CN106631036A - 一种高温共烧氮化铝陶瓷的烧结方法 - Google Patents

一种高温共烧氮化铝陶瓷的烧结方法 Download PDF

Info

Publication number
CN106631036A
CN106631036A CN201611115067.5A CN201611115067A CN106631036A CN 106631036 A CN106631036 A CN 106631036A CN 201611115067 A CN201611115067 A CN 201611115067A CN 106631036 A CN106631036 A CN 106631036A
Authority
CN
China
Prior art keywords
aluminium nitride
temperature
sintering
firing
aluminum nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201611115067.5A
Other languages
English (en)
Inventor
夏庆水
陈寰贝
程凯
庞学满
张智旻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 55 Research Institute
Original Assignee
CETC 55 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 55 Research Institute filed Critical CETC 55 Research Institute
Priority to CN201611115067.5A priority Critical patent/CN106631036A/zh
Publication of CN106631036A publication Critical patent/CN106631036A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/404Refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6582Hydrogen containing atmosphere
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

本发明是一种高温共烧氮化铝陶瓷的烧结方法,该方法包括以下步骤:(1)使用氮化铝生瓷和金属化浆料按照多层陶瓷生产工艺制作氮化铝生瓷件;(2)将氮化铝生瓷件在排胶炉中排胶;(3)排胶后的生瓷件放入双重密闭承烧装置中;(4)将装有氮化铝生瓷件产品的承烧装置放入高温气氛烧结炉中烧结。本发明的优点:1)本方法可以制备高温共烧氮化铝陶瓷,应用于MCM基板和封装、大功率器件的基板、外壳、大功率LED封装外壳等领域;2)使用本发明的方法烧结,可以避免氮化铝陶瓷中第二相的过度挥发,得到的共烧氮化铝陶瓷的热导率、抗折强度和金属化强度满足电子陶瓷的使用要求。

Description

一种高温共烧氮化铝陶瓷的烧结方法
技术领域
本发明涉及的是一种高温共烧氮化铝(AlN)陶瓷的烧结方法,属于电子陶瓷技术领域,主要应用于多芯片组件(MCM)和大功率陶瓷基板及外壳等领域。
背景技术
高温共烧陶瓷(HTCC)按照材料体系可分为氧化铝和氮化铝等。氮化铝高温共烧陶瓷的主要优点是热导率高、机械强度高、电性能好、无毒以及热膨胀系数与硅匹配等,主要应用于MCM基板和封装、大功率器件的基板、外壳、大功率LED封装外壳等领域。氮化铝陶瓷烧结温度很高,一般在1600℃~2000℃,因此与之共烧的金属浆料必须耐高温,一般采用金属钨作为氮化铝共烧的金属化浆料。
氮化铝的高温共烧烧结由于有金属化钨,必须在还原性气氛下烧结,防止钨氧化。纯氮化铝的烧结温度很高,因此难以共烧。一般在氮化铝中加入少量的烧结助剂等来降低陶瓷的烧结温度,同时烧结助剂不应大幅度降低氮化铝陶瓷的热导率和抗折强度。但是烧结助剂在烧结时形成的第二相在高温下容易挥发,从而对陶瓷的强度和金属化的强度造成很大影响,导致陶瓷烧结质量下降。因此烧结时控制第二相的挥发是高温共烧氮化铝陶瓷烧结的关键技术。
发明内容
本发明提出的是一种高温共烧氮化铝陶瓷的烧结方法,其目的在于克服氮化铝陶瓷烧结时的不足之处,使用合理的烧结装置,减少烧结时第二相的挥发,从而使得烧结出的氮化铝共烧陶瓷热导率、抗折强度和金属化强度满足陶瓷基板、封装外壳等的使用要求。
本发明的技术解决方案:一种高温共烧氮化铝陶瓷的烧结方法,包括以下步骤:
(1)使用氮化铝生瓷和金属化浆料按照多层陶瓷生产工艺制作氮化铝生瓷件;
(2)将氮化铝生瓷件在排胶炉中排胶;
(3)排胶后的氮化铝瓷件放入双重密闭承烧装置中;
(4)将装入氮化铝瓷件产品的承烧装置放入高温气氛烧结炉中烧结。
本发明的优点:
1)该方法可以制备高温共烧氮化铝陶瓷,应用于MCM基板和封装、大功率器件的基板、外壳、大功率LED封装外壳等领域;
2)使用本发明的方法烧结,可以避免氮化铝陶瓷中第二相的过度挥发,得到的共烧氮化铝陶瓷的热导率、抗折强度和金属化强度满足电子陶瓷的使用要求。
附图说明
图1是本烧结方法双重密闭承烧装置示意图。
具体实施方式
一种高温共烧氮化铝陶瓷的烧结方法,包括以下步骤:
(1)使用氮化铝生瓷和金属化浆料按照多层陶瓷生产工艺制作氮化铝生瓷件;
(2)将氮化铝生瓷件在排胶炉中排胶;
(3)排胶后的氮化铝瓷件放入双重密闭承烧装置中;
(4)将装入氮化铝瓷件产品的承烧装置放入高温气氛烧结炉中烧结。
所述多层陶瓷生产工艺包含以下步骤:生瓷配料、流延生瓷带、生瓷带分切成生瓷片、生瓷片印刷、生瓷片叠片层压形成多层瓷片、多层生瓷片热切成生瓷件。
所述的氮化铝生瓷件组成包括AlN粉、助烧剂、粘结剂和增塑剂,它们间的重量比是助烧剂占总重量的3%~6%,粘结剂占总重量的5%~10%,增塑剂占总重量的3%~8%,余量是AlN粉。
所述的金属化浆料为钨金属化浆料,其组成包括钨粉、粘结剂和溶剂等,它们间的重量比是钨粉80-90%、粘结剂5-8%,溶剂5-8%。溶剂可以是酒精、丙酮等。
所述将氮化铝生瓷件在排胶炉中排胶:排胶气氛为氮气,生瓷件放置在承烧板上面,承烧板采用氮化铝板或钨板,升温速率小于5℃/min,最高温度350℃~450℃,保温时间3~8小时,优选5小时。
所述排胶后的氮化铝瓷件放入双重密闭承烧装置中:
1)排胶后的承烧板和生瓷件从排胶炉取出后,先用钨框放置在承烧板的上方并围住排胶后的生瓷件;
2)可以多层叠放上述承烧板、排胶生瓷件和钨框;
3)上述钨框和承烧板的上面用氮化铝板或钨板罩住密闭,整体再用钨盒罩密闭;
所述高温气氛炉烧结气氛为还原性气氛,烧结保温温度1800℃~1900℃,保温时间2~8小时。
本发明通过排胶工艺将生瓷件内有机粘结剂、溶剂等去除,高温共烧采用双重密闭结构,防止高温共烧氮化铝陶瓷第二相在高温烧结时过多挥发,保证共烧陶瓷的热导率、抗折强度和金属化强度。使用本方法烧结的高温共烧氮化铝陶瓷的热导率大于大于170W/m.K,陶瓷抗折强度大于200MPa,金属化焊接面积1mm2承受拉力大于20N;本方法烧结的高温多层共烧氮化铝陶瓷可应用于MCM基板和封装、大功率器件的基板、外壳、大功率LED封装外壳等领域。
下面结合实施例对本发明作进一步说明。
实施例1
制备高温共烧氮化铝陶瓷的烧结方法,该方法如下:
1)按照重量比80%AlN粉、4% 助烧剂(氧化钇、氧化钙)、7%粘结剂、4%增塑剂,5%溶剂(丙酮)配置生瓷浆料,通过流延工艺生产AlN生瓷件; AlN生瓷片表面通过印刷工艺印刷钨金属化浆料;
2)将若干AlN生瓷件通过叠片、热压形成多层生瓷件,同时另取若干AlN生瓷件通过叠片、热压、生切或激光切割工艺制作抗折强度和热导率测试的生瓷标样;
3)将生瓷件和生瓷标样放在AlN或钨承烧板上,放入排胶炉中排胶。排胶气氛是氮气,氮气流量为2m3/h。排胶升温速率为1℃/min,排胶保温温度400℃,保温时间5小时,400℃以下随炉降温;
4)排胶好的生瓷件和生瓷标样按照图1所示的方法,先用钨框放置在排胶承烧板的上方并围住排胶后的AlN生瓷件,多层叠放上述承烧板、排胶生瓷件、排胶生瓷标样和钨框,共放5层,钨框和承烧板的上面用氮化铝板或钨板罩住密闭,整体再用钨盒罩密闭,组成双重密闭的承烧装置;
5)将承烧装置放入到高温气氛烧结炉中。高温烧结炉升温速率设置为10℃/min,保温温度1800℃,气氛采用氢气和氮气混合气体,保温时间设定为5小时。降温速率是5℃/min,500℃以下随炉降温;
6)将烧结好的氮化铝陶瓷和测试标样取出进行检验和性能测试。
使用抗折强度标样测试陶瓷的抗折强度,使用热导率测试标样测试氮化铝陶瓷的热导率,在金属化面积是1mm2的金属化图形上通过先镀镍,再用银铜焊料焊接可伐引线的方式测量金属化与氮化铝陶瓷的结合强度。
使用本方法烧结的氮化铝陶瓷抗折强度的测试结果见表1,陶瓷的热导率测试结果见表2,测试的5个金属化样品的挂重拉力全部大于20N。
表1 氮化铝陶瓷抗折强度测试数据
表2 氮化铝陶瓷热导率测试数据

Claims (6)

1.一种高温共烧氮化铝陶瓷的烧结方法,其特征是包括以下步骤:
(1)使用氮化铝生瓷和金属化浆料按照多层陶瓷生产工艺制作氮化铝生瓷件;
(2)将氮化铝生瓷件在排胶炉中排胶;
(3)排胶后的氮化铝瓷件放入双重密闭承烧装置中;
(4)将装入氮化铝瓷件产品的承烧装置放入高温气氛烧结炉中烧结。
2.根据权利要求1所述高温共烧氮化铝陶瓷的烧结方法,其特征是所述的氮化铝生瓷件组成包括AlN粉、助烧剂、粘结剂和增塑剂,它们间的重量比是助烧剂占总重量的3%~6%,粘结剂占总重量的5%~10%,增塑剂占总重量的3%~8%,余量是AlN粉。
3.根据权利要求1所述高温共烧氮化铝陶瓷的烧结方法,其特征是所述的金属化浆料组成包括钨粉、粘结剂和溶剂,它们间的重量比是钨粉80-90%、粘结剂5-8%,溶剂5-8%。
4.根据权利要求1所述高温共烧氮化铝陶瓷的烧结方法,其特征是所述将氮化铝生瓷件在排胶炉中排胶:排胶气氛为氮气,生瓷件放置在承烧板上面,承烧板采用氮化铝板或钨板,升温速率小于5℃/min,最高温度350℃~450℃,保温时间3~8小时。
5.根据权利要求1所述高温共烧氮化铝陶瓷的烧结方法,其特征是所述排胶后的氮化铝瓷件放入双重密闭承烧装置中,具体方法如下:
1)排胶后的承烧板和生瓷件从排胶炉取出后,先用钨框放置在承烧板的上方并围住排胶后的生瓷件;
2)可以多层叠放上述承烧板、排胶生瓷件和钨框;
3)上述钨框和承烧板的上面用氮化铝板或钨板罩住密闭,整体再用钨盒罩密闭。
6.根据权利要求1所述高温共烧氮化铝陶瓷的烧结方法,其特征是所述高温气氛炉烧结气氛为还原性气氛,烧结保温温度1800℃~1900℃,保温时间2~8小时。
CN201611115067.5A 2016-12-07 2016-12-07 一种高温共烧氮化铝陶瓷的烧结方法 Pending CN106631036A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611115067.5A CN106631036A (zh) 2016-12-07 2016-12-07 一种高温共烧氮化铝陶瓷的烧结方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611115067.5A CN106631036A (zh) 2016-12-07 2016-12-07 一种高温共烧氮化铝陶瓷的烧结方法

Publications (1)

Publication Number Publication Date
CN106631036A true CN106631036A (zh) 2017-05-10

Family

ID=58818566

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611115067.5A Pending CN106631036A (zh) 2016-12-07 2016-12-07 一种高温共烧氮化铝陶瓷的烧结方法

Country Status (1)

Country Link
CN (1) CN106631036A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109053196A (zh) * 2018-07-12 2018-12-21 中国电子科技集团公司第五十五研究所 一种大尺寸高温共烧陶瓷的烧结方法
CN112552055A (zh) * 2021-01-14 2021-03-26 威海圆环先进陶瓷股份有限公司 一种金属和氮化硅陶瓷高温共烧复合基板的方法
CN112608155A (zh) * 2020-12-30 2021-04-06 威海圆环先进陶瓷股份有限公司 一种金属和氮化硅陶瓷高温共烧复合基板的方法
CN113161297A (zh) * 2021-03-08 2021-07-23 潮州三环(集团)股份有限公司 一种陶瓷封装基座
CN113831143A (zh) * 2021-09-22 2021-12-24 宜宾红星电子有限公司 电子陶瓷基片一体烧结方法
CN116410003A (zh) * 2021-12-31 2023-07-11 江苏博睿光电股份有限公司 一种基板、制备方法及应用
CN116655399A (zh) * 2023-05-22 2023-08-29 合肥圣达电子科技实业有限公司 一种氮化铝粉体浆料及其提高封装外壳可靠性的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5540884A (en) * 1991-09-12 1996-07-30 The Dow Chemical Company Method of making co-fired, multilayer substrates
CN1142813A (zh) * 1993-12-22 1997-02-12 金刚砂公司 制造氮化铝陶瓷的低温烧结方案
CN1442390A (zh) * 2003-03-13 2003-09-17 上海交通大学 低熔点熔体作密封物质防止氧化铅挥发的方法
CN104600037A (zh) * 2014-12-30 2015-05-06 中国电子科技集团公司第五十五研究所 多管芯大功率二极管外壳及其制作方法、芯片封装方法
CN105430940A (zh) * 2015-11-24 2016-03-23 合肥圣达电子科技实业公司 一种用于高温共烧AlN多层布线基板的填孔钨浆及制备方法
CN105489559A (zh) * 2015-11-30 2016-04-13 中国电子科技集团公司第五十五研究所 一种微波功率管用氮化铝基板及其制造方法
CN105948822A (zh) * 2016-04-29 2016-09-21 航天材料及工艺研究所 一种碳化硅基复合材料表面SiC涂层的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5540884A (en) * 1991-09-12 1996-07-30 The Dow Chemical Company Method of making co-fired, multilayer substrates
CN1142813A (zh) * 1993-12-22 1997-02-12 金刚砂公司 制造氮化铝陶瓷的低温烧结方案
CN1442390A (zh) * 2003-03-13 2003-09-17 上海交通大学 低熔点熔体作密封物质防止氧化铅挥发的方法
CN104600037A (zh) * 2014-12-30 2015-05-06 中国电子科技集团公司第五十五研究所 多管芯大功率二极管外壳及其制作方法、芯片封装方法
CN105430940A (zh) * 2015-11-24 2016-03-23 合肥圣达电子科技实业公司 一种用于高温共烧AlN多层布线基板的填孔钨浆及制备方法
CN105489559A (zh) * 2015-11-30 2016-04-13 中国电子科技集团公司第五十五研究所 一种微波功率管用氮化铝基板及其制造方法
CN105948822A (zh) * 2016-04-29 2016-09-21 航天材料及工艺研究所 一种碳化硅基复合材料表面SiC涂层的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
崔篙 等: "MCM用氮化铝共烧多层陶瓷基板的研究", 《电子元件与材料》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109053196A (zh) * 2018-07-12 2018-12-21 中国电子科技集团公司第五十五研究所 一种大尺寸高温共烧陶瓷的烧结方法
CN109053196B (zh) * 2018-07-12 2021-01-26 中国电子科技集团公司第五十五研究所 一种大尺寸高温共烧陶瓷的烧结方法
CN112608155A (zh) * 2020-12-30 2021-04-06 威海圆环先进陶瓷股份有限公司 一种金属和氮化硅陶瓷高温共烧复合基板的方法
CN112552055A (zh) * 2021-01-14 2021-03-26 威海圆环先进陶瓷股份有限公司 一种金属和氮化硅陶瓷高温共烧复合基板的方法
CN113161297A (zh) * 2021-03-08 2021-07-23 潮州三环(集团)股份有限公司 一种陶瓷封装基座
CN113161297B (zh) * 2021-03-08 2022-07-22 潮州三环(集团)股份有限公司 一种陶瓷封装基座
CN113831143A (zh) * 2021-09-22 2021-12-24 宜宾红星电子有限公司 电子陶瓷基片一体烧结方法
CN116410003A (zh) * 2021-12-31 2023-07-11 江苏博睿光电股份有限公司 一种基板、制备方法及应用
CN116655399A (zh) * 2023-05-22 2023-08-29 合肥圣达电子科技实业有限公司 一种氮化铝粉体浆料及其提高封装外壳可靠性的方法

Similar Documents

Publication Publication Date Title
CN106631036A (zh) 一种高温共烧氮化铝陶瓷的烧结方法
US6346317B1 (en) Electronic components incorporating ceramic-metal composites
CN107382284A (zh) 一种高温共烧氧化铝陶瓷的烧结方法
JP2765885B2 (ja) 窒化アルミニウム回路基板及びその製造方法
CN105304577A (zh) 多芯片组件散热封装陶瓷复合基板的制备方法
CN109053196A (zh) 一种大尺寸高温共烧陶瓷的烧结方法
WO2007088748A1 (ja) メタライズドセラミックス基板の製造方法、該方法により製造したメタライズドセラミックス基板、およびパッケージ
CN107785471A (zh) 一种uvled陶瓷基座的封装方法及uvled陶瓷基座封装结构
JPH02196073A (ja) 窒化アルミニウム及び窒化アルミニウム‐ホーケイ酸ガラス複合材料からなる電子パツケージ
JPS5927120B2 (ja) 基板
JP2004119735A (ja) 連結基板及びその製造方法並びにセラミックパッケージ
US6143421A (en) Electronic components incorporating ceramic-metal composites
JP2006282474A (ja) ガラスセラミック焼結体およびその製造方法、並びにそれを用いた配線基板
KR20110043440A (ko) 저온 소결 세라믹 재료, 저온 소결 세라믹 소결체 및 다층 세라믹 기판
KR100261793B1 (ko) 고강도 고신뢰성 회로기판 및 그 제조방법
CN114195527A (zh) 一种台阶结构高温共烧陶瓷的烧结方法
CN112608155A (zh) 一种金属和氮化硅陶瓷高温共烧复合基板的方法
JPH11135906A (ja) 基板およびその製造方法
JPH0997862A (ja) 高強度回路基板およびその製造方法
JPH10258479A (ja) 傾斜機能材料の製造方法
JP3323074B2 (ja) 配線基板、半導体素子収納用パッケージおよびその実装構造
JP2005019750A (ja) セラミック回路基板及びその製造方法並びに電気回路モジュール
Ziesche et al. Ceramic Embedding of SiC-Semiconductor Using Cofiring Technology
JP3450998B2 (ja) 配線基板およびその実装構造
JPH09260544A (ja) セラミック回路基板およびその製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170510