CN116410003A - 一种基板、制备方法及应用 - Google Patents

一种基板、制备方法及应用 Download PDF

Info

Publication number
CN116410003A
CN116410003A CN202111683090.5A CN202111683090A CN116410003A CN 116410003 A CN116410003 A CN 116410003A CN 202111683090 A CN202111683090 A CN 202111683090A CN 116410003 A CN116410003 A CN 116410003A
Authority
CN
China
Prior art keywords
aln ceramic
ceramic substrate
aln
producing
substrate according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111683090.5A
Other languages
English (en)
Inventor
何锦华
王兢
吴超
梁超
符义兵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Borui Photoelectric Co ltd
Jiangsu Chengruida Photoelectric Co Ltd
Original Assignee
Jiangsu Borui Photoelectric Co ltd
Jiangsu Chengruida Photoelectric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Borui Photoelectric Co ltd, Jiangsu Chengruida Photoelectric Co Ltd filed Critical Jiangsu Borui Photoelectric Co ltd
Priority to CN202111683090.5A priority Critical patent/CN116410003A/zh
Publication of CN116410003A publication Critical patent/CN116410003A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/021Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles in a direct manner, e.g. direct copper bonding [DCB]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/668Pressureless sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/366Aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/403Refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/55Pre-treatments of a coated or not coated substrate other than oxidation treatment in order to form an active joining layer
    • C04B2237/555Pre-treatments of a coated or not coated substrate other than oxidation treatment in order to form an active joining layer on a substrate not containing an interlayer coating, leading to the formation of an interlayer coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Products (AREA)

Abstract

本发明提出一种Ti‑AlN陶瓷基板、制备方法及应用,包括以下步骤:制备AlN陶瓷胶片;制备Ti‑AlN陶瓷素片;将所述Ti‑AlN陶瓷素片进行反应烧结,获得Ti‑AlN陶瓷基板。本发明利用固相扩散法制备获得Ti‑AlN陶瓷基板,具有高导热率、低成本的优点;适用于第三代半导体器件及发光器件。

Description

一种基板、制备方法及应用
技术领域
本发明涉及封装基板领域,具体地涉及一种高导热Ti-AlN陶瓷基板及其制备方法、应用。
背景技术
随着大规模集成电路的发展,人们对于封装用基板的要求也越来越高。其中,高热导率、高强度、低介电常数是集成电路对封装用基板的最基本要求。
封装用基片还应与硅片具有良好的热匹配、易成型、高表面平整度、易金属化、易加工、低成本等特点和一定的力学性能。
氮化铝(AlN)作为一种综合性能优良新型的先进陶瓷材料,具有优良的热传导性,可靠的电绝缘性,低的介电常数和介电损耗,无毒以及与硅相匹配的热膨胀系数等一系列优良特性,被认为是新一代高集程度半导体基片和电子器件封装的理想材料,受到了国内外研究者的广泛重视。在理论上,AlN的热导率为320W/(m·K),工业上实际制备的多晶氮化铝的热导率也可达100~250W/(m),该数值是传统基板材料氧化铝热导率的5倍~10倍。
但如何进一步提高现有氮化铝陶瓷基板的性能并降低其制造成本是值得研究的技术问题。
发明内容
针对以上技术问题,本发明拟提出一种氮化硅与氮化铝陶瓷的复合基板,利用各自的优点,制备一种具有高强度、高导热率的封装基板。
具体地,本发明所提出的技术方案如下:
一种Ti-AlN陶瓷基板的制备方法,包括以下步骤:
制备AlN陶瓷胶片;
制备Ti-AlN陶瓷素片;
将所述Ti-AlN陶瓷素片进行反应烧结,获得Ti-AlN陶瓷基板。
可选地,所述制备AlN陶瓷胶片包括:
将氮化铝粉、氧化钇粉、聚乙二醇、聚乙二醇缩丁醛和乙醇进行混合,经搅拌、球磨后得到流延浆料;
经流延工艺得到AlN陶瓷胶片。
可选地,其中,氮化铝粉、氧化钇粉、聚乙二醇、聚乙二醇缩丁醛和乙醇的质量比为9.5∶0.5∶1∶1∶20。
可选地,所述制备Ti-AlN陶瓷素片包括:
将TC4箔带切割后与所述AlN陶瓷胶片叠加进行冷等静压成型、排胶得到Ti-AlN陶瓷素片。
可选地,所述反应烧结是将Ti-AlN陶瓷素片置于氮气气氛下进行无压烧结。
可选地,所述反应烧结的温度曲线为:0-900℃升温速度为10℃/min;900℃保温1h; 900℃-1200℃升温速度为5℃/min;1200℃-1700℃升温速度为2℃/min;1700℃-1800℃升温速度为1℃/min;1800℃保温4h。
可选地,所述TC4箔的成分包括Ti-6Al-V;和/或所述TC4箔的厚度为0.01mm。
可选地,所述冷等静压压力约为100MPa、保压时间约30min。
本发明还提出一种Ti-AlN陶瓷基板,包括叠置的AlN陶瓷衬底、过渡层、AlN薄膜层及Ti种子层。
可选地,所述过渡层为Ti-Al-N层。
本发明还提出一种第三代半导体功率器件,包括本发明所提出的陶瓷基板,其中所述陶瓷基板作为第三代半导体功率器件的热电分离载板。
本发明还提出一种发光器件,包括本发明所提出的陶瓷基板,其中陶瓷基板作为发光器件的承载基板。
本发明具有以下优势:
(1)TC4箔和AlN陶瓷基板的结合会在界面处发生固相扩散反应,生成Ti-Al-N三元固溶体,大大提高了其界面结合强度,优于目前常用的DPC工艺;
(2)TC4箔中的Ti会在氮气气氛中氮化为TiN,成为陶瓷基板后期金属覆铜的种子层,省去磁控溅射工艺,大大提高生产效率,降低工艺复杂程度和成本;
(3)TC4箔中的Al元素在氮气中反应为AlN,这与基体和TiN的结合良好,提高界面层的导热率;
(4)原料TC4箔工业化程度较高,成本远低于高纯磁控溅射用金属Ti靶,从而大大降低陶瓷基板金属化的成本,提高生产效率。
附图说明
图1是本发明其中一实施例的Ti-AlN陶瓷基板制备工艺流程图。
图2是本发明其中一实施例的Ti-AlN陶瓷基板截面背散射图。
图3是本发明其中一实施例的Ti-AlN陶瓷基板应用于第三代半导体器件的结构示意图。
图4是本发明其中一实施例的Ti-AlN陶瓷基板应用于发光器件的结构示意图。
具体实施方式
为使本领域技术人员更好地理解本发明的技术方案,下面结合附图和具体实施方式对本发明作进一步详细描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护范围。
除非另外具体说明,本发明中使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本发明中使用的“包括”或者“包含”等既不限定所提及的形状、数字、步骤、操作、构件、原件和/或它们的组,也不排除出现或加入一个或多个其他不同的形状、数字、步骤、动作、操作、构件、原件和/或它们的组。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示技术特征的数量与顺序。
实施例1
本发明提出一种Ti-AlN陶瓷基板的制备方法,如图1所示,包括以下步骤:
S1:制备AlN陶瓷胶片;
具体地,将氮化铝粉、氧化钇粉、聚乙二醇、聚乙二醇缩丁醛和乙醇进行混合,搅拌1h后得到混合料浆;之后将混合料浆放入聚四氟乙烯罐中球磨12h,球磨后料浆进行过筛除泡后得到流延浆料,浆料经过流延工艺后得到AlN陶瓷胶片。其中,氮化铝粉、氧化钇粉、聚乙二醇、聚乙二醇缩丁醛和乙醇的质量比(8-12)∶(0.25-1)∶(0.75-1.5)∶(0.5-1.5)∶ (15-25)。其中,最优的质量比为9.5∶0.5∶1∶1∶20。
S2:制备Ti-AlN陶瓷素片;
具体地,将TC4箔带切割后与AlN陶瓷胶片叠加进行冷等静压成型,最后经过500℃空气排胶得到Ti-AlN陶瓷素片。其中,本发明例如TC4箔的成分为Ti-6Al-V;厚度为0.01mm;冷等静压压力为100MPa;保压时间30min。
S3:将所述Ti-AlN陶瓷素片进行反应烧结,获得Ti-AlN陶瓷基板。
具体地,将步骤S1和S2中制备的陶瓷素片置于氮化硼模具中在氮气气氛下进行无压烧结得制品。其中,烧结曲线例如:升温速率为:0-900℃升温速度为10℃/min;900℃保温1h;900℃-1200℃升温速度为5℃/min;1200℃-1700℃升温速度为2℃/min;1700℃-1800℃升温速度为1℃/min;1800℃保温4h。
在高温烧结过程中,TC4箔和AlN陶瓷基板的结合会在界面处发生固相扩散反应,生成Ti-Al-N三元固溶体,大大提高了其界面结合强度,优于目前常用的DPC工艺。
TC4箔中的Ti会在氮气气氛中氮化为TiN,成为陶瓷基板后期金属覆铜的种子层,省去磁控溅射工艺,大大提高生产效率,降低工艺复杂程度和成本。
TC4箔中的Al元素在氮气中反应为AlN,这与基体和TiN的结合良好,提高界面层的导热率。
本发明的反应机理为固相扩散+反应烧结,首先TC4中含有的铝元素较低温度时会首先形成液相,向氮化铝侧发生扩散,促进AlN的烧结,并加固界面;此外,TC4中的金属Ti在高温区域(>1200℃)会与氮化铝发生固溶生成Ti-Al-N不饱和固溶体,同样可以获得结合优异的Ti-AlN界面。
其中,如图2所示,为本发明的Ti-AlN陶瓷基板截面背散射图,TC4的主要成分为Ti-6Al-4V合金,TC4箔在氮气氛中生成TiN和AlN等化合物,增强与AlN基底的界面结合力。
实施例2
本发明还提出一种根据实施例1的制备方法所获得的Ti-AlN陶瓷基板,包括叠置的 AlN陶瓷衬底、过渡层、AlN薄膜层及Ti种子层。其中,所述过渡层为Ti-Al-N层。
氮化铝薄膜厚0.3-1mm,过渡层厚0.05-0.1mm,Ti种子层厚0.1-0.2mm。
实施例3
如图3所示,作为本发明的一个实施例,公开一种第三代半导体功率器件,其组成一般包括:陶瓷基板、功率器件、热沉、热沉上热界面材料、丝焊等;所述陶瓷基板作为第三代半导体功率器件热电分离的陶瓷载板。其中该陶瓷基板采用本发明实施例2所提出的陶瓷基板。该功率器件例如是IGBT器件。
实施例4
如图4所示,作为本发明的一个实施例,公开了一种发光器件,其组成一般包括:陶瓷基板、导电金属层(线路层),发光芯片,围坝(或围墙),外部封装材料。
其中,导电金属层(线路层)位于陶瓷基板表面,通过磁控溅射沉积铜、钛等金属薄膜作为晶种层,再由光刻胶或干膜等图形化方式配合电镀进行铜厚膜沉积,并在铜金属表面进行化学镀镍和化学镀金等最终精饰。金属层的材质一般为铜,镍,金等材料。铜层厚度为0.05-1mm,镍层厚度为2-10μm,金层厚度为50-250nm。此外陶瓷基底表面可以进行直接覆铜DBC工艺制备得铜图案,铜图形厚度为0.05-3mm。发光芯片连接至导电金属层 (线路层);可以采用固晶胶将激发芯片阵列粘结至陶瓷基板;外部封装材料用于封装激发芯片阵列和荧光粉,其材料一般为硅胶。
作为本发明的一个优选高显色白光应用方案,发光器件中的荧光粉采用钇铝石榴石系荧光粉和(Sr,Ca)AlSiN3:Eu红色荧光粉;
作为本发明的另一个优选高显色白光应用方案,发光器件中的荧光粉采用钇铝石榴石系荧光粉、(Sr,Ca)AlSiN3:Eu红色荧光粉和KSF红色荧光粉;
作为本发明的另一个优选高显色照明应用方案,发光器件中的荧光粉采用 (Sr,Ca)AlSiN3:Eu氮化物红粉和(Sr,Ba)2SiO4:Eu硅酸盐荧光粉;
作为本发明的一个优选高色域背光应用方案,发光器件中的荧光粉采用B-塞隆荧光粉和KSF红色荧光粉。
其中,发光芯片阵列中的发光芯片可以为紫外、紫光、蓝光、绿光、红光或红外发光芯片中一种或多种。
例如:发光芯片阵列中的发光芯片采用蓝光芯片、绿光芯片和红色芯片组合,形成RGB全彩;发光芯片阵列中的发光芯片采用紫外芯片,用于杀菌;发光芯片阵列中的发光芯片采用蓝光芯片和红光芯片的组合,用于植物照明;发光芯片阵列中的发光芯片为红外芯片用于设备图像识别。
发光芯片阵列中的发光芯片为紫外、紫光、蓝光芯片中一种或多种时,还可以起激发芯片的作用,此时发光器件中还包括荧光粉,荧光粉受激发芯片激发而发光。荧光粉可以为钇铝石榴石系荧光粉、(Sr,Ca)AlSiN3:Eu红色荧光粉、KSF红色荧光粉,β-塞隆荧光粉,(Sr,Ba)2SiO4:Eu硅酸盐荧光粉中的一种或多种。
发光芯片阵列还可以为激发芯片和发光芯片的组合。
本发明相对于现有技术具有如下优势:
(1)TC4箔和AlN陶瓷基板的结合会在界面处发生固相扩散反应,生成Ti-Al-N三元固溶体,大大提高了其界面结合强度,优于目前常用的DPC工艺;
(2)TC4箔中的Ti会在氮气气氛中氮化为TiN,成为陶瓷基板后期金属覆铜的种子层,省去磁控溅射工艺,大大提高生产效率,降低工艺复杂程度和成本;
(3)TC4箔中的Al元素在氮气中反应为AlN,这与基体和TiN的结合良好,提高界面层的导热率;
(4)原料TC4箔工业化程度较高,成本远低于高纯磁控溅射用金属Ti靶,从而大大降低陶瓷基板金属化的成本,提高生产效率。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。

Claims (12)

1.一种Ti-AlN陶瓷基板的制备方法,其特征在于,包括以下步骤:
制备AlN陶瓷胶片;
制备Ti-AlN陶瓷素片;
将所述Ti-AlN陶瓷素片进行反应烧结,获得Ti-AlN陶瓷基板。
2.根据权利要求1所述的Ti-AlN陶瓷基板的制备方法,其特征在于,所述制备AlN陶瓷胶片包括:
将氮化铝粉、氧化钇粉、聚乙二醇、聚乙二醇缩丁醛和乙醇进行混合,经搅拌、球磨后得到流延浆料;
经流延工艺得到AlN陶瓷素片。
3.根据权利要求2所述的Ti-AlN陶瓷基板的制备方法,其特征在于,其中,氮化铝粉、氧化钇粉、聚乙二醇、聚乙二醇缩丁醛和乙醇的质量比为(8-12)∶(0.25-1)∶(0.75-1.5)∶(0.5-1.5)∶(15-25)。
4.根据权利要求1或2所述的Ti-AlN陶瓷基板的制备方法,其特征在于,所述制备Ti-AlN陶瓷素片包括:
将TC4箔带切割后与所述AlN陶瓷胶片叠加进行冷等静压成型、排胶得到Ti-AlN陶瓷素片。
5.根据权利要求1所述的Ti-AlN陶瓷基板的制备方法,其特征在于,所述反应烧结是将Ti-AlN陶瓷素片置于氮气气氛下进行无压烧结。
6.根据权利要求5所述的Ti-AlN陶瓷基板的制备方法,其特征在于,所述反应烧结的温度曲线为:0-900℃升温速度为10℃/min;900℃保温1h;900℃-1200℃升温速度为5℃/min;1200℃-1700℃升温速度为2℃/min;1700℃-1800℃升温速度为1℃/min;1800℃保温4h。
7.根据权利要求4所述的Ti-AlN陶瓷基板的制备方法,其特征在于,所述TC4箔的成分包括Ti-6AI-V;和/或所述TC4箔的厚度为0.01mm。
8.根据权利要求4所述的Ti-AlN陶瓷基板的制备方法,其特征在于,所述冷等静压压力约为50-120MPa、保压时间约10-45min。
9.一种Ti-AlN陶瓷基板,其特征在于,包括叠置的AlN陶瓷衬底、过渡层、AlN薄膜层及Ti种子层。
10.根据权利要求9所述Ti-AlN陶瓷基板,其特征在于,所述过渡层为Ti-Al-N层。
11.一种第三代半导体功率器件,其特征在于,包括权利要求9-10任一项所述的陶瓷基板,所述陶瓷基板作为所述第三代半导体功率器件热电分离的载板。
12.一种发光器件,其特征在于,包括权利要求9-10任一项所述的陶瓷基板,所述陶瓷基板作为所述发光器件的承载基板。
CN202111683090.5A 2021-12-31 2021-12-31 一种基板、制备方法及应用 Pending CN116410003A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111683090.5A CN116410003A (zh) 2021-12-31 2021-12-31 一种基板、制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111683090.5A CN116410003A (zh) 2021-12-31 2021-12-31 一种基板、制备方法及应用

Publications (1)

Publication Number Publication Date
CN116410003A true CN116410003A (zh) 2023-07-11

Family

ID=87050197

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111683090.5A Pending CN116410003A (zh) 2021-12-31 2021-12-31 一种基板、制备方法及应用

Country Status (1)

Country Link
CN (1) CN116410003A (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4770953A (en) * 1986-02-20 1988-09-13 Kabushiki Kaisha Toshiba Aluminum nitride sintered body having conductive metallized layer
JPS6461377A (en) * 1987-08-31 1989-03-08 Toshiba Corp Surface-conductive ceramic member and production thereof
US20030141345A1 (en) * 2002-01-25 2003-07-31 Ngk Insulators, Ltd. Bonded member comprising different materials, and production method thereof
US20160181123A1 (en) * 2013-08-26 2016-06-23 Mitsubishi Materials Corporation Method of producing bonded body and method of producing power module substrate
CN106631036A (zh) * 2016-12-07 2017-05-10 中国电子科技集团公司第五十五研究所 一种高温共烧氮化铝陶瓷的烧结方法
CN112573926A (zh) * 2020-12-28 2021-03-30 无锡海古德新技术有限公司 氮化铝导体材料及氮化铝全陶瓷加热结构器件
CN113200747A (zh) * 2021-05-12 2021-08-03 深圳市丁鼎陶瓷科技有限公司 一种低温烧结的氮化铝陶瓷材料、氮化铝流延浆料及应用
KR20210131068A (ko) * 2020-04-23 2021-11-02 한국과학기술연구원 용융염 티타나이징을 이용하여 제조한 질화물 회로 기판 및 이의 제조방법

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4770953A (en) * 1986-02-20 1988-09-13 Kabushiki Kaisha Toshiba Aluminum nitride sintered body having conductive metallized layer
JPS6461377A (en) * 1987-08-31 1989-03-08 Toshiba Corp Surface-conductive ceramic member and production thereof
US20030141345A1 (en) * 2002-01-25 2003-07-31 Ngk Insulators, Ltd. Bonded member comprising different materials, and production method thereof
US20160181123A1 (en) * 2013-08-26 2016-06-23 Mitsubishi Materials Corporation Method of producing bonded body and method of producing power module substrate
CN106631036A (zh) * 2016-12-07 2017-05-10 中国电子科技集团公司第五十五研究所 一种高温共烧氮化铝陶瓷的烧结方法
KR20210131068A (ko) * 2020-04-23 2021-11-02 한국과학기술연구원 용융염 티타나이징을 이용하여 제조한 질화물 회로 기판 및 이의 제조방법
CN112573926A (zh) * 2020-12-28 2021-03-30 无锡海古德新技术有限公司 氮化铝导体材料及氮化铝全陶瓷加热结构器件
CN113200747A (zh) * 2021-05-12 2021-08-03 深圳市丁鼎陶瓷科技有限公司 一种低温烧结的氮化铝陶瓷材料、氮化铝流延浆料及应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
TAO ZHANG等: "The Mechanical Properties and Fracture Characteristics of AlN/Ti Laminated Composites", MATERIALS SCIENCE FORUM, vol. 658, pages 348 - 351 *
鲁燕萍: "AlN陶瓷的Ti-Ag-Cu活性封接工艺", 真空科学与技术学报, no. 04 *
黄奇良, 潘伟, 张直: "AlN陶瓷表面钛金属化反应机理及微观结构", 电子元件与材料, no. 03 *

Similar Documents

Publication Publication Date Title
EP1760794B1 (en) White light emitting diode device
US6086990A (en) High thermal conductivity silicon nitride circuit substrate and semiconductor device using the same
CN102683570B (zh) 一种复合陶瓷基板封装的白光led及其制备方法
EP2087530A1 (en) Illumination system comprising monolithic ceramic luminescence converter
CN1977393A (zh) 用于发光器件的发光陶瓷
EP4282848A1 (en) Preparation method for copper plate-covered silicon nitride ceramic substrate
CN103755351A (zh) Led用低成本氮化铝陶瓷基片的生产方法
CN1396037A (zh) 氮化铝与铜的高温钎焊方法
CN116410003A (zh) 一种基板、制备方法及应用
JP3907818B2 (ja) 窒化珪素回路基板、半導体装置及び窒化珪素回路基板の製造方法
CN114773069B (zh) 大功率集成电路用高热导率氮化硅陶瓷基板的制备方法
CN116410002A (zh) 一种基板、制备方法及应用
CN212403964U (zh) 一种氮化铝陶瓷上金属围坝的烧结焊接结构
CN116410018A (zh) 一种基板、制备方法及应用
CN201355611Y (zh) 一种具有表面抛光层的固晶基板
CN116410001A (zh) 一种基板、制备方法及应用
CN110394521B (zh) 金刚石膜高效散热材料及其制备方法
CN113698213A (zh) 一种高导热陶瓷通用覆铜基板及其制备方法
CN101705088A (zh) 锰铬共掺的镁铝尖晶石荧光衬底材料及其制备方法
CN116409985A (zh) 一种基板、制备方法及应用
CN110246751A (zh) 一种直接在晶圆片上沉积过渡衬底薄膜的csp器件及其制备方法
CN116410000B (zh) 一种基板、制备方法及应用
CN111792942A (zh) 氮化铝陶瓷基板上围坝的烧结焊接方法
CN113054082B (zh) 荧光玻璃复合材料、包含其的荧光玻璃基板及光转换装置
CN212403963U (zh) 一种氮化铝陶瓷上金属围坝的共晶焊接结构

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination