CN116761285A - 一种低电阻温度系数的氮化铝加热器及其制备方法 - Google Patents

一种低电阻温度系数的氮化铝加热器及其制备方法 Download PDF

Info

Publication number
CN116761285A
CN116761285A CN202310564248.XA CN202310564248A CN116761285A CN 116761285 A CN116761285 A CN 116761285A CN 202310564248 A CN202310564248 A CN 202310564248A CN 116761285 A CN116761285 A CN 116761285A
Authority
CN
China
Prior art keywords
aluminum nitride
powder
metal
heating circuit
temperature coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310564248.XA
Other languages
English (en)
Inventor
吴稀勇
陈建国
泮鑫琴
戚钰
吴一凡
颜宇慧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Laiding Electronic Material Technology Co ltd
Original Assignee
Laiding Electronic Material Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Laiding Electronic Material Technology Co ltd filed Critical Laiding Electronic Material Technology Co ltd
Priority to CN202310564248.XA priority Critical patent/CN116761285A/zh
Publication of CN116761285A publication Critical patent/CN116761285A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/141Conductive ceramics, e.g. metal oxides, metal carbides, barium titanate, ferrites, zirconia, vitrous compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5133Metallising, e.g. infiltration of sintered ceramic preforms with molten metal with a composition mainly composed of one or more of the refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/0019Circuit arrangements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • H05B3/06Heater elements structurally combined with coupling elements or holders
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/141Conductive ceramics, e.g. metal oxides, metal carbides, barium titanate, ferrites, zirconia, vitrous compounds
    • H05B3/143Conductive ceramics, e.g. metal oxides, metal carbides, barium titanate, ferrites, zirconia, vitrous compounds applied to semiconductors, e.g. wafers heating
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

本发明公开了一种低电阻温度系数的氮化铝加热器及其制备方法,该氮化铝加热器包括第一氮化铝基板、加热电路、第二氮化铝基板和导线,所述导线与加热电路电性连接;加热电路设于第一氮化铝基板和第二氮化铝基板之间,其中,所述加热电路由金属浆料印刷而成,所述金属浆料中所含金属包括W、Mo、AlN和WC/WC‑TiC。该制备方法中使用金属浆料在氮化铝生坯片上印刷相应的加热电路,印刷使用的金属浆料根据不同产品特性进行相应选择,其中,所述金属浆料中所含金属包括W、Mo、AlN和WC/WC‑TiC;本发明对加热电路浆料进行优化设计,降低加热线路浆料的电阻温度系数,进而在相同加热电压下降低了产品热应力,也可获得更高的功率密度,提高能量利用率。

Description

一种低电阻温度系数的氮化铝加热器及其制备方法
技术领域
本发明涉及加热器技术领域,尤其涉及一种低电阻温度系数的氮化铝加热器制备方法。
背景技术
半导体芯片封测中需要快速升温及精确控温,氮化铝陶瓷材料因具备高热导及良好的机械强度,适合于芯片封测的应用场景。目前,根据现有技术生产出的氮化铝加热器是由一定比例的氮化铝粉体和氧化钇粉体流延而成的加热基体,用于承载加热线路、连接导线,通过氮化铝陶瓷作为绝缘和导热的基体材料,基体内部通过印刷金属钨钼浆料达到加热目的。
由于氮化铝基板本身具有优异的导热性能,热膨胀系数小,适用于大功率密度的应用。
申请人在2022年提出的专利申请CN114710847A(半导体芯片封测用电子陶瓷加热器及其制备方法),对氮化铝加热器的结构及基本工艺过程进行了描述,其侧重的是氮化铝及氧化钇掺杂的比例情况,以保证氮化铝加热器产品良好的热导率。本发明在上述专利的基础上,对加热线路浆料进行优化设计,降低加热线路浆料的电阻温度系数,进而在相同加热电压下降低产品热应力,也可获得更高的功率密度,提高能量利用率。
目前的浆料一般采用钨钼或钨或钼,并掺杂氮化铝粉体,其电阻温度系数与纯金属(钨或钼)相比,下降有限,一般在3000~4000ppm/℃左右。本发明中对加热线路浆料进行优化设计,降低加热线路浆料的电阻温度系数到2000ppm/℃左右,进而在相同加热电压下降低产品热应力,也可获得更高的功率密度,提高能量利用率。
发明内容
为克服现有技术的不足,本发明公开了一种低电阻温度系数的氮化铝加热器及其制备方法。
为实现上述目的,本发明通过以下技术方案实现:
本发明公开了一种低电阻温度系数的氮化铝加热器,包括第一氮化铝基板、加热电路、第二氮化铝基板和导线,所述导线与加热电路电性连接;加热电路设于第一氮化铝基板和第二氮化铝基板之间,其中,所述加热电路由金属浆料印刷而成,所述金属浆料中所含金属包括W、Mo、AlN和WC/WC-TiC。
优选的,所述金属浆料所含金属重量比为W:Mo:AlN:WC=50~70:10~20:20~30:m,其中,m的范围是:0<m≤5。
进一步优选的,各金属粉体粒度为:W/Mo粉体为1~2μm,AlN粉体为0.3~0.5μm,WC粉体为0.2~0.3μm。
优选的,所述金属浆料所含金属重量比为:W:Mo:AlN:WC-TiC=50~70:10~20:20~30:m,其中,m的范围是:0<m≤5;WC-TiC中,WC与TiC按照任意比例混合。
进一步优选的,各金属粉体粒度为:W/Mo粉体为1~2μm,AlN粉体为0.3~0.5μm,WC-TiC粉体为0.2~0.3μm。
本发明公开了一种低电阻温度系数的氮化铝加热器制备方法,包括以下步骤:
S1:球磨,在氮化铝粉体与氧化钇粉体混合的粉料中加入溶剂进行球磨,得到混合均匀的氮化铝浆料;
S2:流延,将氮化铝浆料进行负压脱泡后进行流延,按照产品要求设置流延厚度,形成氮化铝生坯带;
S3:裁切,将氮化铝生坯带按照尺寸要求裁切成氮化铝生坯片;
S4:印刷,按照不同产品的功率要求,使用金属浆料在氮化铝生坯片上印刷相应的加热电路,印刷使用的金属浆料根据不同产品特性进行相应选择,其中,所述金属浆料中所含金属包括W、Mo、AlN和WC/WC-TiC;
S5:叠压,根据产品厚度要求进行不同层数的叠压,印刷面叠压在中间层,然后进行加热静压,制成氮化铝生坯块;
S6:切割,将氮化铝生胚块切割成产品要求的尺寸大小,得到氮化铝预制块;
S7:打孔、灌浆,在氮化铝预制块的加热电路两电极处进行打孔,并用导电浆料进行填充;
S8:排胶、烧结,烧结采用HTCC共烧工艺和氮氢混合气体气氛裂解配方体系;
S9:钎焊,通过灌浆孔将导线与内部加热电路连接,得到成品。
优选的,所述金属浆料所含金属重量比为W:Mo:AlN:WC=50~70:10~20:20~30:m,其中,m的范围是:0<m≤5。
进一步优选的,各金属粉体粒度为:W/Mo粉体为1~2μm,AlN粉体为0.3~0.5μm,WC粉体为0.2~0.3μm。
优选的,所述金属浆料所含金属重量比为:W:Mo:AlN:WC-TiC=50~70:10~20:20~30:m,其中,m的范围是:0<m≤5;WC-TiC中,WC与TiC按照任意比例混合。
进一步优选的,各金属粉体粒度为:W/Mo粉体为1~2μm,AlN粉体为0.3~0.5μm,WC-TiC粉体为0.2~0.3μm。
与现有技术相比,本发明的至少具有以下优点:
本发明对加热电路浆料进行优化设计,降低加热电路浆料的电阻温度系数至2000ppm/℃左右,进而在相同加热电压下降低了产品热应力,也可获得更高的功率密度,提高了能量利用率。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍。
图1为本发明实施例公开的一种低电阻温度系数的氮化铝加热器的结构示意图。
具体实施方式
下面结合实施例及附图对本发明做进一步的详细说明,以令本领域技术人员参照说明书文字能够据以实施。
实施例1:
参见图1所示,本发明实施例1公开了一种低电阻温度系数的氮化铝加热器,包括第一氮化铝基板1、加热电路2、第二氮化铝基板3和导线4,导线4与加热电路2电性连接;加热电路设于第一氮化铝基板1和第二氮化铝基板3之间,加热电路由金属浆料印刷而成,金属浆料中所含金属包括W、Mo、AlN和WC,金属浆料所含金属重量比为W:Mo:AlN:WC=60:16:20:4。各金属粉体粒度为:W/Mo粉体为1~2μm,AlN粉体为0.3~0.5μm,WC粉体为0.2~0.3μm。
上述低电阻温度系数的氮化铝加热器的制备方法包括以下步骤:
S1球磨:选用0.3~0.5μm氮化铝粉体与氧化钇粉体按照重量比95:5的比例进行配料,并加入一定数量的溶剂进行球磨,将粉料混合至均匀状态的浆料;
S2流延:将氮化铝浆料进行负压状态脱泡后即可进行流延,按照产品要求设置流延厚度,形成氮化铝生坯带;
S3裁切:将氮化铝生坯带按照尺寸要求裁切成200*200mm氮化铝生坯片;
S4印刷:按照不同产品的功率要求印刷相应加热电路,印刷浆料(金属浆料)所含金属包括W、Mo、AlN和WC,金属浆料所含金属重量比为W:Mo:AlN:WC=60:16:20:4。各金属粉体粒度为:W/Mo粉体为1~2μm,AlN粉体为0.3~0.5μm,WC粉体为0.2~0.3μm;
S5叠压:根据产品厚度要求进行不同层数的叠压,将印刷面叠压在中间层,进行温水等静压,叠压成一定厚度的氮化铝生坯块;
S6切割:将生胚块切割成产品要求的25*25mm尺寸大小;
S7打孔、灌浆:在加热电路的两电极处进行打孔,并用导电浆料进行填充;
S8排胶、烧结:使产品内外部残碳量均匀,烧结后平整无翘曲;在氮氢混合气体下烧结,烧结温度1850°,时间2h。
S9钎焊:利用灌浆孔连接引线与内部加热电路连接。
烧结后氮化铝加热器表面平整,600℃内电阻温度系数达2500ppm/℃。
实施例2:
参见图1所示,本发明实施例2公开了一种低电阻温度系数的氮化铝加热器,包括第一氮化铝基板1、加热电路2、第二氮化铝基板3和导线4,导线4与加热电路2电性连接;加热电路2设于第一氮化铝基板1和第二氮化铝基板3之间,加热电路由金属浆料印刷而成,印刷浆料(金属浆料)所含金属包括W、Mo、AlN和WC-TiC,金属浆料所含金属重量比为金属浆料所含金属重量比为:W:Mo:AlN:WC-TiC=55:15:25:5,优选的,WC-TiC中WC:TiC=4:1,各金属粉体粒度为:W/Mo粉体为1~2μm,AlN粉体为0.3~0.5μm,WC-TiC粉体为0.2~0.3μm。
上述低电阻温度系数的氮化铝加热器的制备方法包括以下步骤:
S1球磨:选用0.3~0.5μm氮化铝粉体与氧化钇粉体按照重量比95:5的比例进行配料,并加入一定数量的溶剂进行球磨,将粉料混合至均匀状态的浆料;
S2流延:将氮化铝浆料进行负压状态脱泡后即可进行流延,按照产品要求设置流延厚度,形成氮化铝生坯带;
S3裁切:将氮化铝生坯带按照尺寸要求裁切成200*200mm氮化铝生坯片;
S4印刷:按照不同产品的功率要求印刷相应加热电路,印刷浆料根据不同产品特性选择相应的金属浆料;其中印刷浆料不同重量比为:W:Mo:AlN:WC-TiC=55:15:25:5,粉体粒度:W/Mo粉体为1~2μm,AlN粉体为0.3~0.5μm,WC-TiC粉体为0.2~0.3μm。
S5叠压:根据产品厚度要求进行不同层数的叠压,将印刷面叠压在中间层,进行温水等静压,叠压成一定厚度的氮化铝生坯块;
S6切割:将生胚块切割成产品要求的45*45mm尺寸大小;
S7打孔、灌浆:在加热电路的两电极处进行打孔,并用导电浆料进行填充;
S8排胶、烧结:使产品内外部残碳量均匀,烧结后平整无翘曲;在氨分解混合气下烧结,烧结温度1830℃,时间3h。
S9钎焊:利用灌浆孔连接引线与内部加热电路连接。
烧结后氮化铝加热器表面平整,600℃内电阻温度系数达2200ppm/℃。
对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

1.一种低电阻温度系数的氮化铝加热器,其特征在于:包括第一氮化铝基板、加热电路、第二氮化铝基板和导线,所述导线与加热电路电性连接;加热电路设于第一氮化铝基板和第二氮化铝基板之间,其中,所述加热电路由金属浆料印刷而成,所述金属浆料中所含金属包括W、Mo、AlN和WC/WC-TiC。
2.根据权利要求1所述的一种低电阻温度系数的氮化铝加热器,其特征在于:所述金属浆料所含金属重量比为W:Mo:AlN:WC=50~70:10~20:20~30:m,其中,m的范围是:0<m≤5。
3.根据权利要求2所述的一种低电阻温度系数的氮化铝加热器,其特征在于:各金属粉体粒度为:W/Mo粉体为1~2μm,AlN粉体为0.3~0.5μm,WC粉体为0.2~0.3μm。
4.根据权利要求1所述的一种低电阻温度系数的氮化铝加热器,其特征在于:所述金属浆料所含金属重量比为:W:Mo:AlN:WC-TiC=50~70:10~20:20~30:m,其中,m的范围是:0<m≤5;WC-TiC中,WC与TiC按照任意比例混合。
5.根据权利要求4所述的一种低电阻温度系数的氮化铝加热器,其特征在于:各金属粉体粒度为:W/Mo粉体为1~2μm,AlN粉体为0.3~0.5μm,WC-TiC粉体为0.2~0.3μm。
6.一种低电阻温度系数的氮化铝加热器制备方法,其特征在于:包括以下步骤:
S1:球磨,在氮化铝粉体与氧化钇粉体混合的粉料中加入溶剂进行球磨,得到混合均匀的氮化铝浆料;
S2:流延,将氮化铝浆料进行负压脱泡后进行流延,按照产品要求设置流延厚度,形成氮化铝生坯带;
S3:裁切,将氮化铝生坯带按照尺寸要求裁切成氮化铝生坯片;
S4:印刷,按照不同产品的功率要求,使用金属浆料在氮化铝生坯片上印刷相应的加热电路,印刷使用的金属浆料根据不同产品特性进行相应选择,其中,所述金属浆料中所含金属包括W、Mo、AlN和WC/WC-TiC;
S5:叠压,根据产品厚度要求进行不同层数的叠压,印刷面叠压在中间层,然后进行加热静压,制成氮化铝生坯块;
S6:切割,将氮化铝生胚块切割成产品要求的尺寸大小,得到氮化铝预制块;
S7:打孔、灌浆,在氮化铝预制块的加热电路两电极处进行打孔,并用导电浆料进行填充;
S8:排胶、烧结,烧结采用HTCC共烧工艺和氮氢混合气体气氛裂解配方体系;
S9:钎焊,通过灌浆孔将导线与内部加热电路连接,得到成品。
7.根据权利要求6所述的一种低电阻温度系数的氮化铝加热器制备方法,其特征在于:所述金属浆料所含金属重量比为W:Mo:AlN:WC=50~70:10~20:20~30:m,其中,m的范围是:0<m≤5。
8.根据权利要求7所述的一种低电阻温度系数的氮化铝加热器制备方法,其特征在于:各金属粉体粒度为:W/Mo粉体为1~2μm,AlN粉体为0.3~0.5μm,WC粉体为0.2~0.3μm。
9.根据权利要求7所述的一种低电阻温度系数的氮化铝加热器制备方法,其特征在于:所述金属浆料所含金属重量比为:W:Mo:AlN:WC-TiC=50~70:10~20:20~30:m,其中,m的范围是:0<m≤5;WC-TiC中,WC与TiC按照任意比例混合。
10.根据权利要求9所述的一种低电阻温度系数的氮化铝加热器制备方法,其特征在于:各金属粉体粒度为:W/Mo粉体为1~2μm,AlN粉体为0.3~0.5μm,WC-TiC粉体为0.2~0.3μm。
CN202310564248.XA 2023-05-18 2023-05-18 一种低电阻温度系数的氮化铝加热器及其制备方法 Pending CN116761285A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310564248.XA CN116761285A (zh) 2023-05-18 2023-05-18 一种低电阻温度系数的氮化铝加热器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310564248.XA CN116761285A (zh) 2023-05-18 2023-05-18 一种低电阻温度系数的氮化铝加热器及其制备方法

Publications (1)

Publication Number Publication Date
CN116761285A true CN116761285A (zh) 2023-09-15

Family

ID=87954214

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310564248.XA Pending CN116761285A (zh) 2023-05-18 2023-05-18 一种低电阻温度系数的氮化铝加热器及其制备方法

Country Status (1)

Country Link
CN (1) CN116761285A (zh)

Similar Documents

Publication Publication Date Title
EP3352233B1 (en) Thermoelectric conversion module and thermoelectric conversion device
JP4812144B2 (ja) 窒化アルミニウム焼結体及びその製造方法
US10510940B2 (en) Thermoelectric generator
CN103781742A (zh) 氮化硅基板和氮化硅基板的制造方法
CN101321415A (zh) 基于氮化铝微晶陶瓷基板的稀土厚膜电路电热元件及其制备工艺
JP2010525568A (ja) 熱電モジュール
CN101925999A (zh) 散热器以及用于制造散热器的方法
JP2000340350A (ja) 窒化ケイ素製セラミックヒータおよびその製造方法
CN106376107A (zh) 大功率氮化硅陶瓷加热片及其内软外硬的制作方法
CN106631036A (zh) 一种高温共烧氮化铝陶瓷的烧结方法
CN112573926A (zh) 氮化铝导体材料及氮化铝全陶瓷加热结构器件
CN110372392A (zh) 一种陶瓷基板的烧结方法
CN106986650A (zh) 一种铝碳化硅材质的微波及混合电路管壳的制备方法
CN108882405B (zh) 一种陶瓷发热体的制作方法
EP3648186A1 (en) Thermoelectric conversion module and method for manufacturing thermoelectric conversion module
CN116761285A (zh) 一种低电阻温度系数的氮化铝加热器及其制备方法
CN114710847B (zh) 半导体芯片封测用电子陶瓷加热器及其制备方法
KR100459868B1 (ko) 저온 소성 세라믹 히터용 조성물 및 세라믹 히터 제조방법
JP2005023416A (ja) 金属−セラミックス焼結積層体の製造方法
JP3180100B2 (ja) 半導体モジュール
EP4290594A1 (en) Thermoelectric conversion module, and method for producing thermoelectric conversion module
JP2005033069A (ja) 熱電変換素子用熱応力緩和パッドの製造方法
JP2005019750A (ja) セラミック回路基板及びその製造方法並びに電気回路モジュール
JP4950379B2 (ja) AlNメタライズ基板およびその製造方法
JPH05190913A (ja) 熱発電素子およびその製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination