CN111926024B - OsDNR1基因的应用 - Google Patents

OsDNR1基因的应用 Download PDF

Info

Publication number
CN111926024B
CN111926024B CN202010831842.7A CN202010831842A CN111926024B CN 111926024 B CN111926024 B CN 111926024B CN 202010831842 A CN202010831842 A CN 202010831842A CN 111926024 B CN111926024 B CN 111926024B
Authority
CN
China
Prior art keywords
rice
osdnr1
gene
leu
indica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010831842.7A
Other languages
English (en)
Other versions
CN111926024A (zh
Inventor
李姗
张思宇
沈成波
朱丽梅
张海鹏
田亚男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Agricultural University
Original Assignee
Nanjing Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Agricultural University filed Critical Nanjing Agricultural University
Priority to CN202010831842.7A priority Critical patent/CN111926024B/zh
Publication of CN111926024A publication Critical patent/CN111926024A/zh
Application granted granted Critical
Publication of CN111926024B publication Critical patent/CN111926024B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/6895Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/13Plant traits
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/146Genetically Modified [GMO] plants, e.g. transgenic plants

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Botany (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Cell Biology (AREA)
  • Mycology (AREA)
  • Nutrition Science (AREA)
  • Immunology (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了OsDNR1基因的应用。OsDNR1基因在提高水稻的氮肥利用效率与产量中的应用。籼稻OsDNR1基因启动子在提高水稻的氮肥利用效率与产量中的应用,所述的籼稻OsDNR1基因启动子序列如SEQ ID NO.3所示。我们利用华粳籼74背景下的68份单片段置换系材料进行QTL分析,鉴定到了影响硝态氮吸收速率的主效QTL位点,qDNR1。通过将籼稻中OsDNR1的优异等位变异引入到粳稻中,能够提高水稻的氮肥利用效率与产量。

Description

OsDNR1基因的应用
技术领域
本发明属于植物基因工程技术领域,涉及OsDNR1基因的应用。
背景技术
水稻是我国第二大粮食作物,其种植总面积、总产量和单位面积产量均居全国粮食作物第二位(www.fao.org/faostat/zh/#data)。因此,水稻在中国粮食生产和农业发展中历来具有举足轻重的战略意义。水稻育种经历了一代代的改良。上世纪60年代,“绿色革命”的出现推动了半矮秆水稻和小麦新品种的育成和大面积推广,有效地解决了“高产与倒伏”之间的矛盾,实现了水稻单产的大幅度提升。然而,半矮秆水稻和小麦品种也表现出其生长发育对氮肥响应减弱的现象。由于根系对铵态氮和硝态氮吸收速率的下降,导致了氮肥利用效率(Nitrogen Use Efficiency,NUE)的降低(Li et al.,2018)。我国水稻杂种优势利用研究始于1964年袁隆平发现雄性不育株。1970年李必湖在海南崖县南红农场发现一株花粉败育的野生稻,这为我国水稻雄性不育系的选育打开了突破口。1973年我国成功实现籼稻杂交水稻三系配套,1976年籼型杂交稻开始在全国大面积推广,我国成为世界上第一个成功进行水稻杂种优势商品化利用的国家。杂交水稻为我国粮食生产做出了巨大贡献(邓晓建等.2001)。
在过去的半个多世纪,粮食产量显著增长用以养活日益增长的人口,这主要归功于化学肥料的大量使用(Godfray et al.,2010;Liu et al.,2013)。然而,大量使用肥料会引起严重的环境污染、气候变化以及生物多样性的破坏,这些都是21世纪人们所需要面临的巨大挑战。据报道每年有超过120Mt的氮肥投入田间,然而在发展中国家中,作物吸收的氮肥不足一半(Rothstein,2007;Kant et al.,2011)。因此为满足作物的生长,氮肥的需求量在持续增长。现今为解决产量与环境冲突最有效的方法就是提高氮肥利用率。
氮肥利用效率(Nitrogen Use Efficiency,NUE)是一个复杂的性状,受遗传因素与多种环境因素协同调控。一般而言,影响作物氮肥利用效率的因素主要是氮吸收效率(Nitrogen Uptake Efficiency,NUpE)。氮吸收效率主要是由作物根系的氮吸收能力决定的。因此,从育种源头上通过提高水稻根系的氮肥吸收能力来提高水稻本身的氮肥利用效率势在必行。
根系是植物获取氮素(N)的主要器官,是植物与土壤之间的关系纽带,由于其具备非常发达的通气组织,使其根际微环境中易发生硝化作用,因此水稻中大约40%的氮源是以硝酸盐的形式被吸收。水稻中的硝酸盐转运蛋白,大致可以分成低亲和力转运体NRT1和高亲和力转运体NRT2两个家族。但OsNPF6.5(OsNRT1.1B)是个例外,它编码双亲和的硝态氮转运蛋白。在OsNPF6.5(OsNRT1.1B)编码区,籼粳稻之间一个碱基的差异导致了硝酸盐转运蛋白的活性不同,最终导致籼稻品种的氮肥吸收速率普遍高于粳稻品种。究其原因,NRT1.1B通过调控水稻根系微生物组,使得籼稻根系周围富集的微生物组的种类多于粳稻,从而影响了籼粳亚种间的氮肥利用效率。然而,OsNRT1.1A的表达不受硝酸盐影响,受铵盐诱导,主要参与了水稻应对胞内硝酸盐及铵盐利用的基础代谢功能的调节。OsNRT2家族成员OsNRT2.1、OsNRT2.2和OsNRT2.3a的表达大多受到硝酸盐诱导,并且发挥吸收低浓度NO3 -的功能时需要伴侣蛋白OsNAR2.1存在。OsNAR2.1过量表达株系的氮肥吸收能力和产量均显著提升;而osnar2.1功能缺失突变体的根长和侧根数目则会受到抑制。OsNRT2.3b,是与OsNRT2.3a在氨基酸序列上相似度高达94.2%的另一个转录本,在增强水稻对pH的缓冲能力,提高氮、铁、磷的吸收,以及提高水稻的氮肥有效利用率方面发挥重要作用。OsNPF2.4主要在表皮层、木质部薄壁组织和韧皮部筛管伴胞中表达,可以将硝态氮从根部运输至地上部分。在高浓度NO3 -供应的条件下,过量表达OsNPF2.4可以增强硝态氮从根部到地上部分的运输。最近报道的硝酸盐转运蛋白OsNPF6.1HapB能够促进水稻根系对硝酸盐的吸收,并在低氮条件下提高水稻产量。
尽管在水稻和玉米中已获得了一些氮高效利用相关的候选基因(Gallais andHirel,2004;Martin et al.,2006;Obara et al.2001;Tabuchi et al.,2005),但是人们对控制植物氮吸收与利用效率的遗传调控网络的认识还非常有限。
发明内容
本发明的目的是针对现有技术的上述不足,提供籼稻OsDNR1基因的应用。
本发明的另一目的是提供一种与水稻氮肥利用效率相关的标记。
本发明的又一目的是一种提高水稻氮肥利用效率的方法。
本发明的目的可通过以下技术方案实现:
OsDNR1基因,其特征在于在籼稻中OsDNR1基因的cDNA核苷酸序列如SEQ ID NO.1所示;在粳稻中OsDNR1基因的cDNA核苷酸序列如SEQ ID NO.5所示。
OsDNR1基因在提高水稻的氮肥利用效率与产量中的应用。
籼稻OsDNR1基因启动子,其特征在于核苷酸序列如SEQ ID NO.3所示。
籼稻OsDNR1基因启动子在提高水稻的氮肥利用效率与产量中的应用。
一种与水稻氮肥利用效率相关的标记,该标记为SEQ ID NO.7所示的OsDNR1基因启动子中第797~1316bp的一段520bp序列;所述的标记在粳稻中存在,根系的NO3 -吸收能力差;所述的标记在籼稻中缺失,导致OsDNR1基因的表达量低,根系的NO3 -吸收能力升高。
一种判断水稻氮肥利用效率的方法,检测水稻OsDNR1基因启动子,如果存在所述的标记,则该水稻品种氮肥利用效率低,如缺失所述的标记,则该水稻品种氮肥利用效率高。
作为本发明的一种优选,检测水稻OsDNR1基因启动子使用的PCR引物如SEQ IDNO.9和SEQ ID NO.10所示。
一种提高水稻氮肥利用效率的方法,降低OsDNR1的基因表达;优选敲除或沉默水稻中本发明所述的标记。
有益效果:
本发明利用华粳籼74(HJX74)背景下的68份单片段置换系材料(Single SegmentSubstitution Lines,SSSLs)进行QTL分析,鉴定到了影响硝态氮吸收速率的主效QTL位点,qDNR1(Dull Nitrogen Response)即OsDNR1基因。通过将籼稻中OsDNR1的优异等位变异引入到粳稻中,能够提高水稻的氮肥利用效率与产量。同时,本发明还发现与HJX74品种中的OsDNR1HJX74基因的2kb启动子(SEQ ID NO.3)相比,等位基因OsDNR1IRAP9在其2kb启动子(SEQID NO.7)中存在1个520bp插入片段和25个SNPs差异。本发明人对收集的13份籼稻和12份粳稻材料中的OsDNR1基因的2kb范围内的启动子区域进行测序分析,结果显示,启动子上的520bp粳稻中存在,在籼稻中缺失。在籼稻中,520bp缺失导致OsDNR1基因的表达量低,籼稻根系的NO3-吸收能力升高(图3)。因此,该520bp的序列可作为判断水稻氮肥利用效率的标记。
附图说明
图1显示提高水稻氮肥利用效率的主效QTL定位。(a),比较亲本材料的NO3 -吸收速率;(b),QTL分析鉴定到了控制水稻氮肥利用效率的主效QTL位点;(c-d)通过对SSSLs的NO3 -吸收速率分析,将候选基因候选基因定位于178kb范围内。
图2显示候选基因OsDNR1的图位克隆。
图3显示13种籼稻和12种粳稻的启动子分析。(a),OsDNR1的启动子区域的INDEL分析;(b),INDEL对OsDNR1的转录水平分析的影响;(c),INDEL对NO3 -吸收速率的影响。
图4显示OsDNR1的2kb启动子区域SNPs分析。
图5显示OsDNR1的功能分析。(a),NIL-OsDNR1HJX74和NIL-OsDNR1IRAP9的株型图;(b)转录水平;(c),蛋白水平;(d),生长素含量;(e),Trp含量;(f),NO3 -吸收速率。
图6显示OsDNR1的转录水平和蛋白水平随氮浓度变化的趋势。(a),OsDNR1的转录水平;(b),OsDNR1的蛋白水平。
图7显示OsARF6和OsARF17能够直接结合在下游基因的启动子上。(a-d),OsARF6能够结合在OsNRT1.1B(a),OsNRT2.3a(b),OsNPF2.4(c)和OsNIA2(d)的启动子上;(e-h),OsARF6能够结合在OsNRT1.1B(e),OsNRT2.3a(f),OsNPF2.4(g)和OsNIA2(h)的启动子上。
图8显示OsARF6和OsARF17结合在下游基因的启动子上受IAA调控。(a),OsNRT1.1B,OsNRT2.3a,OsNPF2.4和OsNIA2的表达受IAA诱导;(b),IAA能够增强OsARF6对下游靶基因的结合能力;(c),IAA能够增强OsARF17对下游靶基因的结合能力;(d),IAA能够提高osarf6和osarf17的NO3 -吸收速率;(e),在pAct::OsDNR1-Flag背景下,过量表达OsARF6和OsARF17能够提高根系的NO3 -吸收速率。
图9显示NIL-OsDNR1HJX74和NIL-OsDNR1IRAP9的的重要农艺性状表型比较分析。(a),株高;(b),分蘖;(c),穗型图;(d),一级枝梗数目;(e),二级枝梗数目;(f),穗粒数;(g),单株产量;(h),NR酶活。
图10显示在不同施氮水平下,ZH11及其背景下敲除系osdnr1重要农艺性状表型比较分析。(a),株型;(b),NO3 -吸收速率;(c),NR酶活;(d),株高;(e),分蘖;(f),一级枝梗数目;(g),二级枝梗数目;(h),每穗穗粒数;(i)单株产量。
图11显示在不同施氮水平下,ZH11及其背景下敲除系osdnr1中的氮含量与分配比例。(a),氮含量;(b),不同组织部位的氮分配比例
具体实施方式
以下实施例中HJX74为籼稻品种华粳籼74的缩写,ZH11为中花11的缩写。
实施例1:鉴定控制水稻硝态氮吸收效率的主效QTL-qdnr1
研究表明,籼稻品种HJX74与粳稻品种IRAP9根系的硝态氮(NO3 -)吸收能力存在差异。因此,本发明人构建了HJX74背景下的单片段置换系(Single Segment SubstitutionLines,SSSLs)材料,并对68份SSSLs进行水培。之后,测定不同SSSL对15N标记的NO3 -吸收速率,并进行QTL分析,获得了两个控制氮肥吸收与利用的主效QTL位点:qDNR1和qDNR10,分别位于第1号染色体和第10号染色体上(图1)。经精细定位、图位克隆、候选基因测序比较分析等实验,证实了qdnr10就是之前报道调控水稻根系NO3 -吸收速率的基因OsNRT1.1B。
本发明人利用HJX74和27-055杂交的F1材料,并以HJX74作为轮回亲本,连续多代回交,构建了BC1F2和BC2F2群体。在此基础上,开展精细定位和图位克隆,成功地分离并克隆了另一个候选基因qDNR1,即OsDNR1(图2)。通过卡位区段内候选基因测序比较分析和遗传互补验证实验,而来自IAPAR9的qDNR1位点是拟南芥中编码生长素合成途径中一个关键酶VAS1的同源基因,负调控生长素含量。另外,本发明人经序列比对分析发现,与OsDNR1HJX74基因的2kb启动子序列(SEQ ID NO.3)相比,等位基因OsDNR1IRAP9在其2kb启动子(SEQ IDNO.7)上有25个SNPs和一个连续的520bp插入;与OsDNR1HJX74基因的gDNA序列(SEQ ID NO.4)相比,等位基因OsDNR1IRAP9的gDNA序列(SEQ ID NO.8)存在30个SNPs。
研究所用的分子标记是以PCR为基础的标记,包括SSR标记和自行设计InDel标记。SSR标记均来自McCouch等(2001,2002)发表的微卫星标记连锁图;STS标记是用SSR分析工具(http://www.gramene.org/gramene/searches/ssrtool)分析克隆序列筛选出微卫星重复性好的SSR目标序列,再用Primer5分析软件对这些目标序列进行引物设计。精细定位和图位克隆所用的多态性标记引物序列详见表1。
PCR程序按照Panaud等(1996)的方法稍加修改进行,具体为每管20μL扩增反应体系,包括:0.15μM SSR引物、200μM dNTPs、1×PCR反应缓冲液(50mM KCl,10mM Tris-HCl pH8.3,1.5mM MgCl2,0.01%明胶)、50~100ng模板DNA,1U Taq酶;反应程序为:94℃DNA变性5min、循环(94℃1min,56℃1min,72℃1min)36次、72℃再延伸5min。扩增出的PCR产物用6%聚丙烯酰胺变性凝胶进行电泳,电泳完毕后,凝胶成像。
表1
Figure BDA0002638285390000051
Figure BDA0002638285390000061
实施例2:优异等位基因OsDNR1HJX74启动子区域的SNPs分析
与HJX74品种中的OsDNR1HJX74基因的2kb启动子(SEQ ID NO.3)相比,等位基因OsDNR1IRAP9在其2kb启动子(SEQ ID NO.7)中存在1个520bp插入片段和25个SNPs差异。本发明人对收集的13份籼稻和12份粳稻材料中的OsDNR1基因的2kb范围内的启动子区域进行测序分析,结果显示,启动子上的520bp在粳稻中存在,在籼稻中缺失。在籼稻中,520bp缺失导致OsDNR1基因的表达量低,籼稻根系的NO3 -吸收能力升高(图3)。因此,可认为OsDNR1基因在籼稻与粳稻中的不同等位变异导致了籼稻与粳稻的NO3 -吸收能力差异。通过PCR检测这段520bp缺失即可判断水稻根系的NO3 -吸收能力。
另外,籼稻与粳稻中的OsDNR1基因其2kb启动子区域内分别存在11个特异的SNPs与520bp片段连锁存在。在此基础上,本发明人对216个栽培稻品种中的OsDNR1基因的2kb范围内的启动子区域的SNPs进行单倍型分析。研究结果表明存在3种不同的单倍型,分别为Hap.A,Hap.B-TEJ和Hap.B-TRJ(图4)。其中,Hap.A是籼稻类型(如:籼稻品种9311),缺失上述的520bp序列;Hap.B-TEJ(如:粳稻品种武运粳7号)和Hap.B-TRJ具有上述520bp的序列。以上数据证明,OsDNR1基因存在明显的籼粳分化现象。
实施例3:籼稻中的OsDNR1HJX74提高了水稻根系生长素含量
本发明人利用27-055与HJX74杂交,获得F1代,连续与HJX74回交6代,构建了籼稻品种HJX74背景下的一对近等基因系材料,NIL-OsDNR1HJX74和NIL-OsDNR1IRAP9。通过RT-qPCR和Western-blotting实验对NIL-OsDNR1HJX74和NIL-OsDNR1IRAP9中DNR1基因的转录水平和蛋白水平进行比较分析。结果显示,粳稻中的等位变异OsDNR1IRAP9导致OsDNR1基因在NIL-OsDNR1IRAP9中的转录水平显著高于NIL-OsDNR1HJX74中。与籼稻相比,粳稻中OsDNR1基因的高表达导致水稻根尖中的生长素含量下降,而色氨酸含量升高(图5a-e)。
实施例4:籼稻中的OsDNR1HJX74提高水稻根系的NO3 -吸收速率
将NIL-OsDNR1HJX74和NIL-OsDNR1IRAP9的种子用20%的次氯酸钠溶液消毒30分钟。之后,放在37℃培养箱内,浸水吸胀24小时。沥干水分,转移至28℃培养箱内催芽。露白之后,转移至镂空的96孔板中,培养7天。选取长势一致的幼苗转移至盛有40L营养液(1.25mMNH4NO3,0.5mM NaH2PO4·2H2O,0.75mM K2SO4,1mM CaCl2,1.667mM MgSO4·7H2O,40μM Fe-EDTA(Na),19μM H3BO3,9.1μM MnSO4·H2O,0.15μM ZnSO4·7H2O,0.16μM CuSO4,and 0.52μM(NH4)3Mo7O24·4H2O,pH 5.5)的蓝色盒子中。不同氮浓度处理时,需要将标准营养液中的1N(1.25mM NH4NO3)更换成0.6N(0.75mM NH4NO3),0.3N(0.375mM NH4NO3)和0.15N(0.1875mMNH4NO3),培养4个周,每2天调节一次pH值。
培养4周以后,将水稻根系浸在0.1mM CaSO4 1分钟,之后转移至含有2.5mM K15NO3的营养液中5分钟,最后再转移至0.1mM CaSO4 1分钟。用滤纸或纱布吸干根系的水分,剪下根系,烘干,磨碎后,测定15N含量(由中国农科院李玉中实验室完成,所用仪器为Isoprime100)。
研究结果显示,携带籼稻等位基因OsDNR1HJX74的近等基因系材料,其根系的氮肥吸收速率明显增强(图5f)。
实施例5:OsDNR1的表达随着氮浓度的升高而降低
我们利用四个氮浓度梯度(0.15N,0.1875mM NH4NO3;0.3N,0.375mM NH4NO3;0.6N,0.75mM NH4NO3和1N,1.25mM NH4NO3)的营养液对ZH11进行水培实验。取水培4周的ZH11的根尖提取总RNA,利用RT-qPCR和Western-blotting实验分析OsDNR1基因的转录水平和蛋白水平。结果显示,OsDNR1的表达量随着氮浓度的升高而升高(图6)。
实施例6:OsARFs调控水稻硝态氮吸收和同化效率
根据EMSA反应体系的需要,设计引物如下(以OsNRT1.1B为例):
WT-F(Biotin):TCTTACTCTCTCTGTCTCGAGCTCGAGCTTGTTGTTGTTGAT+3'Biotin
WT-R:ATCAACAACAACAAGCTCGAGCTCGAGACAGAGAGAGTAAGA
依照试剂盒(LightShift Chemiluminescent EMSA kit,购自Thermo FisherScientific公司,货号为20148)的说明,配制EMSA的反应体系。反应液需要在室温静置20分钟,之后,加入5×loading buffer,终止反应。配制反应液的同时,进行预电泳,约30~45分钟。预电泳结束后,将反应液依次加入点样孔内,待loading buffer至胶板的2/3处,停止电泳。电泳结束后,进行转膜,将条带印记在Hybond-N+膜上。之后,按照ChemiluminescentNucleic Acid Detection Module的说明进行封闭、漂洗和显影。用ImageQuant LAS4000进行显影及拍照。
研究结果显示,OsARF6和OsARF17能够直接结合在下游靶基因OsNRT1.1B,OsNRT2.3a,OsNPF2.4和OsNIA2的富含TGTCTC/ACAGAG的启动子上区域(图7)。
实施例7:OsDNR1介导的生长素含量降低,抑制了OsARFs对下游靶基因启动子的DNA结合能力
通过Chromatin-immunoprecipitation qPCR(ChIP-qPCR)实验,本发明人发现,外援施加生长素能够促进OsARF6和OsARF17对下游靶基因OsNRT1.1B的启动子结合能力。通过转录激活实验分析发现,OsARF6和OsARF17蛋白对下游靶基因具有转录激活活性,而外源施加IAA可以增强OsARF6和OsARF17蛋白对下游靶基因的转录激活能力(图8)。
本实施例采用的转录激活实验方法简述如下:取水稻幼苗的胚芽鞘切成条状置于酶解液中,暗处低速震荡裂解5~6小时后,加入等体积的W5溶液(154mM NaCl,125mMCaCl2,5mM KCl,2mM MES,pH5.7),200g低速离心5分钟,收集沉淀并用W5重悬清洗,反复清洗2次之后用MMg溶液(0.4M甘露醇,15mM MgCl2,4mM MES pH 5.7)重悬。将pOsAMT1.1::LUC、p35S-REN、p35S-GAL4BD-OsGRF4、p35S::OsGIF1和p35S::SLR1载体的质粒DNA按照REN:LUC:GAL4BD=1:6:6比例(质量比)加入水稻原生质体。用等体积的PEG4000/Ca2+进行转化,静置15分钟之后,加入2倍体积的W5终止反应并进行清洗,置于W5溶液中黑暗培养16小时。收集原生质体后加入裂解液,使用PROMEGA双荧光检测试剂盒对LUC/REN值进行测定。
实施8:构建籼稻品种HJX74背景下的近等基因系NIL-OsDNR1HJX74和NIL-OsDNR1IRAP9并完成产量等农艺性状比较分析
本发明人在实施例2中所阐述的BC2F2群体中,选择携带qdnr1位点的材料与HJX74继续进行回交3次,最终获得HJX74背景的一对近等基因系材料NIL-OsDNR1HJX74和NIL-OsDNR1IRAP9。在大田测产试验中,将HJX74背景的一对近等基因系材料种植在正常施加氮量的大田中(施氮量为210kg/ha),观察并统计各种重要农艺性状。统计结果比较显示,粳稻中的等位变异OsDNR1IRAP9增加了水稻分蘖数目,但显著降低了株高、一级枝梗数目、二级枝梗数目,以及每穗穗粒数,最终导致单株产量下降(图9)。
具体的统计方法:株高的统计:在水稻成熟后,分别在田间取12株进行测量株高。穗粒数的统计:在水稻成熟后,分别在田间取12株主分蘖上的穗,分别统计每个穗上的穗粒数直接计数并记录。单株产量的统计:在水稻完全成熟后,取小区内12个单株进行脱粒,收获的种子经过37℃恒温干燥后称重得到单株产量数据,需要进行3次重复试验。
实施例9:构建粳稻品种ZH11背景下的敲除系,并完成ZH11和osdnr1产量等农艺性状分析
利用Crispr/Cas9敲除系统,构建OsDNR1的敲除载体。采用农杆菌介导的转化法将其导入到粳稻品种ZH11中(水稻转化由发明人实验室完成)。将野生型ZH11和敲除株系种植在不同施氮量的大田(施氮量分别为60kg/ha,120kg/ha,210kg/ha,300kg/ha)中,观察并统计转基因材料的农艺性状。研究表明,当施氮量相同时,osdnr1能够略微增加水稻株高,降低分蘖数,但是,能够显著增加二级枝梗数和穗粒数,进而提高氮肥利用效率和增加单株产量(图10)。
实施例10:测定粳稻品种ZH11及其背景下的敲除系地上各组织中氮含量
将ZH11和osdnr1种植在不同氮浓度(60kg/ha,120kg/ha,210kg/ha,300kg/ha)的大田中,植物成熟后,从根部割下,单株装进网袋中,放入37℃恒温干燥。每个样品割取8株,待植株完全干燥后,分离种子,颖壳和枝梗,茎秆,叶片等部分,磨成粉末,送到中国农科院进行氮浓度和氮含量测定(所用仪器为Isoprime 100)。
研究结果显示,在不同氮浓度培养条件下,osdnr1的地上部分的总氮含量和分配到种子中的氮含量所占植株总氮含量的百分比都高于对照材料ZH11(图11),这表明降低OsDNR1的表达能够提高氮肥吸收与利用效率。
序列表
<110> 南京农业大学
<120> OsDNR1基因的应用
<160> 10
<170> SIPOSequenceListing 1.0
<210> 1
<211> 1185
<212> DNA
<213> 水稻(Oryza sativa L.)
<400> 1
atgggtagct tcgggaggct ggcgaggagg gccgtggaga cggaagcgcc ggtcatggtc 60
aagatgcagg aattgcttcg agggaacaag gatgtgatgt cgcttgcgca gggagttgtt 120
tattggcagc ctcctgaggc agctatgaat aagattaaag aaattgtatg ggaaccatca 180
atcagtaaat atggctctga tgatggtctt cctgaactcc gagaagcact tctcgagaag 240
ctgcgcagag agaataagct aaccaagtcg tcaattatgg ttacctctgg tgcaaatcag 300
gcctttgtaa atgtggtcct caccctttgt gatgctgggg atgcagttgt catgtttgca 360
ccatattact tcaattccta catgtcattc cagatgacag gagttactga catattagtt 420
ggtgcaagca atcctgagac tcttcatcct gatgtcgatt ggttggagaa ggttctgcaa 480
gaaaacaacc ctatccctaa acttgttagt gttgtaaatc ctggaaaccc ctctggagct 540
ttcattccga agccgatgct cgagagaatt tcagaactgt gcagaaatgc tggtgcatgg 600
cttgtagttg acaataccta tgagtacttt atgtatgatg gaatggagca ctattgctta 660
gagggtaatc acattgtcaa cctcttctca ttctcgaagg cttacggaat gatgggctgg 720
cgtgtaggat acattgccca cccaaacgaa gctgacggtc ttcatgcaca gctgctcaaa 780
gtgcaagata acatacctat ctgtgcttcc atcatcgggc agcgcctggc gctctacgca 840
ttagaggctg gtccagaatg gatcagagaa agggtgagag atctagtgaa aaaccgtgaa 900
ttgctcatgg aagcgatgtc tccgcttggg aaggactctg tcaagggtgg tgagggtgcc 960
atttacctct gggcaaaact acccgagaaa tgctcagatg attttgaagt tgtcagatgg 1020
cttgcaaaca agcatggtgt ggctgtgatc cccgggagcg ccagtggagg tcccggatat 1080
atccgggttt ctttcggagg gttgaaagaa tcggatacaa ggcttgctgc tgagaggtta 1140
aggcgcggct tgcaagaact tgtgactgag ggaatggtac agtga 1185
<210> 2
<211> 394
<212> PRT
<213> 水稻(Oryza sativa L.)
<400> 2
Met Gly Ser Phe Gly Arg Leu Ala Arg Arg Ala Val Glu Thr Glu Ala
1 5 10 15
Pro Val Met Val Lys Met Gln Glu Leu Leu Arg Gly Asn Lys Asp Val
20 25 30
Met Ser Leu Ala Gln Gly Val Val Tyr Trp Gln Pro Pro Glu Ala Ala
35 40 45
Met Asn Lys Ile Lys Glu Ile Val Trp Glu Pro Ser Ile Ser Lys Tyr
50 55 60
Gly Ser Asp Asp Gly Leu Pro Glu Leu Arg Glu Ala Leu Leu Glu Lys
65 70 75 80
Leu Arg Arg Glu Asn Lys Leu Thr Lys Ser Ser Ile Met Val Thr Ser
85 90 95
Gly Ala Asn Gln Ala Phe Val Asn Val Val Leu Thr Leu Cys Asp Ala
100 105 110
Gly Asp Ala Val Val Met Phe Ala Pro Tyr Tyr Phe Asn Ser Tyr Met
115 120 125
Ser Phe Gln Met Thr Gly Val Thr Asp Ile Leu Val Gly Ala Ser Asn
130 135 140
Pro Glu Thr Leu His Pro Asp Val Asp Trp Leu Glu Lys Val Leu Gln
145 150 155 160
Glu Asn Asn Pro Ile Pro Lys Leu Val Ser Val Val Asn Pro Gly Asn
165 170 175
Pro Ser Gly Ala Phe Ile Pro Lys Pro Met Leu Glu Arg Ile Ser Glu
180 185 190
Leu Cys Arg Asn Ala Gly Ala Trp Leu Val Val Asp Asn Thr Tyr Glu
195 200 205
Tyr Phe Met Tyr Asp Gly Met Glu His Tyr Cys Leu Glu Gly Asn His
210 215 220
Ile Val Asn Leu Phe Ser Phe Ser Lys Ala Tyr Gly Met Met Gly Trp
225 230 235 240
Arg Val Gly Tyr Ile Ala His Pro Asn Glu Ala Asp Gly Leu His Ala
245 250 255
Gln Leu Leu Lys Val Gln Asp Asn Ile Pro Ile Cys Ala Ser Ile Ile
260 265 270
Gly Gln Arg Leu Ala Leu Tyr Ala Leu Glu Ala Gly Pro Glu Trp Ile
275 280 285
Arg Glu Arg Val Arg Asp Leu Val Lys Asn Arg Glu Leu Leu Met Glu
290 295 300
Ala Met Ser Pro Leu Gly Lys Asp Ser Val Lys Gly Gly Glu Gly Ala
305 310 315 320
Ile Tyr Leu Trp Ala Lys Leu Pro Glu Lys Cys Ser Asp Asp Phe Glu
325 330 335
Val Val Arg Trp Leu Ala Asn Lys His Gly Val Ala Val Ile Pro Gly
340 345 350
Ser Ala Ser Gly Gly Pro Gly Tyr Ile Arg Val Ser Phe Gly Gly Leu
355 360 365
Lys Glu Ser Asp Thr Arg Leu Ala Ala Glu Arg Leu Arg Arg Gly Leu
370 375 380
Gln Glu Leu Val Thr Glu Gly Met Val Gln
385 390
<210> 3
<211> 2000
<212> DNA
<213> 水稻(Oryza sativa L.)
<400> 3
cgagctcggt ctccacggcc tccggcgacg gcgaggggga ggcgtggagt agctcctgga 60
tgatctcgtt gctggggtca cggaagcacc acccgcgggc ggagagggat tgaaggaacc 120
tctcctgatg aggggaggcc gacgaccccg gcgtttccgc cgccgccgcc atcgcagtcg 180
gggggcgaag tgttctccgg cgaggtctgg gagagtgcta gggtaggaga cgtgaaggcg 240
ggttttgtgg tatacgccat agcagttgga aagcggacat ttgtggtgct tactgcttag 300
ggctttgttg tttagactaa ttataagtca gcttaagaac cgaaaagtct aaatctaaat 360
aaaatatttt ttctggttga atctattaat tttttataat ttcagtagtg tcgtatgaat 420
gtttggtttg atgtcaaatt tcaccaacac taataccaaa ttgtcttgaa atcaaattag 480
ccccaaagct caagtggatc atcaaacctg gagtatcgtt cagtgtcaac gtttggcaga 540
ttcaaagaaa aaaaaagaaa cggcatattt gtaaataaaa tataatttgt gaataaaact 600
tttatatatg tgttcttaac tattaaaaac aaatgctaga aaatcttata aattcaaatt 660
ttagtttata aacataaact ctaaaattaa agttataaat ttaaatttta gtccataagc 720
atagcgaaat gatgaatgtg aactcgaaag tctgaacaca gggacatgca gccgcgggca 780
acaagcctac aagtgctcct gcagtcctgt tcatctgcct tcactcctcc tcatcgtctt 840
ttttttttta actccttatc gtcgtagagc cctagattcg cacgaggctg aggtcccgca 900
gcgcgagcga tccaaagata tccgaggtga cgccgtgtca tccctagtta gccgagccaa 960
tttttgttta tagctgtgga ttacaaaatc ctcttctcat ctgaaacgtt ctcatctact 1020
atactatctt caggttcagg ttcggcctcg cttttgagca gaaagcccaa aaggtttcag 1080
cttgggaaga gcaaaatgcg gtgagaccag aataatagat ggactgtttc tactcactcc 1140
gtttttctca atgtaaatta ttctagcatt ttgaatattt atattgatgt tatgaatgtg 1200
gaaaatgtta gaatgactta cattatgaaa tggagggagt aataaacttc atttacaaat 1260
cccattttaa gacgaaatat ttattttatt tattttttga caacgaattt aattcggtca 1320
ccacgaatac cgcatcaata ttgtgctctc tgtcagatca tcagacgcaa tattgtgctc 1380
tctgtcctgg aatctctcgg ccatcagtta ttcagttggc aggttggcag taattttgac 1440
gaaattcgtt gcagaatgat agcggtgggg ttaaaaacga aatcttttcc tcctctcacc 1500
ataataaagt ttctcttttt atttgttggt caagcccttt ttgatctttt tttttctgtc 1560
tcatgcttat cctccaactt cgcggcgcac cctccgcaaa cgtaagccaa aaagatcagg 1620
aaaagagaca gaaaaatcgg aataaaagag tgatagatag atagatagat actccgtaga 1680
tactagatca gcagcgattt tttttttcag tttttgtttt ttcattcttc ctctgtcttg 1740
tttagatgtt ggggttggtg agcccttggg gggaatcagt tggtgactga ctcgagaagt 1800
tcagaggttc ttgtctccga attctttaac cccaacctct cctcttctct tctcttctct 1860
cctcttcttc cttatactgc ttcttgggct cgccgctgcg ctgttctttg gtcttcttgg 1920
atctctgacc ctaacatcgt atccaacttc tccagttctt gttcttggag gggtgaggaa 1980
gaggaggagg aggaggtgag 2000
<210> 4
<211> 5821
<212> DNA
<213> 水稻(Oryza sativa L.)
<400> 4
gtctcatgct tatcctccaa cttcgcggcg caccctccgc aaacgtaagc caaaaagatc 60
aggaaaagag acagaaaaat cggaataaaa gagtgataga tagatagata gatactccgt 120
agatactaga tcagcagcga tttttttttt cagtttttgt tttttcattc ttcctctgtc 180
ttgtttagat gttggggttg gtgagccctt ggggggaatc agttggtgac tgactcgaga 240
agttcagagg ttcttgtctc cgaattcttt aaccccaacc tctcctcttc tcttctcttc 300
tctcctcttc ttccttatac tgcttcttgg gctcgccgct gcgctgttct ttggtcttct 360
tggatctctg accctaacat cgtatccaac ttctccagtt cttgttcttg gaggggtgag 420
gaagaggagg aggaggaggt gagatgggta gcttcgggag gctggcgagg agggccgtgg 480
agacggaagc gccggtcatg gtcaaggtga tggagaagaa gctccctgcc tcgtcgaaat 540
cgcatctttc ccttctgatt tctttggtct tgattgatga gttctatctc tcttgtgcct 600
tgtgctcttt tttcagatgc aggaattgct tcgagggaac aaggatgtga tgtcgcttgc 660
gcaggtatcg gatcgcaatt tctttcggtt atctgtccaa tgattgtgtg tgtgtgtgtg 720
tgtgttttct tgagagtacc aatgagtttg tgttgttgtt ggtacttggt cacaggcatt 780
ttgatgtttg catttgattg ggaagagtgt tcgaaatgga ttagtgaaat gatcatttgt 840
attgttcctt tactgtttgg gtcaattgtc tcagtaaact gttcacgttg taaggtgaat 900
caggagagtt tagtacatct gataacatat tgtgctttgt ataacacaac tatttatcaa 960
gcatggaatt tggaaactaa aatggttgta ttcctgctta gttcctgaaa atggcgttta 1020
actgcttatg ctagccaaat aagatatcca aatatatata ttagtggcag tggtgtgtgt 1080
gctggcctcc tattactgcc aacagaacat gtgatattta ctggaaatta tttgctttct 1140
tttaaactaa tgtaaatctt ggatgcaggg agttgtttat tggcagcctc ctgaggcagc 1200
tatgaataag attaaagaaa ttgtatggga accatcaatc agtaaatatg gctctgatga 1260
tggtcttcct gaactccgag aagcacttct cgagaaggta atttttcaat tgggatttgt 1320
tagataatgg tgtccatggc ccatgttatc aagccttccc agttatcaca aagcaattac 1380
catgtgagac aaatgcactt ggttgcctac tgctaagcct ttatcatgtg agacaaagga 1440
acctgtgtgc ctactactaa gcctttgtca tgtgagaaat tgattctgga atttttttta 1500
cctcgatact gagagagtga gagtaaggcc attcccaacc caaaacacta gacatagttt 1560
ccataaactc cacatcatca agaaactagt actagacact actcttccaa tgcaaacact 1620
actatttcat acttaaattt aatgctactt atctcacata atgtcttgga tgttgtgtag 1680
aaaccatgtc tcatgcaaga catagtttcc ttctctttcc tcatttattc acttgccaca 1740
tcagttttca tcctatgtga cagcttattt aatgctatgg acactatcct agtcattggg 1800
ttgggaatgg cctaatatca ggaatcacat gctatcctta caaaatttta tcaacgagaa 1860
agtttcagaa agtatctctc agcttctgtg ggggcttggg ggggagggaa gctaagggcc 1920
cctttgaatc gtaggattga gaaaacatag taatagaaaa aacgtaggat tttaatagga 1980
atgtaagtgt aaaatagagg attacaaaac gcaggaaaaa cacaggaatg accgtttgat 2040
tgaaccgcag gaaaaacgca ggatttggat gagagagata gactcaaaga aaagttacta 2100
agaggttgaa gctcttgctt aatttcctcc aaaatttcta taggattgtt cattccatag 2160
gaattttaaa ggattggata ggattcaatc ctttgattca aaggacgtca taggaaattt 2220
tcctatagga ttgaaatcct ccaaaattcc tatgtttttc ctccaaatca aaggggccct 2280
aagctctgtt gagagctata atagttcaat gctaccatgt aacaatgcag tagcacagtt 2340
ctgagacatt gcccttggta ctaccgatgc cccctcatgt agagatgggt gttatattca 2400
ctgatttctc ttactgcgat aatattttat tgaaaaacta ataatatgaa tggtaattat 2460
tataaacatg ttcgttgcct tccctctatt ttcttcctga aatttttagc atacattttg 2520
cagctgcgca gagagaataa gctaaccaag tcgtcaatta tggttacctc tggtgcaaat 2580
caggtaatgc acatgctttc cagtttccat acagctttgt catcttattc cggttttcct 2640
ctgtgtattt tgccttgttt agctagacta taggatgcca atttgttttt cttcttcagt 2700
tctatgagat gctttcttac ttttctgtat gactgcttca cctaaacctt gtttaccaac 2760
taggttagcc aaataaaagt caaataaagt gatgtcttct atcaaatttt ggcaggcctt 2820
tgtaaatgtg gtcctcaccc tttgtgatgc tggggatgca gttgtcatgt ttgcaccata 2880
ttacttcaat tcctacatgt cattccagat gacaggagtt actgacatat tagttggtgc 2940
aagcaatcct gagactcttc atcctgatgt cggtaagata gttcttccct ttttcttttt 3000
gttggagaaa ttggttagat gtctattatc aacagtcaat tataaactag ttgccacttt 3060
ttttccgctt ctgagatctt ccactttgta agttgataag ttctatcact tgatacattt 3120
tctctcagtt caattgagag ctatatggtt tttgatcatt cgatttggtt cacttcagga 3180
ctgtaaaaga atagttcatt ctggtagtac aatttatatt tgtttaataa aatgcagatt 3240
ggttggagaa ggttctgcaa gaaaacaacc ctatccctaa acttgttagt gttgtaaatc 3300
ctggaaaccc ctctggagct ttcattccga agccgatgct cgaggtaacc tgtctctctc 3360
attcacagtt cacgcacact tgcattcgag gtgactttaa ttatttctta atattgcacc 3420
attgttccag agaatttcag aactgtgcag aaatgctggt gcatggcttg tagttgacaa 3480
tacctatgag taagttagta ctcaattact gattattgct caactgcaac gtcattttgg 3540
tgcttctttt ctttctgttg ttgataaagc tcctcagtcc cttcagaaat tgatattact 3600
taaagcaatt gtaaagacga ggcactacga aagaatgaac tacacatgga catgatcacc 3660
ttaagtagta atttaaaagg acagttcacc ataagcagtt gagcaactgt gcttgacttc 3720
ttgaagttga gtcctggatg acgccctctc tgatagatta aataaatagg acttcaagaa 3780
tgtggtatct ctttcaaaaa gtatctgcaa accacccgcc agtaagggtt tgtcaaatgt 3840
agttatcttc acatgctcag cttattcaag tagggaaaat cttccatttc ttctcaacac 3900
tagaattgga cacatggaac aactcgtttt cttttgaagg tcccatttca gttcctcaat 3960
ttcagtgatg cccaaaataa accctccagt cacttacagg cagagtggaa gactcactga 4020
caagagccta aattgaatca ctgattagac tcttccctca agaaaagtct tactttcagc 4080
agcctagcat ccgctgtgcg gcattgggaa gaatatatct gttgttagtt ctttgatcaa 4140
atcagaaata tttgatctct tgctaatcta cccttgctct atatttcaga tcatgtttac 4200
cttttcttgt ctggctctgt agttgagtaa tggaaattga tattagtttt tgccatttcc 4260
ttaccctgat gttgatgtta aaaggatgct atgggtcctt ttcgaatata agcttgatgg 4320
acttcccaat gttaatacac caccgaattt gacatgtgta aatcttgtat atgataaaag 4380
tataatttgg aaactttcaa ttatcatcac attgattttt agataatctg tattcaaaat 4440
gtttgcacga atactgaaat tcaagaaaac attttctcgg aagaattctt ttccataaaa 4500
ggtgactgac cttttacttt ctgtaaaata attctacata tggggctatt ttggattctg 4560
tataactttg atgttgaact tgcttgcaaa attggtgggt ggtctgcagg tactttatgt 4620
atgatggaat ggagcactat tgcttagagg gtaatcacat tgtcaacctc ttctcattct 4680
cgaaggctta cggaatgatg ggctggcgtg taggatacgt aagtttgcct ctctctctct 4740
ctctctctct ctctctttct ttcatcctct gcttaggctt gaaaatgctg atgtaagagt 4800
caatattgag ttctttcagt ttcatgaatt tcccgcatcc acttgaatct tttaccaggg 4860
cattccctta aattatcacc atagcaatgc agtataagta acttagtggc tgcacaatct 4920
gtgttgatca gtgagtctta caagaactga tgagctgact gctgcagatt gcccacccaa 4980
acgaagctga cggtcttcat gcacagctgc tcaaagtgca agataacata cctatctgtg 5040
cttccatcat cgggcagcgc ctggcgctct acgcattaga ggctggtcca gaatggatca 5100
gagaaagggt gagagatcta gtgaaaaacc gtgaattgct catggaagcg atgtctccgc 5160
ttgggaagga ctctgtcaag ggtggtgagg gtgccattta cctctgggca aaactacccg 5220
agaaatgctc agatgatttt gaagttgtca gatggcttgc aaacaagcat ggtgtggctg 5280
tgatccccgg gagcgccagt ggaggtcccg gatatatccg ggtttctttc ggagggttga 5340
aagaatcgga tacaaggctt gctgctgaga ggttaaggcg cggcttgcaa gaacttgtga 5400
ctgagggaat ggtacagtga cagcccaatg gatgcaagaa atacatgaca tacaaatcac 5460
aaaagtgaaa attttcagtt acataataat tctgggatta gttcaagaga agaaaagagc 5520
caaaatttca agattacaac atggttgtta gaaaatgctg aagcttttat ttcagagaac 5580
ttttgtcaca ttggatttcc tagtggaaat ttgatttggt gggttgagta gagggaaaaa 5640
aaaagactca tccaccctgt ggaataccat tgtcattaaa ggggtattca tgtttagtac 5700
ttactgttgc ttgataacct ctttccctac aatcaggaca gcagctgtac acaagtaaga 5760
tataataaga tataatagca acaataagtg ttcatgatgt gcttttattt cagctttttt 5820
a 5821
<210> 5
<211> 1185
<212> DNA
<213> 水稻(Oryza sativa L.)
<400> 5
atgggtagct tcgggaggct ggcgaggagg gccgtggaga cggaagcgcc ggtcatggtc 60
aagatgcagg aattgcttcg agggaacaag gatgtgatgt cgcttgcgca gggagttgtt 120
tattggcagc ctcctgaggc agctatgaat aagattaaag aaattgtatg ggaaccatca 180
atcagtaaat atggctctga tgatggtctt cctgaactcc gagaagcact tctcgagaag 240
ctgcgcagag agaataagct aaccaagtcg tcaattatgg ttacctctgg tgcaaatcag 300
gcctttgtaa atgtggtcct caccctttgt gatgctgggg atgcagttgt catgtttgca 360
ccatattact tcaattccta catgtcattc cagatgacag gagttactga catattagtt 420
ggtgcaagca atcctgagac tcttcatcct gatgtcgatt ggttggagaa ggttctgcaa 480
gaaaacaacc ctatccctaa acttgttagt gttgtaaatc ctggaaaccc ctctggagct 540
ttcattccga agccgatgct cgaaagaatt tcagaactgt gcagaaatgc tggtgcatgg 600
cttgtagttg acaataccta tgagtacttt atgtatgatg gaatggagca ctattgctta 660
gagggtaatc acattgtcaa cctcttctca ttctcgaagg cttacggaat gatgggctgg 720
cgtgtaggat acattgccca cccaaacgaa gctgacggtc ttcatgcaca gctgctcaaa 780
gtgcaagata acatacctat ctgtgcttcc atcatcgggc agcgcctggc gctctacgca 840
ttagaggctg gtccagaatg gatcagagaa agggtgagag atctagtgaa aaaccgtgaa 900
ttgctcatgg aagcgatgtc tccgcttggc aaggactctg tcaagggtgg tgagggtgcc 960
atttacctct gggcaaaact acccgagaaa tgctcagatg attttgaagt tgtcagatgg 1020
cttgcaaaca agcatggtgt ggctgtgatc cccgggagcg ccagtggagg tcccggatat 1080
atccgggttt ctttcggagg gttgaaagaa tcggatacaa ggcttgctgc tgagaggtta 1140
aggcgcggct tgcaagaact tgtgactgag ggaatggtac agtga 1185
<210> 6
<211> 394
<212> PRT
<213> 水稻(Oryza sativa L.)
<400> 6
Met Gly Ser Phe Gly Arg Leu Ala Arg Arg Ala Val Glu Thr Glu Ala
1 5 10 15
Pro Val Met Val Lys Met Gln Glu Leu Leu Arg Gly Asn Lys Asp Val
20 25 30
Met Ser Leu Ala Gln Gly Val Val Tyr Trp Gln Pro Pro Glu Ala Ala
35 40 45
Met Asn Lys Ile Lys Glu Ile Val Trp Glu Pro Ser Ile Ser Lys Tyr
50 55 60
Gly Ser Asp Asp Gly Leu Pro Glu Leu Arg Glu Ala Leu Leu Glu Lys
65 70 75 80
Leu Arg Arg Glu Asn Lys Leu Thr Lys Ser Ser Ile Met Val Thr Ser
85 90 95
Gly Ala Asn Gln Ala Phe Val Asn Val Val Leu Thr Leu Cys Asp Ala
100 105 110
Gly Asp Ala Val Val Met Phe Ala Pro Tyr Tyr Phe Asn Ser Tyr Met
115 120 125
Ser Phe Gln Met Thr Gly Val Thr Asp Ile Leu Val Gly Ala Ser Asn
130 135 140
Pro Glu Thr Leu His Pro Asp Val Asp Trp Leu Glu Lys Val Leu Gln
145 150 155 160
Glu Asn Asn Pro Ile Pro Lys Leu Val Ser Val Val Asn Pro Gly Asn
165 170 175
Pro Ser Gly Ala Phe Ile Pro Lys Pro Met Leu Glu Arg Ile Ser Glu
180 185 190
Leu Cys Arg Asn Ala Gly Ala Trp Leu Val Val Asp Asn Thr Tyr Glu
195 200 205
Tyr Phe Met Tyr Asp Gly Met Glu His Tyr Cys Leu Glu Gly Asn His
210 215 220
Ile Val Asn Leu Phe Ser Phe Ser Lys Ala Tyr Gly Met Met Gly Trp
225 230 235 240
Arg Val Gly Tyr Ile Ala His Pro Asn Glu Ala Asp Gly Leu His Ala
245 250 255
Gln Leu Leu Lys Val Gln Asp Asn Ile Pro Ile Cys Ala Ser Ile Ile
260 265 270
Gly Gln Arg Leu Ala Leu Tyr Ala Leu Glu Ala Gly Pro Glu Trp Ile
275 280 285
Arg Glu Arg Val Arg Asp Leu Val Lys Asn Arg Glu Leu Leu Met Glu
290 295 300
Ala Met Ser Pro Leu Gly Lys Asp Ser Val Lys Gly Gly Glu Gly Ala
305 310 315 320
Ile Tyr Leu Trp Ala Lys Leu Pro Glu Lys Cys Ser Asp Asp Phe Glu
325 330 335
Val Val Arg Trp Leu Ala Asn Lys His Gly Val Ala Val Ile Pro Gly
340 345 350
Ser Ala Ser Gly Gly Pro Gly Tyr Ile Arg Val Ser Phe Gly Gly Leu
355 360 365
Lys Glu Ser Asp Thr Arg Leu Ala Ala Glu Arg Leu Arg Arg Gly Leu
370 375 380
Gln Glu Leu Val Thr Glu Gly Met Val Gln
385 390
<210> 7
<211> 2524
<212> DNA
<213> 水稻(Oryza sativa L.)
<400> 7
cgagctcggt ctccacggcc tccggcgacg gcgaggggga ggcgtggagt agctcctgga 60
tgatctcgtt gctggggtca cggaagcacc acccgcgggc ggagagggat tgaaggagcc 120
tctcctgatg aggggaggcc gacgaccccg gcgtttccgc cgccgccgcc atcgcagtcg 180
gggggcgaag tgttctccgg cgaggtctgg gagagtgcta gggtaggaga cgtgaaggcg 240
ggttttgtgg tatacgccat agcagttgga aagcggacat ttgtggtgct tactgcttag 300
ggctttgttg tttagactaa ttataagtca gcttaagaac cgaaaagtct aaatctaaac 360
aaaatatttt ttctggttga atctattaat ttttgataat ttcagtagtg tcgtatgaat 420
gtttgttttg atgtcaaatt tcaccaacac taataccaaa ttgtcttgaa atcaaattag 480
ccccaaagct caagtggatc atcaaacctg gagtatcgtt cagtgtcaac gtttggcaga 540
ttcaaagaaa aaaaaagaaa cggcatattt gtaaataaaa tataatttgt gaataaaact 600
tttatatatg tgttcttaac tattaaaaac aaatgctaga aaatcttata aattcaaatt 660
ttagtttata aacataaact ctaaaattaa agttataaat ttaaatttta gtccataagc 720
atagcgaaat gatgaatgtg aactcggaag gctgaacaca gggacatgca gccgcgggca 780
acaagccaac aagtgctcct gcagcagggt gtgaaaaacc gccggtaacc gcgcggttac 840
cgcggttacc gcccgtaccg cgggggtacg gttacccgta ccgcgcggta cggtttaata 900
aaattcatcc aaattcaaaa atttaaaaaa aaaagaaaaa aatcaaaaaa aatagtgaag 960
gtagtgcttg atttatagtg ttttatggtg aagaaatttc tcaaaaaaga gtaatattta 1020
ttcaaatttg agagcaaaac ggagaataaa tttgaaaatt ggaaaaagaa aaaaaaatgg 1080
gccggcccgt tactgtgcaa cccattacac atcgcgcggt aaccgcgcca aaccgcgtgg 1140
ttaccgcgtc aaaccgtgcg gtaaccgcgc caaaccgcgc agtttgcccg aatttttgaa 1200
ttcaaatttc gatttgtaaa tttgtcgcgg ttttgcgcgg ttaccgcggt taccgccggt 1260
aaccgccgta ccgccgggtg gcggtaaccg ggcccccggc ggtttttgaa accctgtcct 1320
gcagtcctgc tcatctgcct tcactcctcc tcatcgtctt tttttttttt tttaactcct 1380
tatcgtcgta gagccctaga ttcgcacgag gctgaggtcc cgcagcgcga gcgatccaaa 1440
gatatccgag gtgacgccgt gtcatcccta gttagccgag ccaatttttg tttatagctg 1500
tggattacaa aatcctcttc tcatctgaaa cgttctcatc tactatacta tcttcaggtt 1560
caggttcggc ctcgcttttg agcagaaagc ccaaaaggtt tcagcttggg aagagcaaaa 1620
tgcggtgaga ccagaataat agatggactg tttctactca ctccgttttt ctcaatgtaa 1680
attattctag catttttaat atttatattg atgttatgaa tgtggaaaat attagaataa 1740
cttacaatat gaaatgaagg gagtagtaaa cttcatttac aaatcccatt ttaagacgaa 1800
atatttattt tatttatttt ttgacaacga atttaattcg gtcaccacga ataccgcatc 1860
aatattgtgc tctctgtcag atcatcagac gcaatattgt gctctctgtc ctggaatctc 1920
tcggccatca gttattcagt tggcaggttg gcagtaattt tgacgaaatt cgttgaagaa 1980
tgatagcggt ggggttaaaa acgaaatctt ttcgtcctct caccataata aagtttctct 2040
ttttatttgt tggtcaagcc ctttttgatc tttttttttc tgtctcatgc ttatcctcca 2100
acttcgcggc gcaccctccg caaacgtaag ccaaaaagat caggaaaaga gacagaaaaa 2160
tcggaataaa agagtgatag atagatagat agatactccg tagatactag atcagcagcg 2220
attttttttt cagtttttgt tttttcattt cttcctctgt cttgtttaga tgttggggtt 2280
ggtgagccct tggggggaat cagttggtga ctgactcgag aagttcagag gttgttgtct 2340
ccgaattctt taaccccaac ctctcctctt ctcttctctt ctctcctctt cttccttata 2400
ctgcttcttg ggctcgccgc tgcgctgttc tttggtcttc ttggatctct gaccctaaca 2460
tcgtatccaa cttctccagt tcttgttctt ggaggggtga ggaagaggag gaggaggagg 2520
tgag 2524
<210> 8
<211> 5827
<212> DNA
<213> 水稻(Oryza sativa L.)
<400> 8
gtctcatgct tatcctccaa cttcgcggcg caccctccgc aaacgtaagc caaaaagatc 60
aggaaaagag acagaaaaat cggaataaaa gagtgataga tagatagata gatactccgt 120
agatactaga tcagcagcga tttttttttc agtttttgtt ttttcatttc ttcctctgtc 180
ttgtttagat gttggggttg gtgagccctt ggggggaatc agttggtgac tgactcgaga 240
agttcagagg ttgttgtctc cgaattcttt aaccccaacc tctcctcttc tcttctcttc 300
tctcctcttc ttccttatac tgcttcttgg gctcgccgct gcgctgttct ttggtcttct 360
tggatctctg accctaacat cgtatccaac ttctccagtt cttgttcttg gaggggtgag 420
gaagaggagg aggaggaggt gagatgggta gcttcgggag gctggcgagg agggccgtgg 480
agacggaagc gccggtcatg gtcaaggtga tggagaagaa gctccctgcc tcgtcgaaat 540
cgcatctttc ccttctgatt tctttggtct tgattgatga gttctatctc tcttgtgcct 600
tgtgctcttt tttcagatgc aggaattgct tcgagggaac aaggatgtga tgtcgcttgc 660
gcaggtatcg gatcgcaatt tctttcggtt atctgtccaa tgattgtgtg tgtgtgtgtg 720
tgttttcatg agagtaccaa tgagtttgtg ttgttgttgg tacttggtca caggcatttt 780
gatgtttgca tttgattggg aagagtgttc gaaatggatt agtgaaatga tcatttgtat 840
tgttccttta ctgtttgggt caattgtctc agtaaactgt tcacgttgta aggtgaatca 900
ggagagttta gtacatctga taacatattg tgctttgtat aacacaacta tttatcaagc 960
atggaatttg gaaactaaaa tggttgtatt cctgcttagt tcctgaaaat ggcgtttaac 1020
tgcttatgct agccaaataa gatatccaaa tatatatatt agtggcagtg gtgtgtgtgc 1080
tggcctccta ttactgccaa cagaacatgt gatatttact ggaaattatt tgctttcttt 1140
taaactaatg taaatcttgg atgcagggag ttgtttattg gcagcctcct gaggcagcta 1200
tgaataagat taaagaaatt gtatgggaac catcaatcag taaatatggc tctgatgatg 1260
gtcttcctga actccgagaa gcacttctcg agaaggtaat ttttcaattg ggatttgtta 1320
gataatggtt tccatggccc atgttatcaa gccttcccag ttatcacaaa gcaattacca 1380
tgtgagacaa atgcacttgg ttgcctactg ctaagccttt atcatgtgag acaaaggaac 1440
ctgtgtgcct actactaagc ctttgtcatg tgagaaattg attctggaat tttttttacc 1500
tcgatactga gagagtgaga gtaaggccat tcccaaccca aaacattaga catagtttcc 1560
ataaactcca catcatcaag aaataagtac tagacactac tcttccaatg caaacactac 1620
tatttcatac ttaaatttaa tgctacttat ctcacataat gtcttggatg ttgtgtagaa 1680
accatgtctc atgcaagaca tagtttcctc ctctttcctc atttattcac ttgccacatc 1740
agttttcatc ctatgtgaca gcttatttaa tgctatggac actatcctag tcattgggtt 1800
gggaatagcc taatatcagg aatcacatgc tatccttaca aaattttatc aacgagaaag 1860
tttcagaaag tatctctcag cttctgtggg ggcttggggg ggagggaagc taagggcccc 1920
tttgaatcgt aggattgaga aaacatagta atagaaaaaa cgtaggattt tgataggaat 1980
gtaagtgtaa aatagaggat tacaaaacgc aggaaaaaca caggaatgac cgtttgattg 2040
aaccgcagga aaaacgcagg atttggatga gagagataga ctcaaagaaa agttactaag 2100
aggttgaagc tcttgcttaa tttcctccaa aatttctata ggattgttca ttccatagga 2160
attttaaagg attggatagg attcaatcct ttgattcaaa ggacttcata ggaaattttc 2220
ctataggatt gaaatcctcc aaaattccta tgtttttcct ccaaatcaaa ggggccctaa 2280
gctctgttga gagctataat agttcaatgc taccatgtaa cagtgcagta gcacagttct 2340
gagacattgc ccttggtact accgatgccc cctcatgtag agatgggtgt tatattcact 2400
gatttctctt actgcgataa tattttattg aaaaactaat aatatgaatg gtaattatta 2460
taaacatgtt cgttgccttc cctctatttt cttcctgaaa tttttagcat acattttgca 2520
gctgcgcaga gagaataagc taaccaagtc gtcaattatg gttacctctg gtgcaaatca 2580
ggtaatgcac atgctttcca gtttccacct gatttattac agctttgtca tcttattccg 2640
gttttcctct gtgtattttg ccttgtttag ctagactata ggatgccaat ttgtttttct 2700
tcttcagttc tatgagatgc tttcttactt ttctgtatga ctgcttcacc taaaccttgt 2760
ttaccaacta ggttagccaa ataaaagtca aataaagtga tgtcttctat caaattttgg 2820
caggcctttg taaatgtggt cctcaccctt tgtgatgctg gggatgcagt tgtcatgttt 2880
gcaccatatt acttcaattc ctacatgtca ttccagatga caggagttac tgacatatta 2940
gttggtgcaa gcaatcctga gactcttcat cctgatgtcg gtaagatagt tcttcccttt 3000
ttctttttgt tggagaaatt ggttagatgt ctattatcaa cagtcaatta taaactagtt 3060
gccacttttt ttccgcttct gagatcttcc actttgtaag ttgataagtt ctatcacttg 3120
atacattttc tctcagttca attgagagct atatggtttt tgatcattcg atttggttca 3180
cttaaggact gtaaaagaat agttcattct ggtagtacaa tttatatttg tttaataaaa 3240
tgcagattgg ttggagaagg ttctgcaaga aaacaaccct atccctaaac ttgttagtgt 3300
tgtaaatcct ggaaacccct ctggagcttt cattccgaag ccgatgctcg aagtaacctg 3360
tctctctcat tcacagttca cgcacacttg cattcgaggt gactttaatt atttcttaat 3420
attgcaccat tgttccagag aatttcagaa ctgtgcagaa atgctggtgc atggcttgta 3480
gttgacaata cctatgagta agttagtact caattactga ttattgctca actgcaacgt 3540
cattttggtg cttcttttct ttctgttgtt gataaagctc ctcagtccct tcagaaattg 3600
atattactta aagcaattgt aaagacgagg cactacgaaa gaatgaacta cacatggaca 3660
tgatcacctt aagtagtagt ttaaaaggac agttcaccat aagcagttga gcaactgtgc 3720
ttgacttctt gaagttgagt cctggatgac gccctctctg atagattaaa taaataggac 3780
ttcaagaatg tggtatctct ttcaaaaagt atctgcaaac cacccgccag taagggtttg 3840
tcaaatgtag ttatcttcac atgctcagct tattcaagta gggaaaatct tccatttctt 3900
ctcaacacta gaattggaca catggaacaa ctcgttttct tttgaaggtc ccatttcagt 3960
tcctcaattt cagtgatgcc caaaataaac cctccagtca cttacaggca gagtggaaga 4020
ctcactgaca agagcctaaa ttgaatcacg gattagactc ttccctcaag aaaagtctta 4080
ctttcagcag cctagcatcc gctgtgcggc attgggaaga atatatctgt tgttagttct 4140
gatcaaatca gaaatatttg atctcttgct aatctaccct tgctctatat ttcagatcat 4200
gtttaccttt tcttgtctgg ctctgtagtt gagtaatgga aattgatatt agtttttgcc 4260
atttccttac cctgatgttg atgttaaaag gatgctatgg gtccttttcg aatataagct 4320
tgatggactt cccaatgtta atacaccacc gaatttgaca tgtgtaaatc ttgtatatga 4380
taaaagtata atttggaaac tttcaattat catcacattg atttttagat aatctgtatt 4440
caaaatgttt gcacgaatac tgaaattcaa gaaaacattt tctcggaaga attcttttcc 4500
ataaaaggtg actgaccttt tactttctgt aaaataattc tacatatggg gctattttgg 4560
attctgtata actttgatgt tgaacttgct tgcaaaattg gtgggtggtc tccaggtact 4620
ttatgtatga tggaatggag cactattgct tagagggtaa tcacattgtc aacctcttct 4680
cattctcgaa ggcttacgga atgatgggct ggcgtgtagg atacgtaagt ttgcctctct 4740
ctctctctct ctctctctct ctttctttca tcctctgctt aggcttgaaa atgctgatgt 4800
aagagtcaat attgagttct ttcagtttca tgaatttccc gcatccactt gaatctttta 4860
ccagggcatt cccttaaatt atcaccatag caatgcagta taagtaactt agtggctgca 4920
caatctgtgt tgatcagtga gtcttacaag aactgatgag ctgactgctg cagattgccc 4980
acccaaacga agctgacggt cttcatgcac agctgctcaa agtgcaagat aacataccta 5040
tctgtgcttc catcatcggg cagcgcctgg cgctctacgc attagaggct ggtccagaat 5100
ggatcagaga aagggtgaga gatctagtga aaaaccgtga attgctcatg gaagcgatgt 5160
ctccgcttgg caaggactct gtcaagggtg gtgagggtgc catttacctc tgggcaaaac 5220
tacccgagaa atgctcagat gattttgaag ttgtcagatg gcttgcaaac aagcatggtg 5280
tggctgtgat ccccgggagc gccagtggag gtcccggata tatccgggtt tctttcggag 5340
ggttgaaaga atcggataca aggcttgctg ctgagaggtt aaggcgcggc ttgcaagaac 5400
ttgtgactga gggaatggta cagtgacagc ccaatggatg caagaaatac atgacataca 5460
aatcacaaaa gtgaaaattt tcagttacat aataattctg ggattagttc aagagaagaa 5520
aagagccaaa atttcaagat tacaacatgg ttgttagaaa atgctgaagc ttttatttca 5580
gagaactttt gtcacattgg atttcctagt ggaaatttga tttggtgggt tgagtagagg 5640
gaaaaaaaaa gactcatcca ccctgtggaa taccattgtc attaaagggg tattcatgtt 5700
tagtacttac tgttgcttga taacctcttt ccctacaatc aggacagcag ctgtacacaa 5760
gtaagatata ataagatata atagcaacaa taagtgttca tgatgtgctt ttatttcagc 5820
tttttta 5827
<210> 9
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 9
tagtccataa gcatagcgaa 20
<210> 10
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 10
aacggagtga gtagaaacag 20

Claims (6)

1.籼稻中OsDNR1基因在提高籼稻的氮肥利用效率与产量中的应用, 所述的籼稻OsDNR1基因,其cDNA核苷酸序列如SEQ ID NO.1所示。
2.籼稻OsDNR1基因启动子及籼稻OsDNR1基因在提高水稻的氮肥利用效率与产量中的应用;其特征在于所述的籼稻OsDNR1基因,其cDNA核苷酸序列如SEQ ID NO.1所示, 籼稻OsDNR1基因启动子,核苷酸序列如SEQ ID NO.3所示。
3.一种与水稻氮肥利用效率相关的标记,其特征在于该标记为SEQ ID NO.7所示的粳稻OsDNR1基因启动子中第797~1316 bp的一段520 bp序列;所述的标记在粳稻中存在,根系的NO3 -吸收能力差;所述的标记在籼稻中缺失,导致OsDNR1基因的表达量低,根系的NO3 -吸收能力升高。
4.一种判断水稻氮肥利用效率的方法,其特征在于检测水稻OsDNR1基因启动子,如果存在权利要求3所述的标记,则该水稻品种氮肥利用效率低,如缺失权利要求3所述的标记,则该水稻品种氮肥利用效率高;检测水稻OsDNR1基因启动子使用的PCR引物如SEQ ID NO.9和SEQ ID NO.10所示。
5.一种提高水稻氮肥利用效率的方法,其特征在于降低OsDNR1的基因表达。
6.根据权利要求5所述的方法,其特征在于敲除或沉默水稻中权利要求3所述的标记。
CN202010831842.7A 2020-08-18 2020-08-18 OsDNR1基因的应用 Active CN111926024B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010831842.7A CN111926024B (zh) 2020-08-18 2020-08-18 OsDNR1基因的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010831842.7A CN111926024B (zh) 2020-08-18 2020-08-18 OsDNR1基因的应用

Publications (2)

Publication Number Publication Date
CN111926024A CN111926024A (zh) 2020-11-13
CN111926024B true CN111926024B (zh) 2022-07-08

Family

ID=73306131

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010831842.7A Active CN111926024B (zh) 2020-08-18 2020-08-18 OsDNR1基因的应用

Country Status (1)

Country Link
CN (1) CN111926024B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118064447A (zh) * 2024-02-02 2024-05-24 江苏省农业科学院 OsDNR1突变型基因及其编码蛋白和应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107937416A (zh) * 2017-12-29 2018-04-20 中国科学院遗传与发育生物学研究所 提高水稻氮肥利用效率和产量的基因及其应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3631829A1 (de) * 1986-09-19 1988-07-28 Hoechst Ag Klonierung und verwendung des transaminase gens-tyrb
CN101392257B (zh) * 2008-11-10 2013-03-13 南京农业大学 水稻硝酸盐运输蛋白基因组OsNRT2.3的基因工程应用
CN101397565B (zh) * 2008-11-12 2011-01-26 南京农业大学 水稻高亲和硝酸盐运输蛋白基因OsNAR2.1
UA116086C2 (uk) * 2011-09-07 2018-02-12 Байєр Кропсаєнс Аг Трансгенна однодольна рослина з підвищеною ефективністю використання азоту

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107937416A (zh) * 2017-12-29 2018-04-20 中国科学院遗传与发育生物学研究所 提高水稻氮肥利用效率和产量的基因及其应用

Also Published As

Publication number Publication date
CN111926024A (zh) 2020-11-13

Similar Documents

Publication Publication Date Title
CN108239647B (zh) 一种控制油菜株型的基因、分子标记及应用
WO2014036946A1 (en) Rice brown planthopper resistance gene bph9 and molecular markers, and uses thereof
Kim et al. Loss-of-function alleles of heading date 1 (Hd1) are associated with adaptation of temperate japonica rice plants to the tropical region
CN101880671B (zh) 一种控制水稻谷粒粒宽和粒重的主效基因gs5的克隆与应用
CN102776201B (zh) OsELF3基因在控制水稻抽穗期中的应用
CN107937416A (zh) 提高水稻氮肥利用效率和产量的基因及其应用
CN110066774B (zh) 玉米类受体激酶基因ZmRLK7及其应用
CN111153974A (zh) 玉米抗病基因和分子标记及其应用
CN111926097A (zh) 抗虫抗除草剂玉米转化事件及其创制方法和检测方法
Zhao et al. Integration of QTL mapping and gene fishing techniques to dissect the multi-main stem trait in rapeseed (Brassica napus L.)
CN111926024B (zh) OsDNR1基因的应用
CN101892246B (zh) 控制水稻谷物产量,开花期及植株高度的多效性基因Ghd8的克隆及应用
CN109971763A (zh) 花期调控基因cmp1和相关的载体及其应用
CN109554373B (zh) 一种水稻fon2基因突变体及其分子鉴定方法和应用
CN108676081B (zh) 紫云英leafy基因及其应用
CN108913698B (zh) 一种与小麦穗发芽抗性/感性相关的caps标记及其应用
CN116445446A (zh) 野生甘蓝糖基转移酶BoUGT76C2基因及应用
CN113862387B (zh) 水稻耐旱性调控基因OsNAC6的分子标记及其应用
AU2003236580B2 (en) Method of producing plants having enhanced transpiration efficiency and plants produced therefrom
CN102268439B (zh) 调控玉米氮吸收利用和干旱胁迫基因os1及应用
US10858664B2 (en) Modifying flowering time in maize
Carsono et al. Agronomic characteristics and genetic relationship of putative transgenic rice lines of cv. Fatmawati with the Glu-1Dx5 transgene
CN112980874A (zh) GhCIPK6D1基因在提高棉花抗旱性中的应用
CN113564179B (zh) 水稻nat8基因及其编码蛋白在提高植物产量育种中的应用
CN114958866B (zh) 调控大豆分枝数的基因及其用途

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant