CN116621576A - 一种Bi系高温超导块体的制备方法 - Google Patents

一种Bi系高温超导块体的制备方法 Download PDF

Info

Publication number
CN116621576A
CN116621576A CN202310736014.9A CN202310736014A CN116621576A CN 116621576 A CN116621576 A CN 116621576A CN 202310736014 A CN202310736014 A CN 202310736014A CN 116621576 A CN116621576 A CN 116621576A
Authority
CN
China
Prior art keywords
sintering
block
temperature superconducting
temperature
pressed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310736014.9A
Other languages
English (en)
Inventor
张胜楠
邵柏淘
刘国庆
刘学谦
金利华
李建峰
张平祥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwest Institute for Non Ferrous Metal Research
Original Assignee
Northwest Institute for Non Ferrous Metal Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwest Institute for Non Ferrous Metal Research filed Critical Northwest Institute for Non Ferrous Metal Research
Priority to CN202310736014.9A priority Critical patent/CN116621576A/zh
Publication of CN116621576A publication Critical patent/CN116621576A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/65Reaction sintering of free metal- or free silicon-containing compositions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/401Alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/407Copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • C04B2235/6584Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage below that of air
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • C04B2235/6585Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage above that of air
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一种Bi系高温超导块体的制备方法,该方法包括:一、将Bi系前驱体粉末冷压得到Bi系冷压块体;二、一次烧结得到Bi系烧结块体;三、中间压制得到Bi系压制块体;四、二次烧结得到Bi系高温超导块体。本发明采用两次烧结结合中间压制的方法,并对中间压制和两次烧结工艺参数进行控制,以获得较少的晶核,并提高晶粒生长速率,使得大晶粒充分生长,实现了片状粉末的密堆积以及形核和生长过程的解耦,得到具有更高晶间连接性的块体,进而获得具有高超导相含量和高织构度Bi系高温超导块体,且制备方法简单,易于实现。

Description

一种Bi系高温超导块体的制备方法
技术领域
本发明属于高温超导材料技术领域,具体涉及一种Bi系高温超导块体的制备方法。
背景技术
Bi系高温超导材料目前可以进行实际应用的包括两大类,即(Bi,Pb)2Sr2Ca2Cu3Ox(Bi-2223)基超导材料和(Bi,Pb)2Sr2CaCu2Ox(Bi-2212)基超导材料,其中Bi-2223的Tc为110K,在77K自场条件下具有优异的载流性能,在包括电流引线、超导电机、超导磁体、超导电缆等方面已经进行了许多示范性应用。Bi-2212的Tc为85K,主要应用于4.2K~20K的低温高场条件下,作为高场磁体内插线圈实现25T以上高场磁体的制备。而以实际应用为目标,Bi-2223和Bi-2212需要制备成银合金包套的线带材,工艺流程较长,影响因素也很多。因此,为了进行Bi-2223和Bi-2212基超导材料的基础研究,探明材料成分和结构对其超导电性及本征载流性能的影响因素,同时开展超导块体在磁悬浮等领域的应用技术研究,高性能Bi-2223和Bi-2212块体的制备必不可少。
但由于Bi系超导材料在烧结过程中涉及到复杂的相演变过程和较慢的织构生长过程,传统固相烧结工艺获得的块体往往具有较低的超导相含量和较差的织构度,导致块体性能远低于线带材的性能,在其基础上进行的相关研究不具有代表性,也无法获得实际应用。因此制备出具有高超导相含量和高织构度的块体对于Bi系超导材料的制备技术发展而言极其重要。
发明内容
本发明所要解决的技术问题在于针对上述现有技术的不足,提供一种Bi系高温超导块体的制备方法。该方法在Bi系前驱体粉末冷压后,采用两次烧结结合中间压制的方法,通过对压制及两次烧结参数进行控制,实现了片状粉末的密堆积,以及形核和生长过程的解耦,获得具有更高晶间连接性的Bi系高温超导块体,提高了Bi系高温超导块体的超导相和织构度含量,解决了传统块体烧结工艺难以获得具有高超导相含量和高织构度高性能超导块体的问题。
为解决上述技术问题,本发明采用的技术方案为:一种Bi系高温超导块体的制备方法,其特征在于,该方法包括以下步骤:
步骤一、将具有特定Bi、Pb、Sr、Ca、Cu原子比的Bi系前驱体粉末进行冷压,得到直径R1的Bi系冷压块体;
步骤二、将步骤一中得到的Bi系冷压块体进行一次烧结,得到Bi系烧结块体;
步骤三、将步骤二中得到的Bi系烧结块体进行中间压制,得到直径R2的Bi系压制块体,且R2>R1
步骤四、将步骤三中得到的Bi系压制块体进行二次烧结,得到Bi系高温超导块体。
上述的一种Bi系高温超导块体的制备方法,其特征在于,步骤一中所述Bi系前驱体粉末中特定Bi、Pb、Sr、Ca、Cu原子比为1.65~1.95:0.30~0.45:1.85~2.00:1.80~2.20:2.80~3.20,则步骤四中得到的Bi系高温超导块体为Bi-2223高温超导块体;或者步骤一中所述Bi系前驱体粉末中特定Bi、Pb、Sr、Ca、Cu原子比为1.65~2.05:0~0.45:1.85~2.00:0.80~1.20:1.80~2.20,则步骤四中得到的Bi系高温超导块体为Bi-2212高温超导块体。
上述的一种Bi系高温超导块体的制备方法,其特征在于,步骤一中所述Bi系冷压块体的直径R1≥7mm,步骤三中所述中间压制的变形量不小于30%,且R2/R1≥1.15。本发明通过控制中间压制的变形量,进而控制Bi系压制块体的直径尺寸,以促进充分变形,提高了Bi系高温超导块体的密度。
上述的一种Bi系高温超导块体的制备方法,其特征在于,当步骤四中得到的Bi系高温超导块体为Bi-2223高温超导块体时,步骤二中所述一次烧结的烧结气氛中氧分压为0.1%~7.5%,一次烧结时间为15h~50h,步骤四中所述二次烧结的烧结气氛中氧分压为7.5%~25%,二次烧结时间为50h以上。
上述的一种Bi系高温超导块体的制备方法,其特征在于,所述一次烧结的烧结气氛中氧分压为0.1%,温度为770℃~800℃,或者一次烧结的烧结气氛中氧分压为7.5%,温度为810℃~835℃。本
上述的一种Bi系高温超导块体的制备方法,其特征在于,所述二次烧结的烧结气氛中氧分压为7.5%,温度为810℃~835℃,或者二次烧结的烧结气氛中氧分压为25%,温度为840℃~870℃。
本发明的Bi系高温超导块体烧结过程中,随着烧结气氛中氧分压的升高,对应烧结温度也增加,以保证目标产品中超导相的成相率。
上述的一种Bi系高温超导块体的制备方法,其特征在于,当步骤四中得到的Bi系高温超导块体为Bi-2212高温超导块体时,步骤二中所述一次烧结采用纯氧气氛,一次烧结温度为780℃~880℃,时间为10h~50h,步骤四中所述二次烧结采用纯氧气氛,二次烧结温度为885℃~895℃,时间为5min~40min。
本发明与现有技术相比具有以下优点:
1、本发明先对Bi系前驱体粉末进行冷压,经一次烧结后继续进行中间压制和二次烧结(可称为复压织构增强法),通过调节两次压制参数,实现了片状粉末的密堆积,结合调节两次烧结参数,实现了形核和生长过程的解耦,获得具有更高晶间连接性的Bi系高温超导块体,提高了Bi系高温超导块体的超导相含量和织构度。
2、本发明通过Bi系高温超导块体的烧结参数进行调控,先在一次烧结时采用较低氧分压,且烧结温度随氧分压的变化而调整,以保证Bi-2223或Bi-2212具有较低的形核率,获得较少的晶核,然后在二次烧结时提高氧分压,且烧结温度随氧分压的变化而调整,以提高晶粒生长速率,实现大晶粒的充分生长和高超导相含量的获得,从而得到具有更高晶间连接性的块体。
3、本发明针对不同成分的Bi系高温超导块体,在Bi-2212的一次烧结过程中采用略低的烧结温度,促进Bi-2212充分烧结,在Bi-2212的二次烧结过程中采用略高的烧结温度进行部分熔化热处理,促进生成织构化的Bi-2212高温超导块体。
4、本发明通过在一次烧结后引入一定变形量的中间压制,以简单工艺实现Bi系超导片状晶粒的密排,在增加块体密度的同时,保证更高织构度的获得。
5、本发明的制备方法简单,无需对现有设备进行任何改动,易于实现。
下面通过附图和实施例对本发明的技术方案作进一步的详细描述。
附图说明
图1是传统一步烧结法与本发明的Bi系高温超导块体的制备工艺流程对比图。
图2a是传统一步烧结法制备的Bi-2223高温超导块体的XRD衍射图。
图2b是本发明实施例1制备的Bi-2223高温超导块体的XRD衍射图。
图3是本发明实施例1制备Bi-2223高温超导块体过程中块体密度孔隙率的变化图。
图4a是传统一步烧结法制备的Bi-2223高温超导块体表面形貌显微图。
图4b是本发明实施例1制备的Bi-2223高温超导块体表面形貌显微图。
图5a是传统一步烧结法制备的Bi-2223高温超导块体断面形貌显微图。
图5b是本发明实施例1制备的Bi-2223高温超导块体断面形貌显微图。
具体实施方式
现有传统一步烧结法制备Bi-2223高温超导块体的过程包括以下步骤:
步骤一、将Bi、Pb、Sr、Ca、Cu原子比为1.95:0.30:1.85:2.20:3.20的Bi-2223前驱体粉末进行冷压,得到直径10mm的Bi-2223冷压块体;
步骤二、将步骤一中得到的Bi-2223冷压块体进行一次烧结,烧结气氛中氧分压为7.5%,烧结温度为826℃,一次烧结时间为93h,得到Bi-2223质量含量为78%的Bi-2223烧结块体;
经检测,现有传统一步烧结法制备的Bi-2223高温超导块体中超导相含量为78%,(00l)方向织构度为59%,77K自场条件下临界电流45A。
实施例1
如图1所示,本实施例包括以下步骤:
步骤一、将Bi、Pb、Sr、Ca、Cu原子比为1.95:0.30:1.85:2.20:3.20的Bi-2223前驱体粉末进行冷压,得到直径10mm的Bi-2223冷压块体;
步骤二、将步骤一中得到的Bi-2223冷压块体进行一次烧结,烧结气氛中氧分压为0.1%,烧结温度为770℃,一次烧结时间为15h,得到Bi-2223质量含量为65%的Bi-2223烧结块体;
步骤三、将步骤二中得到的Bi-2223烧结块体置于直径12mm的模具进行中间压制,得到直径12mm的Bi-2223压制块体;
步骤四、将步骤三中得到的Bi-2223压制块体进行二次烧结,烧结气氛中氧分压为7.5%,烧结温度为810℃,二次烧结时间为80h,得到Bi-2223高温超导块体。
经检测,本实施例中制备的Bi-2223高温超导块体中超导相含量为96%,(00l)方向织构度为87%,77K自场条件下临界电流82A。
图2a是传统一步烧结法制备的Bi-2223高温超导块体的XRD衍射图,从图2a可以看出,该Bi-2223高温超导块体的主相为Bi-2223相,还有少量的富铅相Pb-3321相;但是Bi-2223相的织构度较低,有较为明显的(115)和(200)等非(00l)织构峰,通过计算可以得到(00l)织构度为59%。
图2b是本发明实施例1制备的Bi-2223高温超导块体的XRD衍射图,从图2b可以看出,该Bi-2223高温超导块体的主相为Bi-2223相,并且富铅相Pb-3321的衍射峰消失。
将图2a与图2b进行比较可知,本发明方法制备的Bi-2223高温超导块体中Bi-2223相的织构度显著提高,(115)和(200)等非(00l)织构峰强度明显降低,说明本发明的制备方法提高了Bi系高温超导块体的超导相含量和织构度。
图3是本发明实施例1制备Bi-2223高温超导块体过程中块体密度孔隙率的变化图,从图3可以看出,本发明的制备过程中,Bi-2223前驱体粉末经冷压后得到的Bi-2223冷压块体密度为4.6g/cm3左右,经一次烧结后,由于粉末熔融导致液相出现,块体体积膨胀,故Bi-2223烧结块体的密度降低为3.4g/cm3左右,经引入的中间压制过程后,将块体的密度显著提高到5.8g/cm3左右,在后续二次烧结过程中,由于没有过多的液相产生,块体密度没有发生进一步降低,且由于烧结Bi-2223相进一步成相,使得块体密度略有提高,达到5.9g/cm3左右,此时Bi-2223高温超导块体的孔隙率达到6%左右,其密度达到理论密度的94%,保证了Bi-2223高温超导块体中超导电流的输运。
图4a是传统一步烧结法制备的Bi-2223高温超导块体表面形貌显微图,从图4a可以看出,该Bi-2223高温超导块体的表面能够得到一定的(00l)方向织构,即表面均为片层状堆叠生长的Bi-2223晶粒,但是Bi-2223高温超导块体中有大量的孔洞,并且孔洞周围有一定量的非织构晶粒,导致体系密度和织构度的降低。
图4b是本发明实施例1制备的Bi-2223高温超导块体表面形貌显微图,将图4b与图4a比较可以看出,本发明通过引入中间压制和两次烧结,使得Bi-2223高温超导块体的致密度明显提高,且无明显的孔洞,同时晶粒排列比较平整,故其具有较高的致密度;该Bi-2223高温超导块体的微结构有利于高载流性能的获得。
图5a是传统一步烧结法制备的Bi-2223高温超导块体断面形貌显微图,从图5a可以看出,该Bi-2223高温超导块体的断口方向Bi-2223晶粒的排列更为无序,存在大量的非织构晶粒,且断口上具有大量的孔洞。
图5b是本发明实施例1制备的Bi-2223高温超导块体断面形貌显微图,将图5b与图5a比较可以看出,本发明通过引入中间压制和两次烧结,使得Bi-2223高温超导块体的织构度明显提高,大量晶粒均能呈现ab面垂直于压制方向的生长,并且晶粒的生长更为致密。
实施例2
如图1所示,本实施例包括以下步骤:
步骤一、将Bi、Pb、Sr、Ca、Cu原子比为1.65:0.45:2.00:1.80:2.80的Bi-2223前驱体粉末进行冷压,得到直径9mm的Bi-2223冷压块体;
步骤二、将步骤一中得到的Bi-2223冷压块体进行一次烧结,烧结气氛中氧分压为0.1%,烧结温度为800℃,一次烧结时间为50h,得到Bi-2223质量含量为78%的Bi-2223烧结块体;
步骤三、将步骤二中得到的Bi-2223烧结块体置于直径12mm的模具进行中间压制,得到直径12mm的Bi-2223压制块体;
步骤四、将步骤三中得到的Bi-2223压制块体进行二次烧结,烧结气氛中氧分压为7.5%,烧结温度为835℃,二次烧结时间为78h,得到Bi-2223高温超导块体。
经检测,本实施例中制备的Bi-2223高温超导块体中超导相含量为98%,(00l)方向织构度为86%,77K自场条件下临界电流76A。
实施例3
如图1所示,本实施例包括以下步骤:
步骤一、将Bi、Pb、Sr、Ca、Cu原子比为1.76:0.34:1.91:2.02:3.10的Bi-2223前驱体粉末进行冷压,得到直径7mm的Bi-2223冷压块体;
步骤二、将步骤一中得到的Bi-2223冷压块体进行一次烧结,烧结气氛中氧分压为7.5%,烧结温度为810℃,一次烧结时间为15h,得到Bi-2223质量含量为79%的Bi-2223烧结块体;
步骤三、将步骤二中得到的Bi-2223烧结块体置于直径13mm的模具进行中间压制,得到直径13mm的Bi-2223压制块体;
步骤四、将步骤三中得到的Bi-2223压制块体进行二次烧结,烧结气氛中氧分压为25%,烧结温度为840℃,二次烧结时间为80h,得到Bi-2223高温超导块体。
经检测,本实施例中制备的Bi-2223高温超导块体中超导相含量为98%,(00l)方向织构度大于80%,77K自场条件下临界电流72A。
实施例4
如图1所示,本实施例包括以下步骤:
步骤一、将Bi、Pb、Sr、Ca、Cu原子比为1.80:0.34:1.95:2.12:3.13的Bi-2223前驱体粉末进行冷压,得到直径10mm的Bi-2223冷压块体;
步骤二、将步骤一中得到的Bi-2223冷压块体进行一次烧结,烧结气氛中氧分压为7.5%,烧结温度为835℃,一次烧结时间为15h,得到Bi-2223质量含量为81%的Bi-2223烧结块体;
步骤三、将步骤二中得到的Bi-2223烧结块体置于直径13mm的模具进行中间压制,得到直径13mm的Bi-2223压制块体;
步骤四、将步骤三中得到的Bi-2223压制块体进行二次烧结,烧结气氛中氧分压为25%,烧结温度为870℃,二次烧结时间为80h,得到Bi-2223高温超导块体。
经检测,本实施例中制备的Bi-2223高温超导块体中超导相含量大于95%,(00l)方向织构度大于80%,77K自场条件下临界电流98A。
实施例5
如图1所示,本实施例包括以下步骤:
步骤一、将Bi、Sr、Ca、Cu原子比为2.05:1.85:1.20:1.80的Bi-2212前驱体粉末进行冷压,得到直径7mm的Bi-2212冷压块体;
步骤二、将步骤一中得到的Bi-2212冷压块体进行一次烧结,烧结气氛为纯氧气氛,烧结温度为780℃,一次烧结时间为50h,得到织构度为43%的Bi-2212烧结块体;
步骤三、将步骤二中得到的Bi-2212烧结块体置于直径10mm的模具进行中间压制,得到直径10mm的Bi-2212压制块体;
步骤四、将步骤三中得到的Bi-2212压制块体进行二次烧结,烧结气氛为纯氧气氛,烧结温度为885℃,二次烧结时间为40min,得到Bi-2212高温超导块体。
经检测,本实施例中制备的Bi-2212高温超导块体中超导相含量为98%,(00l)方向织构度为81%,65K自场条件下临界电流45A。
实施例6
如图1所示,本实施例包括以下步骤:
步骤一、将Bi、Pb、Sr、Ca、Cu原子比为1.65:0.45:2.00:0.80:2.20的Bi-2212前驱体粉末进行冷压,得到直径10mm的Bi-2212冷压块体;
步骤二、将步骤一中得到的Bi-2212冷压块体进行一次烧结,烧结气氛为纯氧气氛,烧结温度为880℃,一次烧结时间为15h,得到织构度为56%的Bi-2212烧结块体;
步骤三、将步骤二中得到的Bi-2212烧结块体置于直径13mm的模具进行中间压制,得到直径13mm的Bi-2212压制块体;
步骤四、将步骤三中得到的Bi-2212压制块体进行二次烧结,烧结气氛为纯氧气氛,烧结温度为895℃,二次烧结时间为5min,得到Bi-2212高温超导块体。
经检测,本实施例中制备的Bi-2212高温超导块体中超导相含量为98.5%,(00l)方向织构度为85%,65K自场条件下临界电流43A。
以上所述,仅是本发明的较佳实施例,并非对本发明作任何限制。凡是根据发明技术实质对以上实施例所作的任何简单修改、变更以及等效变化,均仍属于本发明技术方案的保护范围内。

Claims (7)

1.一种Bi系高温超导块体的制备方法,其特征在于,该方法包括以下步骤:
步骤一、将具有特定Bi、Pb、Sr、Ca、Cu原子比的Bi系前驱体粉末进行冷压,得到直径R1的Bi系冷压块体;
步骤二、将步骤一中得到的Bi系冷压块体进行一次烧结,得到Bi系烧结块体;
步骤三、将步骤二中得到的Bi系烧结块体进行中间压制,得到直径R2的Bi系压制块体,且R2>R1
步骤四、将步骤三中得到的Bi系压制块体进行二次烧结,得到Bi系高温超导块体。
2.根据权利要求1所述的一种Bi系高温超导块体的制备方法,其特征在于,步骤一中所述Bi系前驱体粉末中特定Bi、Pb、Sr、Ca、Cu原子比为1.65~1.95:0.30~0.45:1.85~2.00:1.80~2.20:2.80~3.20,则步骤四中得到的Bi系高温超导块体为Bi-2223高温超导块体;或者步骤一中所述Bi系前驱体粉末中特定Bi、Pb、Sr、Ca、Cu原子比为1.65~2.05:0~0.45:1.85~2.00:0.80~1.20:1.80~2.20,则步骤四中得到的Bi系高温超导块体为Bi-2212高温超导块体。
3.根据权利要求1所述的一种Bi系高温超导块体的制备方法,其特征在于,步骤一中所述Bi系冷压块体的直径R1≥7mm,步骤三中所述中间压制的变形量不小于30%,且R2/R1≥1.15。
4.根据权利要求1所述的一种Bi系高温超导块体的制备方法,其特征在于,当步骤四中得到的Bi系高温超导块体为Bi-2223高温超导块体时,步骤二中所述一次烧结的烧结气氛中氧分压为0.1%~7.5%,一次烧结时间为15h~50h,步骤四中所述二次烧结的烧结气氛中氧分压为7.5%~25%,二次烧结时间为50h以上。
5.根据权利要求4所述的一种Bi系高温超导块体的制备方法,其特征在于,所述一次烧结的烧结气氛中氧分压为0.1%,温度为770℃~800℃,或者一次烧结的烧结气氛中氧分压为7.5%,温度为810℃~835℃。
6.根据权利要求4所述的一种Bi系高温超导块体的制备方法,其特征在于,所述二次烧结的烧结气氛中氧分压为7.5%,温度为810℃~835℃,或者二次烧结的烧结气氛中氧分压为25%,温度为840℃~870℃。
7.根据权利要求1所述的一种Bi系高温超导块体的制备方法,其特征在于,当步骤四中得到的Bi系高温超导块体为Bi-2212高温超导块体时,步骤二中所述一次烧结采用纯氧气氛,一次烧结温度为780℃~880℃,时间为10h~50h,步骤四中所述二次烧结采用纯氧气氛,二次烧结温度为885℃~895℃,时间为5min~40min。
CN202310736014.9A 2023-06-21 2023-06-21 一种Bi系高温超导块体的制备方法 Pending CN116621576A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310736014.9A CN116621576A (zh) 2023-06-21 2023-06-21 一种Bi系高温超导块体的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310736014.9A CN116621576A (zh) 2023-06-21 2023-06-21 一种Bi系高温超导块体的制备方法

Publications (1)

Publication Number Publication Date
CN116621576A true CN116621576A (zh) 2023-08-22

Family

ID=87617164

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310736014.9A Pending CN116621576A (zh) 2023-06-21 2023-06-21 一种Bi系高温超导块体的制备方法

Country Status (1)

Country Link
CN (1) CN116621576A (zh)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0251422A (ja) * 1988-08-11 1990-02-21 Mitsubishi Metal Corp 鉛を含むBi系超電導酸化物粉末およびその焼結体の製造法
JPH0412052A (ja) * 1990-04-26 1992-01-16 Kyocera Corp 酸化物超電導体の製造方法
JPH04175225A (ja) * 1990-11-06 1992-06-23 Mitsubishi Heavy Ind Ltd 酸化物超伝導材料の製造方法
US5145829A (en) * 1988-08-26 1992-09-08 National Research Institute For Metals Method for manufacturing oxide high-temperature superconductor
JPH061616A (ja) * 1992-06-23 1994-01-11 Toshiba Corp Bi系酸化物超電導体の製造方法
EP0869563A1 (en) * 1997-04-04 1998-10-07 Sumitomo Heavy Industries, Ltd. Superconductor; current lead and method of manufacturing the superconductor
US5999833A (en) * 1997-02-04 1999-12-07 Agency Of Industrial Science & Technology, Ministry Of International Trade & Industry Method for production of superconducting oxide tape and superconducting oxide tape produced thereby
CN101075486A (zh) * 2007-06-22 2007-11-21 北京英纳超导技术有限公司 Bi系高温超导导线的制备方法
CN101465177A (zh) * 2009-01-12 2009-06-24 重庆大学 铋系高温超导带材及其制备方法
CN102807362A (zh) * 2012-09-14 2012-12-05 西北有色金属研究院 一种Bi-2212基高温超导块体材料的制备方法
CN103173705A (zh) * 2013-02-01 2013-06-26 北京英纳超导技术有限公司 一种优化超导带材Bi-2223相中氧含量的方法和因而制得的超导导线
CN109626987A (zh) * 2019-01-28 2019-04-16 安庆市泽烨新材料技术推广服务有限公司 一种铋系超导体的制备方法
CN114093568A (zh) * 2021-11-26 2022-02-25 西北有色金属研究院 一种Bi-2223高温超导带材的热处理方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0251422A (ja) * 1988-08-11 1990-02-21 Mitsubishi Metal Corp 鉛を含むBi系超電導酸化物粉末およびその焼結体の製造法
US5145829A (en) * 1988-08-26 1992-09-08 National Research Institute For Metals Method for manufacturing oxide high-temperature superconductor
JPH0412052A (ja) * 1990-04-26 1992-01-16 Kyocera Corp 酸化物超電導体の製造方法
JPH04175225A (ja) * 1990-11-06 1992-06-23 Mitsubishi Heavy Ind Ltd 酸化物超伝導材料の製造方法
JPH061616A (ja) * 1992-06-23 1994-01-11 Toshiba Corp Bi系酸化物超電導体の製造方法
US5999833A (en) * 1997-02-04 1999-12-07 Agency Of Industrial Science & Technology, Ministry Of International Trade & Industry Method for production of superconducting oxide tape and superconducting oxide tape produced thereby
EP0869563A1 (en) * 1997-04-04 1998-10-07 Sumitomo Heavy Industries, Ltd. Superconductor; current lead and method of manufacturing the superconductor
CN101075486A (zh) * 2007-06-22 2007-11-21 北京英纳超导技术有限公司 Bi系高温超导导线的制备方法
CN101465177A (zh) * 2009-01-12 2009-06-24 重庆大学 铋系高温超导带材及其制备方法
CN102807362A (zh) * 2012-09-14 2012-12-05 西北有色金属研究院 一种Bi-2212基高温超导块体材料的制备方法
CN103173705A (zh) * 2013-02-01 2013-06-26 北京英纳超导技术有限公司 一种优化超导带材Bi-2223相中氧含量的方法和因而制得的超导导线
CN109626987A (zh) * 2019-01-28 2019-04-16 安庆市泽烨新材料技术推广服务有限公司 一种铋系超导体的制备方法
CN114093568A (zh) * 2021-11-26 2022-02-25 西北有色金属研究院 一种Bi-2223高温超导带材的热处理方法

Similar Documents

Publication Publication Date Title
JP3575004B2 (ja) マグネシウムとホウ素とからなる金属間化合物超伝導体及びその金属間化合物を含有する合金超伝導体並びにこれらの製造方法
Biju et al. Enhanced critical current density in Gd-added (Bi, Pb)-2212 bulk superconductor
Haldar et al. Processing high critical current density Bi-2223 wires and tapes
JP2636049B2 (ja) 酸化物超電導体の製造方法および酸化物超電導線材の製造方法
CN105525267A (zh) 一种磁控溅射法制备涂层导体Y1-XRExBCO超导层的方法
CN116621576A (zh) 一种Bi系高温超导块体的制备方法
Li et al. Superconducting properties and crystalline structure of high-performance Nb3Al wires fabricated by RHQ and mechanical alloying methods
US5206211A (en) Process for the production of an elongate body consisting of longitudinally aligned acicular crystals of a superconducting material
JP2842537B2 (ja) 酸化物超電導線材とその製造方法
CN114182123B (zh) 一种快速制备Nb3Al超导体的方法
Majewski et al. Engineered flux pinning centres in Pb-doped high temperature superconducting “Bi 2 Sr 2 CaCu 2 O 8” ceramics
Tsapleva et al. The Materials Science of Modern Technical Superconducting Materials
Wang et al. The effects of sintering temperature on superconductivity of MgB 2 prepared by hot pressing
Jannah et al. Effects of Yb on the electrical and microstructural properties of (Y1-xYbx) Ba2Cu3O7-δ (x= 0–1.0) superconductor
US5525585A (en) Process for preparing YBa2 Cu3 O7-x superconductors
CN107244921A (zh) 铜添加活化二硼化镁超导块体先位烧结的方法
JP3536920B2 (ja) 合金超伝導体及びその製造方法
Maeda et al. Fabrication and Superconducting Properties of Highly Dense ${\rm MgB} _ {2} $ Bulk Using a Two-Step Sintering Method
Yakıncı et al. Near 100 K Superconductivity In GdBa2 (CuMg) 3O8+ z Superconductor System
JP2567967B2 (ja) 酸化物超電導線材の製造法
Liu et al. Study on texture of Ni–W substrates for high temperature superconductors
Kung et al. Enhanced critical magnetization currents of hot-pressed YBa 2 Cu 3 O 6+ x through partial melting post-oxygenation
Zhengping et al. The formation and enhancement of texture in a Bi-system superconductor
CN117079887A (zh) 一种采用冷轧制工艺改进原位法制备的MgB2线材性能的方法
Zhang et al. Effect of Initial Powder Size on the Synthesis, Microstructure and Superconducting Properties of Nb3sn Superconductor

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination