CN116553989A - 基于晶面粒化自级配技术的pbx炸药力学增强方法 - Google Patents

基于晶面粒化自级配技术的pbx炸药力学增强方法 Download PDF

Info

Publication number
CN116553989A
CN116553989A CN202210101595.4A CN202210101595A CN116553989A CN 116553989 A CN116553989 A CN 116553989A CN 202210101595 A CN202210101595 A CN 202210101595A CN 116553989 A CN116553989 A CN 116553989A
Authority
CN
China
Prior art keywords
explosive
hmx
self
granulating
pbx
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210101595.4A
Other languages
English (en)
Other versions
CN116553989B (zh
Inventor
李洁
刘渝
徐金江
黄石亮
李诗纯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Chemical Material of CAEP
Original Assignee
Institute of Chemical Material of CAEP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Chemical Material of CAEP filed Critical Institute of Chemical Material of CAEP
Priority to CN202210101595.4A priority Critical patent/CN116553989B/zh
Publication of CN116553989A publication Critical patent/CN116553989A/zh
Application granted granted Critical
Publication of CN116553989B publication Critical patent/CN116553989B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B45/00Compositions or products which are defined by structure or arrangement of component of product
    • C06B45/18Compositions or products which are defined by structure or arrangement of component of product comprising a coated component
    • C06B45/20Compositions or products which are defined by structure or arrangement of component of product comprising a coated component the component base containing an organic explosive or an organic thermic component
    • C06B45/22Compositions or products which are defined by structure or arrangement of component of product comprising a coated component the component base containing an organic explosive or an organic thermic component the coating containing an organic compound
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B23/00Compositions characterised by non-explosive or non-thermic constituents
    • C06B23/001Fillers, gelling and thickening agents (e.g. fibres), absorbents for nitroglycerine
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B25/00Compositions containing a nitrated organic compound
    • C06B25/34Compositions containing a nitrated organic compound the compound being a nitrated acyclic, alicyclic or heterocyclic amine

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明公开了一种基于晶面粒化自级配技术的PBX炸药力学增强方法,首先利用表面晶粒重构技术将高品质炸药晶体的表面粗粒化,形成表面具有纳米尺度粗糙结构的炸药颗粒,并且颗粒内部仍然保持的原始品质;接着将粘结剂充分溶解后加入炸药溶液中,悬浮造粒形成均匀致密造型粉,再进行压制成型,获得力学增强的HMX基PBX炸药。基于本发明的炸药颗粒处理技术,实现了在不降低炸药晶体内部品质的前提下达到表面粗粒化和自级配效果,对HMX基PBX炸药的拉伸力学性能提升超过100%,有效解决了HMX压制成型后力学强度不足的问题。

Description

基于晶面粒化自级配技术的PBX炸药力学增强方法
技术领域
本发明属于含能材料制备技术领域,具体涉及一种基于晶面粒化自级配技术的PBX炸药力学增强方法。
背景技术
高聚物粘结炸药(PBXs)广泛应用于高效毁伤武器弹药装药,是武器杀伤、破坏的关键组成部分,其安全有效直接关系到整个武器系统的优劣。PBXs在制备、运输和储存过程中,内部装药处于热应力和低机械应力等复杂的应力状态,这些复杂的应力环境会导致PBXs出现界面脱湿、拉压不对称等力学性能劣化等问题,并可能最终导致结构破坏以及爆轰性能的劣化。因而,提升PBXs的力学性能,确保其在复杂工况环境下的安全有效,成为PBXs使用过程中无法回避的关键性问题。
针对PBXs力学性能的提升,目前学者主要从颗粒级配、添加补强剂/键合剂/偶联剂以及界面改性等方面开展研究。如部分学者通过在工业微米级RDX中添加一定料比的纳米RDX,从而将PBXs的拉伸强度提升16.7%(Chinese Journal of Energetic Materials,2016,24(12):1193-1197),但纳米RDX在贮存和造粒过程中易团聚板结,无法充分发挥微纳粒度级配的效果。黄辉等通过向HMX基PBXs中添加同时含有羟基和氨基的酰胺类偶联剂,有效解决PBXs的界面脱粘问题,拉伸强度提升了1.26倍(Chinese Journal of EnergeticMaterials,2000,8(1):13-17),但补强剂自身的贮存稳定性有待验证,因此对PBXs长期贮存的稳定性不利。何冠松等将仿生PDA引入PBXs中,增强了TATB和粘结剂的界面相互作用,显著提高了PBX的拉伸、压缩强度和应变,并改善了耐蠕变性能(Journal of MaterialsChemistry A,2017,5(26):13499-13510),但PDA的引入改变了炸药表面能,从而对造粒过程产生较大影响。因此,为了实现PBXs力学性能的增强,满足PBXs在贮存、使用等过程中的可靠性和稳定性,需要探索新的技术途经。
发明内容
本发明克服了现有技术的不足,提出了一种基于炸药颗粒晶面粒化自锁自级配效应的高能炸药微结构处理技术,获得了具有微/纳分布的炸药颗粒,有效解决了PBXs在使用过程中容易发生界面脱湿导致力学性能劣化、安全性和稳定性下降的问题,利于改善PBXs在复杂环境下的结构稳定性及性能可靠性。通过本发明的方法处理炸药颗粒,可以在不降低炸药晶体内部品质的前提下达到表面粗粒化和自级配效果,对HMX基PBX炸药的力学性能提升超过100%,可有效解决PBXs力学性能不足的问题。
为了达到上述的技术效果,本发明提供了一种基于晶面粒化自级配技术的PBX炸药力学增强方法,包括以下步骤:
一种基于晶面粒化自级配技术的PBX炸药力学增强方法,包括以下步骤:。
步骤A:将β-HMX原料均匀铺在筛网中,在筛网底盖中加入液体介质,然后一起放入烘箱中加热并抽真空处理,获得晶体表面部分微渗透的HMX样品;样品中β-HMX物相的含量控制在75%~95%之间;
步骤B:取出烘箱中的液体介质,将烘箱继续升高温度并连续抽真空处理,完全去除溶剂分子,获得表面晶粒重构但晶体内部完整的HMX样品;
步骤C:将晶面微重构后的HMX样品分散于水溶液中,辅助加入表面活性剂,进行搅拌分散;
步骤D:将高分子粘结剂在有机溶剂中充分溶解后,缓慢加入步骤C所得炸药水溶液中,同时进行超声处理并辅助搅拌,使粘结剂析出并在炸药晶体表面进行包覆,形成均匀致密的造型粉,再进行压制成型获得力学增强的PBX混合炸药。
进一步的技术方案为,所述步骤A中的液体介质选自N,N-二甲基甲酰胺、N-甲基吡咯烷酮、N,N-二甲基乙酰胺、二氧六环、2,3-二甲基苯胺、苯胺中的任意一种。
进一步的技术方案为,所述步骤A中烘箱加热温度为20℃~50℃,真空度为0.002MPa~0.05MPa,抽真空处理的时间为1h~24h。
进一步的技术方案为,所述步骤B中烘箱升温的温度范围为100℃~120℃,真空度为2Pa~50Pa,加热抽真空处理的时间为0.5h~3h。
进一步的技术方案为,所述步骤B中表面晶粒重构但晶体内部完整的HMX样品的整体晶型仍然为β相,样品中表面晶粒重构程度为5%~25%。
进一步的技术方案为,所述步骤C中表面活性剂选自十二烷基苯磺酸钠、聚乙烯基吡咯烷酮、聚乙二醇、失水山梨醇单油酸酯、壬基酚聚氧乙烯醚、二十三氟十二烷酸中任意一种,表面活性剂的加入量不超过溶液总质量的0.5%。进一步的技术方案为,所述步骤D中高分子粘结剂选自氟橡胶、顺丁橡胶、丁苯橡胶、天然橡胶、三元乙丙橡胶、乙烯-醋酸乙烯共聚物、聚氨酯中的一种或多种,高分子粘结剂在有机溶剂中的质量浓度为3%~10%之间。
进一步的技术方案为,所述步骤D中有机溶剂是指能溶解高分子粘结剂但又不溶解炸药的溶剂,所述溶剂选自三氯甲烷、四氯化碳、石油醚、乙酸丁酯、1,2-二氯乙烷中的一种或多种。
进一步的技术方案为,所述步骤C和步骤D搅拌方式为采用150r/min~500r/min机械搅拌或者300r/min~800r/min的磁力搅拌。
进一步的技术方案为,所述步骤D中超声辅助处理的超声功率为300W~800W,压制成型的压力范围为5kN~30kN,温度范围为80℃~120℃。
本发明与现有技术相比,具有以下的有益效果:
本方法将炸药晶体晶面粗粒化与自级配相结合,得到了具有微/纳分级结构的炸药晶体,实现PBXs的力学性能的显著提升,目前该力学增强手段未见报道。通过本发明的方法处理炸药颗粒,可以在不降低炸药晶体内部品质的前提下达到表面粗粒化和自级配效果,对HMX基PBX炸药的力学性能提升达到100%,可有效解决PBXs力学性能不足的问题。本发明方法可为硝胺炸药类PBXs炸药力学性能的提升提供新的思路。
附图说明
图1为晶面粗粒化与自级配炸药的制备流程示意图;
图2为处理前后HMX炸药的微观形貌对比图;
图3为处理前后HMX基PBX的造型粉、药柱的图像;
图4为处理前后HMX基PBXs炸药的力学性能对比。
具体实施方式
下面结合本发明的实施例对本发明作进一步的阐述和说明。
检测仪器:
场发射扫描电镜:Apollo 300CSF-3A,试验样品喷金处理,保护气体:氩气,电流:20mA,时间:1min,工作电压:2KV。
密度梯度仪:采用化工材料研究所研制的密度测量装置,以溴化锌为密度梯度溶液,进行炸药晶体密度表征。
电子万能试验机:INSTRON5582,试样为圆盘和/>圆柱,试验环境条件为20±2℃,负荷传感器量程为1kN,测试方法执行GJB772A-97。
实施例1:
(1)将20gHMX(粒径范围30~220μm)均匀铺在600目的筛网中,在筛网底盖中加入80mL DMF,放入真空烘箱中50℃,0.02Mpa处理24h,制备得到HMX样品;
(2)采用XRD对步骤(1)所得样品进行物相检测,确定样品中β-HMX的含量约81%;
(3)将筛网底盖移除,将烘箱温度升高至100℃,真空度维持不变,加热2h;
(4)采用XRD对步骤(3)所得的样品进行物相检测,确定样品均为β-HMX,若仍存在溶剂化物峰,采用升温/延长加热时间,直至样品均为β-HMX;
(5)将步骤(4)得到的HMX样品分散于500mL超纯水中,加入质量浓度为0.1%的PVP,按照300r/min进行机械搅拌分散,若无法有效分散,可增加超声辅助分散;
(6)将F2313溶解于乙酸乙酯中,形成质量浓度为6%的F2313混合溶液,而后缓慢加入到步骤(5)得到的混悬液中,同时采用超声-搅拌处理,使F2313析出并在HMX表面进行包覆,而后过滤、洗涤、干燥,得到均匀致密的造型粉颗粒;
(7)对步骤(6)形成的造型粉,采用压机进行压制,压机压力为20kN,温度为120℃,从而得到力学试验用HMX基PBX药片和药柱。
实施例2:
(1)将20gHMX(粒径范围30~220μm)均匀铺在600目的筛网中,在筛网底盖中加入80mL NMP,放入真空烘箱中50℃,0.002Mpa处理24h,制备得到HMX样品;
(2)采用XRD对步骤(1)所得样品进行物相检测,确定样品中β-HMX的含量约75%;
(3)将筛网底盖移除,将烘箱温度升高至110℃,真空度维持不变,加热2.5h;
(4)采用XRD对步骤(3)所得的样品进行物相检测,确定样品均为β-HMX,若仍存在溶剂化物峰,采用升温/延长加热时间,直至样品均为β-HMX;
(5)将步骤(4)得到的HMX样品分散于500mL超纯水中,加入质量浓度为0.1%的PVP,按照300r/min进行机械搅拌分散,若无法有效分散,可增加超声辅助分散;
(6)将F2313溶解于乙酸乙酯中,形成质量浓度为6%的F2313混合溶液,而后缓慢加入到步骤(5)得到的混悬液中,同时采用超声-搅拌处理,使F2313析出并在HMX表面进行包覆,而后过滤、洗涤、干燥,得到均匀致密的造型粉颗粒;
(7)对步骤(6)形成的造型粉,采用压机进行压制,压机压力为20kN,温度为120℃,从而得到力学试验用HMX基PBX药片和药柱。
实施例3:
(1)将20gHMX(粒径范围30~220μm)均匀铺在600目的筛网中,在筛网底盖中加入80mL二氧六环,放入真空烘箱中50℃,0.002Mpa处理24h,制备得到HMX样品;
(2)采用XRD对步骤(1)所得样品进行物相检测,确定样品中β-HMX的含量约77%;
(3)将筛网底盖移除,将烘箱温度升高至110℃,真空度维持不变,加热3.0h;
(4)采用XRD对步骤(3)所得的样品进行物相检测,确定样品均为β-HMX,若仍存在溶剂化物峰,采用升温/延长加热时间,直至样品均为β-HMX;
(5)将步骤(4)得到的HMX样品分散于500mL超纯水中,加入质量浓度为0.1%的PVP,按照300r/min进行机械搅拌分散,若无法有效分散,可增加超声辅助分散;
(6)将F2313溶解于乙酸乙酯中,形成质量浓度为6%的F2313混合溶液,而后缓慢加入到步骤(5)得到的混悬液中,同时采用超声-搅拌处理,使F2313析出并在HMX表面进行包覆,而后过滤、洗涤、干燥,得到均匀致密的造型粉颗粒;
(7)对步骤(6)形成的造型粉,采用压机进行压制,压机压力为20kN,温度为120℃,从而得到力学试验用HMX基PBX药片和药柱。
实施例4:
(1)将20gHMX(粒径范围30~220μm)均匀铺在600目的筛网中,在筛网底盖中加入80mL N,N-二甲基乙酰胺,放入真空烘箱中50℃,0.002Mpa处理24h,制备得到HMX样品;
(2)采用XRD对步骤(1)所得样品进行物相检测,确定样品中β-HMX的含量约77%;
(3)将筛网底盖移除,将烘箱温度升高至110℃,真空度维持不变,加热2.5h;
(4)采用XRD对步骤(3)所得的样品进行物相检测,确定样品均为β-HMX,若仍存在溶剂化物峰,采用升温/延长加热时间,直至样品均为β-HMX;
(5)将步骤(4)得到的HMX样品分散于500mL超纯水中,加入质量浓度为0.1%的PVP,按照300r/min进行机械搅拌分散,若无法有效分散,可增加超声辅助分散;
(6)将F2313溶解于乙酸乙酯中,形成质量浓度为6%的F2313混合溶液,而后缓慢加入到步骤(5)得到的混悬液中,同时采用超声-搅拌处理,使F2313析出并在HMX表面进行包覆,而后过滤、洗涤、干燥,得到均匀致密的造型粉颗粒;
(7)对步骤(6)形成的造型粉,采用压机进行压制,压机压力为20kN,温度为120℃,从而得到力学试验用HMX基PBX药片和药柱。
实施例5:
方法同实施例1,不同的是步骤(1)中使用液体介质是2,3-二甲基苯胺;
实施例6:
方法同实施例1,不同的是步骤(1)中使用液体介质是苯胺;
实施例7:
方法同实施例1,不同的是步骤(1)中烘箱温度为40℃,压力为0.002Mpa,处理时间为6h;
实施例8:
方法同实施例1,不同的是步骤(1)中处理时间为12h;
本发明的制备思路示意图如图1所示。采用实施例1方法制得的HMX的微观形貌图如图2所示,可见通过该处理,成功得到了具有微/纳分级结构的HMX样品;采用实施例1得到的HMX基PBXs的造型粉和药柱图像见图3所示,从图中可看出,处理后造型粉更加致密均匀;采用实施例1处理前后的HMX基PBXs的力学性能对比见图4所示,从图中可看出,适宜的处理方法后HMX基PBXs的拉伸力学强度提升100%以上,即该方法可实现对HMX基PBXs力学性能的有效提升。
尽管这里参照本发明的解释性实施例对本发明进行了描述,上述实施例仅为本发明较佳的实施方式,本发明的实施方式并不受上述实施例的限制,应该理解,本领域技术人员可以设计出很多其他的修改和实施方式,这些修改和实施方式将落在本申请公开的原则范围和精神之内。

Claims (10)

1.一种基于晶面粒化自级配技术的PBX炸药力学增强方法,其特征在在于,包括以下步骤:。
步骤A:将β-HMX原料均匀铺在筛网中,在筛网底盖中加入液体介质,然后一起放入烘箱中加热并抽真空处理,获得晶体表面部分微渗透的HMX样品;样品中β-HMX物相的含量控制在75%~95%之间;
步骤B:取出烘箱中的液体介质,将烘箱继续升高温度并连续抽真空处理,完全去除溶剂分子,获得表面晶粒重构但晶体内部完整的HMX样品;
步骤C:将晶面微重构后的HMX样品分散于水溶液中,辅助加入表面活性剂,进行搅拌分散;
步骤D:将高分子粘结剂在有机溶剂中充分溶解后,缓慢加入步骤C所得炸药水溶液中,同时进行超声处理并辅助搅拌,使粘结剂析出并在炸药晶体表面进行包覆,形成均匀致密的造型粉,再进行压制成型获得力学增强的PBX混合炸药。
2.根据权利要求1所述的基于晶面粒化自级配技术的PBX炸药力学增强方法,其特征在在于,所述步骤A中的液体介质选自N,N-二甲基甲酰胺、N-甲基吡咯烷酮、N,N-二甲基乙酰胺、二氧六环、2,3-二甲基苯胺、苯胺中的任意一种。
3.根据权利要求1所述的基于晶面粒化自级配技术的PBX炸药力学增强方法,其特征在在于,所述步骤A中烘箱加热温度为20℃~50℃,真空度为0.002MPa~0.05MPa,抽真空处理的时间为1h~24h。
4.根据权利要求1所述的基于晶面粒化自级配技术的PBX炸药力学增强方法,其特征在在于,所述步骤B中烘箱升温的温度范围为100℃~120℃,真空度为2Pa~50Pa,加热抽真空处理的时间为0.5h~3h。
5.根据权利要求1所述的基于晶面粒化自级配技术的PBX炸药力学增强方法,其特征在在于,所述步骤B中表面晶粒重构但晶体内部完整的HMX样品的整体晶型仍然为β相,样品中表面晶粒重构程度为5%~25%。
6.根据权利要求1所述的基于晶面粒化自级配技术的PBX炸药力学增强方法,其特征在在于,所述步骤C中表面活性剂选自十二烷基苯磺酸钠、聚乙烯基吡咯烷酮、聚乙二醇、失水山梨醇单油酸酯、壬基酚聚氧乙烯醚、二十三氟十二烷酸中任意一种,表面活性剂的加入量不超过溶液总质量的0.5%。
7.根据权利要求1所述的基于晶面粒化自级配技术的PBX炸药力学增强方法,其特征在在于,所述步骤D中高分子粘结剂选自氟橡胶、顺丁橡胶、丁苯橡胶、天然橡胶、三元乙丙橡胶、乙烯-醋酸乙烯共聚物、聚氨酯中的一种或多种,高分子粘结剂在有机溶剂中的质量浓度为3%~10%之间。
8.根据权利要求1所述的基于晶面粒化自级配技术的PBX炸药力学增强方法,其特征在在于,所述步骤D中有机溶剂是指能溶解高分子粘结剂但又不溶解炸药的溶剂,所述溶剂选自三氯甲烷、四氯化碳、石油醚、乙酸丁酯、1,2-二氯乙烷中的一种或多种。
9.根据权利要求1所述的基于晶面粒化自级配技术的PBX炸药力学增强方法,其特征在在于,所述步骤C和步骤D搅拌方式为采用150r/min~500r/min机械搅拌或者300r/min~800r/min的磁力搅拌。
10.根据权利要求1所述的基于晶面粒化自级配技术的PBX炸药力学增强方法,其特征在在于,所述步骤D中超声辅助处理的超声功率为300W~800W,压制成型的压力范围为5kN~30kN,温度范围为80℃~120℃。
CN202210101595.4A 2022-01-27 2022-01-27 基于晶面粒化自级配技术的pbx炸药力学增强方法 Active CN116553989B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210101595.4A CN116553989B (zh) 2022-01-27 2022-01-27 基于晶面粒化自级配技术的pbx炸药力学增强方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210101595.4A CN116553989B (zh) 2022-01-27 2022-01-27 基于晶面粒化自级配技术的pbx炸药力学增强方法

Publications (2)

Publication Number Publication Date
CN116553989A true CN116553989A (zh) 2023-08-08
CN116553989B CN116553989B (zh) 2024-05-14

Family

ID=87488467

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210101595.4A Active CN116553989B (zh) 2022-01-27 2022-01-27 基于晶面粒化自级配技术的pbx炸药力学增强方法

Country Status (1)

Country Link
CN (1) CN116553989B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5187320A (en) * 1991-12-06 1993-02-16 E. I. Du Pont De Nemours And Company Fibrillatable PTFE in plastic-bonded explosives
US6955732B1 (en) * 2002-12-23 2005-10-18 The United States Of America As Represented By The Secretary Of The Navy Advanced thermobaric explosive compositions
RU2010138042A (ru) * 2010-09-13 2012-03-20 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом"-Госкорпорация "Росатом" (RU) Способ изменения формы кристаллов взрывчатого вещества
CN104649850A (zh) * 2015-02-09 2015-05-27 中国工程物理研究院化工材料研究所 以纳米粒子增强力学性能的高聚物粘接炸药及其制备方法
CN107827835A (zh) * 2017-11-22 2018-03-23 中国工程物理研究院化工材料研究所 一种炸药溶剂化物的简易制备方法
CN109096022A (zh) * 2018-09-17 2018-12-28 中国工程物理研究院化工材料研究所 一种耐热抗晶变的hniw基混合炸药及其制备方法
CN109503300A (zh) * 2018-12-13 2019-03-22 中国工程物理研究院化工材料研究所 一种基于纳米颗粒自组装的共晶炸药制备方法
CN112374954A (zh) * 2020-11-05 2021-02-19 西南科技大学 具有导热网络的高聚物粘结炸药及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5187320A (en) * 1991-12-06 1993-02-16 E. I. Du Pont De Nemours And Company Fibrillatable PTFE in plastic-bonded explosives
US6955732B1 (en) * 2002-12-23 2005-10-18 The United States Of America As Represented By The Secretary Of The Navy Advanced thermobaric explosive compositions
RU2010138042A (ru) * 2010-09-13 2012-03-20 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом"-Госкорпорация "Росатом" (RU) Способ изменения формы кристаллов взрывчатого вещества
CN104649850A (zh) * 2015-02-09 2015-05-27 中国工程物理研究院化工材料研究所 以纳米粒子增强力学性能的高聚物粘接炸药及其制备方法
CN107827835A (zh) * 2017-11-22 2018-03-23 中国工程物理研究院化工材料研究所 一种炸药溶剂化物的简易制备方法
CN109096022A (zh) * 2018-09-17 2018-12-28 中国工程物理研究院化工材料研究所 一种耐热抗晶变的hniw基混合炸药及其制备方法
CN109503300A (zh) * 2018-12-13 2019-03-22 中国工程物理研究院化工材料研究所 一种基于纳米颗粒自组装的共晶炸药制备方法
CN112374954A (zh) * 2020-11-05 2021-02-19 西南科技大学 具有导热网络的高聚物粘结炸药及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JIE LI: "Superfine HMX Prepared by a Gas-Solid Method with Reduced Sensitivity and Enhanced Mechanical Performance", PROPELLANTS EXPLOS. PYROTECH., vol. 48, no. 1, 7 October 2022 (2022-10-07), pages 202200102 *
ZHIMIAO ZHANG: "Preparation and Thermal Stability of Nano-Sized HMX-Based Polymer Bonded Explosives", COMBUSTION SCIENCE AND TECHNOLOGY, vol. 195, no. 8, 29 November 2021 (2021-11-29), pages 1945 - 1959 *
刘渝: "基于超分子组装-解组装技术对HMX微结构的设计与调控", 中国博士学位论文全文数据库工程科技Ⅰ辑, no. 6, 15 June 2020 (2020-06-15), pages 017 - 6 *
靳承苏: "含微纳米RDX/HMX颗粒级配的高聚物粘结炸药的制备及性能研究", 中国优秀硕士学位论文全文数据库工程科技Ⅰ辑, no. 1, 15 January 2019 (2019-01-15), pages 017 - 146 *

Also Published As

Publication number Publication date
CN116553989B (zh) 2024-05-14

Similar Documents

Publication Publication Date Title
CN109704896B (zh) 一种基于聚多巴胺界面调控硝胺炸药改性铝粉及制备方法
Colangelo et al. Recycling of MSWI fly ash by means of cementitious double step cold bonding pelletization: Technological assessment for the production of lightweight artificial aggregates
Tai et al. Mechanical properties of steel fiber reinforced reactive powder concrete following exposure to high temperature reaching 800 C
CN108503386B (zh) 利用冶金污染土壤制备免烧陶粒的工艺
Youssf et al. Performance of crumb rubber concrete made with high contents of heat pre-treated rubber and magnetized water
CN112410047A (zh) 一种载铁污泥生物炭及其制备方法和应用
CN110452075A (zh) 聚合物基复合含能材料包覆改性纳米金属颗粒的制备方法
CN113387701A (zh) 一种溶剂预处理生焦粉制备高性能炭石墨材料的方法
CN115477503B (zh) 一种再生环保型混凝土及其制备工艺
CN116553989B (zh) 基于晶面粒化自级配技术的pbx炸药力学增强方法
CN111834621A (zh) 一种利用尾矿制备硅碳负极材料及其制备方法
CN115321885A (zh) 一种海工混凝土用聚合物改性水泥基修补砂浆及其制备方法
CN114573291A (zh) 一种石灰石粉高强混凝土及其制备方法
CN114409348A (zh) 高温型高强耐热混凝土及其制备方法和应用
Lu et al. Preparation and anti‐migration performance of ethylene propylene diene terpolymer composites modified with GO‐SiO2 hybrid nanomaterials
WO2024061035A1 (zh) 一种砷铁合金、及制备方法和资源化处理方法
CN108397158A (zh) 一种钻井固态废弃物的无害化处理方法及其应用
JPH07316622A (ja) 転炉ダストの固形方法
He et al. Effects of Aluminum and Temperature on the Tensile Mechanical Properties of Lithium‐Perchlorate/Polyvinyl Alcohol‐Based Electrically Controlled Solid Propellants
Abd-Elaal et al. Enhancing Mechanical Properties of Rubberised Concrete With Non-thermal Plasma Treatment
Wu et al. Cementitious properties of sustainable alkali-activated materials with ground GGBS-based geopolymer waste powder as recycled precursor
CN114230425A (zh) 一种f2314包覆分子钙钛矿含能材料及其制备方法
CN110144067B (zh) 一种天然橡胶的导热复合材料的制备方法
CN111607256A (zh) 石墨烯包覆炭黑材料及其制备方法
CN111662031B (zh) 采用多酚类物质改性橡胶粉的方法及含改性橡胶粉的水泥砂浆

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant