键基因及其调控机制;刘蒙蒙;谭彬;郑先波;叶霞;李继东;冯建灿;;分子植物育种(第07期);全文 * |
油菜Bna-miR1140基因的分离与转化及其过表达分析;董云;王毅;靳丰蔚;吴旺泽;方彦;徐妙云;王磊;;西北植物学报(第04期);全文 * |
甘蓝型油菜LAZY1基因的功能验证;朱燕;《中国优秀硕士学位论文全文数据库(电子期刊)农业科技辑》(第5期);1-95 * |
甘蓝型油菜分枝角度主基因+多基因混合遗传模型及遗传效应;汪文祥;胡琼;梅德圣;李云昌;周日金;王会;成洪涛;付丽;刘佳;;作物学报(第08期);全文 * |
甘蓝型油菜分枝角度主基因+多基因混合遗传模型及遗传效应;汪文祥等;《作物学报》;第42卷(第8期);第1103-1111页 * |
Also Published As
Publication number | Publication date |
---|---|
CN116790628A (zh) | 2023-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108728575B (zh) | 甘蓝型油菜角果长度性状的主效qtl位点、snp分子标记及应用 | |
CN107227373B (zh) | 一种粳稻抗倒伏基因的snp功能分子标记及应用 | |
CN110066774B (zh) | 玉米类受体激酶基因ZmRLK7及其应用 | |
CN114540529B (zh) | 一种半矮秆增产的玉米基因型、功能性分子标记InDel-K2及其应用 | |
CN116790628B (zh) | 油菜BnLAZY1.A03基因及等位变异位点的应用 | |
CN117106817A (zh) | 草莓FvMAPK12基因及其编码蛋白和生物材料在调控果实产量和品质中的应用 | |
CN108484741B (zh) | 一种控制作物籽粒粒重的蛋白及其应用 | |
CN112980874B (zh) | GhCIPK6D1基因在提高棉花抗旱性中的应用 | |
CN111926024B (zh) | OsDNR1基因的应用 | |
CN102268439A (zh) | 调控玉米氮吸收利用和干旱胁迫基因os1及应用 | |
CN114600765B (zh) | 一种弱感光粳稻种质的创制方法 | |
CN114196660B (zh) | 油菜fc2亚铁螯合酶基因在提高油菜产量中的应用 | |
CN115997677B (zh) | 一种快速改良玉米茎腐病抗性的育种方法 | |
CN116621959B (zh) | 大豆GmMADS5基因及其在植物花期调控中的应用 | |
CN116694811B (zh) | 一种与小麦苗期种子根数目qtl紧密连锁的分子标记及其应用 | |
CN116356073B (zh) | 与松散型花椰菜矮茎基因连锁的分子标记及应用 | |
CN107641152B (zh) | 水稻mTERF转录终止因子基因V14及其应用 | |
CN118853601A (zh) | 谷氨酰胺合成酶及其基因BnaGLN1;2a在油菜氮高效育种中的应用 | |
CN105461791B (zh) | Myb37蛋白及其编码基因在调控植物种子萌发中的应用 | |
CN118460599A (zh) | Chalk1基因在调控稻米品质中的应用 | |
CN117866982A (zh) | 一种BnaA04.DCPA1基因及其应用、蛋白质、SNP分子标记 | |
CN117947088A (zh) | 调控栽培稻氮利用效率的基因OsNPF7.1b的分子标记及其应用 | |
CN118620952A (zh) | ZmGPAT10基因在提高玉米耐盐中的应用 | |
CN118240839A (zh) | 一种鸭茅开花基因dg3c00010.1及其应用 | |
CN116034870A (zh) | 一种通过含有可视化标记的小麦基因编辑突变体诱导的单倍体植株的筛选方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |