CN116504823B - Igbt芯片及集成测温单元的igbt元胞、方法 - Google Patents

Igbt芯片及集成测温单元的igbt元胞、方法 Download PDF

Info

Publication number
CN116504823B
CN116504823B CN202310770400.XA CN202310770400A CN116504823B CN 116504823 B CN116504823 B CN 116504823B CN 202310770400 A CN202310770400 A CN 202310770400A CN 116504823 B CN116504823 B CN 116504823B
Authority
CN
China
Prior art keywords
region
metal
igbt
type base
emitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310770400.XA
Other languages
English (en)
Other versions
CN116504823A (zh
Inventor
杨鑫
孙毅飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan University
Original Assignee
Hunan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan University filed Critical Hunan University
Priority to CN202310770400.XA priority Critical patent/CN116504823B/zh
Publication of CN116504823A publication Critical patent/CN116504823A/zh
Application granted granted Critical
Publication of CN116504823B publication Critical patent/CN116504823B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Testing Of Individual Semiconductor Devices (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

本发明公开了一种IGBT芯片及集成测温单元的IGBT元胞、方法,所述IGBT元胞在发射极区的P型基区内增设N+源区,在发射极区的P型基区上增设阴极金属,N+源区的上表面与阴极金属的下表面接触,由增设的N+源区和发射极区的P型基区构成测温PN结,通过测量发射极金属与阴极金属间的电压、以及流过阴极金属的电流来检测IGBT元胞的温度。本发明可以通过测温PN结对芯片各个工作状态下的温度进行实时、准确地检测,解决了传统测温方法存在的测温误差问题以及应用局限性问题。

Description

IGBT芯片及集成测温单元的IGBT元胞、方法
技术领域
本发明属于功率半导体器件技术领域,尤其涉及一种IGBT芯片及集成测温单元的IGBT元胞、方法。
背景技术
随着功率半导体芯片的发展,IGBT(Insulated Gate Bipolar Transistor,绝缘栅双极型晶体管)芯片的功率密度也随之提高,功率半导体芯片开始承受更高的工作温度,芯片的工作可靠性设计面临着更大的挑战。
为了更好地获取IGBT芯片结温信息,利用红外摄像头、光纤测温以及热模型进行温度检测。但是,在极端工况下,由于芯片处于瞬态异常状态,观测时间尺度为微秒级,上述测温方法的应用会导致芯片的温度预测存在误差;同时,随着大尺寸芯片的出现,由于大尺寸芯片采用压接式封装,因此光纤测温难以应用,由于无法在芯片工作状态下去除封装,因此红外摄像头不能拍摄芯片表面的热分布,导致上述测温方法的应用存在局限性。
名词解释:
SPT型:Soft Punch Through,软穿通型。
发明内容
本发明的目的在于提供一种IGBT芯片及集成测温单元的IGBT元胞、方法,以解决传统测温方法在IGBT芯片极端工况下应用存在测温误差问题,以及在压接式封装的IGBT芯片上应用存在局限性的问题。
本发明是通过如下的技术方案来解决上述技术问题的:
一种集成测温单元的IGBT元胞,包括发射极区、集电极区、位于所述集电极区上表面的漂移区以及位于所述漂移区上表面的栅极区;
在所述发射极区的第一P型基区内增设第二N+源区,在所述发射极区的第一P型基区上表面增设阴极金属;所述第二N+源区的上表面与所述阴极金属的下表面接触;
通过测量所述发射极区的发射极金属与所述阴极金属之间的电压、以及流过所述阴极金属的电流来检测IGBT元胞的温度。
进一步地,所述IGBT元胞的温度的计算公式为:
其中,I K 为流过阴极金属的电流,I S 为由第一P型基区与第二N+源区构成的PN结的反向饱和电流,q为单位电荷量,k为玻尔兹曼常数,V EK 为发射极金属与阴极金属之间的电压,T为IGBT元胞的温度。
进一步地,采用电压探头测量所述发射极金属与所述阴极金属之间的电压,采用电流探头测量流过所述阴极金属的电流。
进一步地,所述阴极金属为点状或环状。
进一步地,所述IGBT元胞为平面栅型或沟槽栅型。
进一步地,所述发射极区包括发射极金属、第一P型基区以及第一N+源区;所述集电极区包括集电极金属以及第二P型基区;所述漂移区包括N-漂移区以及N型缓冲层;所述栅极区包括栅氧化层以及栅极金属;
所述N-漂移区、N型缓冲层、第二P型基区以及集电极金属自上至下依次层叠布置;所述第一P型基区位于所述N-漂移区上表面,在所述第一P型基区内设有第一N+源区;所述栅氧化层与N-漂移区、第一P型基区以及第一N+源区接触;所述栅极金属位于所述栅氧化层上;所述发射极金属与第一N+源区、第一P型基区的上表面接触。
基于同一构思,本发明还提供了一种如上所述的集成测温单元的IGBT元胞的制造方法,所述方法包括以下步骤:
采用衬底硅片制作终结端,形成N-漂移区;
在所述N-漂移区上表面通过热氧生长二氧化硅,形成栅氧化层;
采用多晶硅自对准技术,在所述N-漂移区上表面注入P型杂质并推结形成第一P型基区,所述第一P型基区的部分表面与所述栅氧化层的表面接触;
在所述第一P型基区上层内注入N型杂质形成第一N+源区和第二N+源区,所述第一N+源区的部分表面与所述栅氧化层的表面接触;
在结构表面淀积金属,形成发射极金属、栅极金属以及阴极金属;
在结构表面淀积钝化层;
对所述N-漂移区的下表面进行减薄、抛光处理,然后注入质子,形成SPT型N型缓冲层;
在所述N型缓冲层下表面注入磷离子,并采用激光退火对磷离子进行激活,形成第二P型基区;
背金,在所述第二P型基区底部淀积电极金属,形成集电极金属。
基于同一构思,本发明提供了一种IGBT芯片,所述IGBT芯片中的部分或全部元胞采用如上所述的集成测温单元的IGBT元胞来替换。
进一步地,所述IGBT芯片包括有源区、设于所述有源区外围的边缘有源区、以及设于所述边缘有源区外围的终端区;
当芯片存在栅指结构时,所述栅指结构设于所述有源区内,有源区元胞的栅极和栅指结构的栅极与门极焊盘短路,采用所述的集成测温单元的IGBT元胞来替换终端区与栅指结构之间的边缘有源区元胞;
当芯片不存在栅指结构时,采用所述的集成测温单元的IGBT元胞来替换靠近终端区的边缘有源区元胞。
有益效果
与现有技术相比,本发明的优点在于:
本发明在发射极区的P型基区内增设N+源区,在发射极区的P型基区上增设阴极金属, N+源区的上表面与阴极金属的下表面接触,由增设的N+源区和发射极区的P型基区构成测温PN结,通过测量发射极金属与阴极金属间的电压、以及流过阴极金属的电流来检测IGBT元胞的温度;由于测温PN结嵌入IGBT元胞内部,且与芯片的P型基区-N+源区仅几微米的距离,因此可以通过测温PN结对芯片各个工作状态下的温度进行实时、准确地检测,解决了传统测温方法存在的测温误差问题以及应用局限性问题。
本发明的测温PN结集成于IGBT元胞内部,避免了对芯片表面平整度的影响,有利于实现芯片表面低线宽的工艺要求,提高了芯片致密性和集成化;同时,测温PN结的制造工艺与芯片制造工艺兼容,制造工艺简单且易于实现。
本发明合理的选择测温元胞(即本发明的集成测温单元的IGBT元胞)在IGBT芯片中的分布位置,可以减少芯片的生产成本,更加经济高效的获得芯片内部温度分布信息。
附图说明
为了更清楚地说明本发明的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一个实施例,对于本领域普通技术人员来说,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例中集成测温单元的平面栅型IGBT元胞剖面图;
图2是本发明实施例中集成测温单元的沟槽栅型IGBT元胞剖面图;
图3(a)是本发明实施例中采用点状阴极金属的IGBT元胞俯视图;
图3(b)是本发明实施例中采用环状阴极金属的IGBT元胞俯视图;
图4是本发明实施例制作工艺中采用衬底硅片形成N-漂移区的示意图;
图5是本发明实施例制作工艺中在N-漂移区上制作栅氧化层的示意图;
图6是本发明实施例制作工艺中在N-漂移区上制作第一P型基区的示意图;
图7是本发明实施例制作工艺中在第一P型基区制作第一N+源区和第二N+源区的示意图;
图8是本发明实施例制作工艺中形成发射极金属、栅极金属以及阴极金属的示意图;
图9是本发明实施例制作工艺中在N-漂移区下表面制作N型缓冲层的示意图;
图10是本发明实施例制作工艺中在N型缓冲层下表面制作第二P型基区的示意图;
图11是本发明实施例中IGBT芯片示意图;
图12是本发明实施例中集成测温单元的沟槽栅型IGBT元胞在IGBT芯片的分布示意图。
其中,1-N-漂移区,2-栅氧化层,3-第一P型基区,4-第一N+源区,5-发射极金属,6-栅极金属,7-N型缓冲层,8-第二P型基区,9-集电极金属,10-第二N+源区,11-阴极金属,12-有源区,121-有源区元胞,13-边缘有源区,131-边缘有源区元胞,132-集成测温单元的IGBT元胞(即测温元胞),14-终端区,15-栅指结构,16-门极焊盘。
具体实施方式
下面结合本发明实施例中的附图,对本发明中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
下面以具体地实施例对本申请的技术方案进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。
如图1和2所示,本发明实施例所提供的一种集成测温单元的IGBT元胞,包括发射极区、集电极区、位于集电极区上表面的漂移区以及位于漂移区上表面的栅极区;在发射极区的第一P型基区3内增设第二N+源区10,在发射极区的第一P型基区3上表面增设阴极金属11;第二N+源区10的上表面与阴极金属11的下表面接触。
由第一P型基区3和增设的第二N+源区10构成测温PN结,利用测温PN结的正向压降来反映IGBT芯片的温度变化。本实施例中,通过测量发射极区的发射极金属5与阴极金属11之间的电压、以及流过阴极金属11的电流来检测IGBT元胞的温度,具体计算公式为:
(1);
其中,I K 为流过阴极金属11的电流,I S 为由第一P型基区3与第二N+源区10构成的PN结的反向饱和电流,q为单位电荷量,k为玻尔兹曼常数,V EK 为发射极金属5与阴极金属11之间的电压,T为IGBT元胞的温度。
根据式(1)可知,采用电压探头测量发射极金属5与阴极金属11之间的电压,采用电流探头测量流过阴极金属11的电流,即可计算出IGBT元胞的温度,从而得到IGBT芯片的温度分布信息。
图3(a)和图3(b)示出了圆形的IGBT元胞俯视图,阴极金属11可以采用点状结构(如图3(a)所示),阴极金属11还可以采用环状结构(如图3(b)所示)。除了圆形,IGBT元胞也可以是其他形状,例如六边形。图1和图2是沿着图3(a)或图3(b)的虚线的结构剖面图。
本发明适应于不同类型的IGBT元胞,例如平面栅型或沟槽栅型。如图1和2所示,发射极区包括发射极金属5、第一P型基区3以及第一N+源区4;集电极区包括集电极金属9以及第二P型基区8;漂移区包括N-漂移区1以及N型缓冲层7;栅极区包括栅氧化层2以及栅极金属6。
N-漂移区1、N型缓冲层7、第二P型基区8以及集电极金属9自上至下依次层叠布置;第一P型基区3位于N-漂移区1上表面,在第一P型基区3内设有第一N+源区4;栅氧化层2与N-漂移区1、第一P型基区3以及第一N+源区4接触;栅极金属6位于栅氧化层2上;发射极金属5与第一N+源区4、第一P型基区3的上表面接触。
以图1所示的平面栅型IGBT元胞为例,本发明实施例还提供了一种如上所述的集成测温单元的IGBT元胞的制造方法,所述方法包括以下步骤:
步骤1:采用衬底硅片制作终结端,形成N-漂移区1,如图4所示;
步骤2:在N-漂移区1上表面的一端通过热氧生长二氧化硅,形成栅氧化层2,如图5所示;
步骤3:采用多晶硅自对准技术,在N-漂移区1上表面的另一端采用离子注入法注入P型杂质并利用高温扩散推结工艺进行推结形成第一P型基区3,第一P型基区3的部分上表面与栅氧化层2的下表面接触,如图6所示;
步骤4:在第一P型基区3上层内采用离子注入法注入N型杂质并利用高温扩散推结工艺进行推结形成第一N+源区4和第二N+源区10,第一N+源区4上表面的一端与栅氧化层2的下表面接触,如图7所示;
步骤5:在结构表面淀积金属,形成发射极金属5、栅极金属6以及阴极金属11,如图8所示;
步骤6:在结构表面淀积钝化层;
步骤7:对N-漂移区1的下表面进行减薄、抛光处理,然后注入质子,形成SPT型N型缓冲层7,如图9所示;
步骤8:在N型缓冲层7下表面采用离子注入法注入磷离子,并采用激光退火对磷离子进行激活,形成第二P型基区8,如图10所示;
步骤9:背金,在第二P型基区8底部淀积电极金属,形成集电极金属9,如图1所示。
传统技术中的测温PN结需要在芯片基础上刻蚀一块区域来制作,从步骤1~步骤9可知,本发明中测温PN结的制造工艺与芯片制造工艺兼容、同步,相较于传统技术,本发明的制造工艺简单且易于实现。
本发明实施例还提供了一种IGBT芯片,该IGBT芯片中的部分或全部元胞采用如上所述的集成测温单元的IGBT元胞来替换。
如图11和12所示,IGBT芯片包括有源区12、设于有源区12外围的边缘有源区13、以及设于边缘有源区13外围的终端区14。
当芯片存在栅指结构15时,栅指结构15设于有源区12内,有源区元胞121的栅极和栅指结构15的栅极与门极焊盘16短路,采用测温元胞132来替换终端区14与栅指结构15之间的边缘有源区元胞131;当芯片不存在栅指结构15时,采用测温元胞132来替换靠近终端区14的边缘有源区元胞131。
当芯片存在栅指结构15时,由于栅指结构15与终端区14之间的边缘有源区元胞131易产生电流聚集效应,更容易遭受热破坏,因此仅将终端区14与栅指结构15之间的边缘有源区元胞131替换为测温元胞132,在减少IGBT芯片生产成本的同时能够实时、准确地得到IGBT芯片的温度分布信息。当芯片不存在栅指结构15时,由于终端区14散热较差,因此仅将靠近终端区14的边缘有源区元胞131替换为测温元胞132。
以上所揭露的仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或变型,都应涵盖在本发明的保护范围之内。

Claims (8)

1.一种集成测温单元的IGBT元胞,包括发射极区、集电极区、位于所述集电极区上表面的漂移区以及位于所述漂移区上表面的栅极区;其特征在于:
在所述发射极区的第一P型基区内增设第二N+源区,在所述发射极区的第一P型基区上表面增设阴极金属;所述第二N+源区的上表面与所述阴极金属的下表面接触;
通过测量所述发射极区的发射极金属与所述阴极金属之间的电压、以及流过所述阴极金属的电流来检测IGBT元胞的温度;
其中,所述IGBT元胞的温度的计算公式为:
其中,I K 为流过阴极金属的电流,I S 为由第一P型基区与第二N+源区构成的PN结的反向饱和电流,q为单位电荷量,k为玻尔兹曼常数,V EK 为发射极金属与阴极金属之间的电压,T为IGBT元胞的温度。
2.根据权利要求1所述的集成测温单元的IGBT元胞,其特征在于:采用电压探头测量所述发射极金属与所述阴极金属之间的电压,采用电流探头测量流过所述阴极金属的电流。
3.根据权利要求1所述的集成测温单元的IGBT元胞,其特征在于:所述阴极金属为点状或环状。
4.根据权利要求1所述的集成测温单元的IGBT元胞,其特征在于:所述IGBT元胞为平面栅型或沟槽栅型。
5.根据权利要求1所述的集成测温单元的IGBT元胞,其特征在于:所述发射极区包括发射极金属、第一P型基区以及第一N+源区;所述集电极区包括集电极金属以及第二P型基区;所述漂移区包括N-漂移区以及N型缓冲层;所述栅极区包括栅氧化层以及栅极金属;
所述N-漂移区、N型缓冲层、第二P型基区以及集电极金属自上至下依次层叠布置;所述第一P型基区位于所述N-漂移区上表面,在所述第一P型基区内设有第一N+源区;所述栅氧化层与N-漂移区、第一P型基区以及第一N+源区接触;所述栅极金属位于所述栅氧化层上;所述发射极金属与第一N+源区、第一P型基区的上表面接触。
6.一种如权利要求1~5中任一项所述的集成测温单元的IGBT元胞的制造方法,其特征在于,所述方法包括以下步骤:
采用衬底硅片制作终结端,形成N-漂移区;
在所述N-漂移区上表面通过热氧生长二氧化硅,形成栅氧化层;
采用多晶硅自对准技术,在所述N-漂移区上表面注入P型杂质并推结形成第一P型基区,所述第一P型基区的部分表面与所述栅氧化层的表面接触;
在所述第一P型基区上层内注入N型杂质形成第一N+源区和第二N+源区,所述第一N+源区的部分表面与所述栅氧化层的表面接触;
在结构表面淀积金属,形成发射极金属、栅极金属以及阴极金属;
在结构表面淀积钝化层;
对所述N-漂移区的下表面进行减薄、抛光处理,然后注入质子,形成SPT型N型缓冲层;
在所述N型缓冲层下表面注入磷离子,并采用激光退火对磷离子进行激活,形成第二P型基区;
背金,在所述第二P型基区底部淀积电极金属,形成集电极金属。
7.一种IGBT芯片,其特征在于:所述IGBT芯片中的部分或全部元胞采用如权利要求1~5中任一项所述的集成测温单元的IGBT元胞来替换。
8.根据权利要求7所述的IGBT芯片,其特征在于:所述IGBT芯片包括有源区、设于所述有源区外围的边缘有源区、以及设于所述边缘有源区外围的终端区;
当芯片存在栅指结构时,所述栅指结构设于所述有源区内,有源区元胞的栅极和栅指结构的栅极与门极焊盘短路,采用所述的集成测温单元的IGBT元胞来替换终端区与栅指结构之间的边缘有源区元胞;
当芯片不存在栅指结构时,采用所述的集成测温单元的IGBT元胞来替换靠近终端区的边缘有源区元胞。
CN202310770400.XA 2023-06-28 2023-06-28 Igbt芯片及集成测温单元的igbt元胞、方法 Active CN116504823B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310770400.XA CN116504823B (zh) 2023-06-28 2023-06-28 Igbt芯片及集成测温单元的igbt元胞、方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310770400.XA CN116504823B (zh) 2023-06-28 2023-06-28 Igbt芯片及集成测温单元的igbt元胞、方法

Publications (2)

Publication Number Publication Date
CN116504823A CN116504823A (zh) 2023-07-28
CN116504823B true CN116504823B (zh) 2023-11-07

Family

ID=87328755

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310770400.XA Active CN116504823B (zh) 2023-06-28 2023-06-28 Igbt芯片及集成测温单元的igbt元胞、方法

Country Status (1)

Country Link
CN (1) CN116504823B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001085629A (ja) * 1999-09-17 2001-03-30 Fuji Electric Co Ltd 半導体装置
JP2010199490A (ja) * 2009-02-27 2010-09-09 Fuji Electric Systems Co Ltd パワー半導体装置の温度測定装置およびこれを使用したパワー半導体モジュール
CN216671640U (zh) * 2022-01-26 2022-06-03 上海埃积半导体有限公司 内置温度检测模块的igbt
CN114628507A (zh) * 2022-03-11 2022-06-14 西安理工大学 具有沟槽-平面柵的发射极开关晶闸管及其制造方法
CN114937696A (zh) * 2022-04-15 2022-08-23 湖南大学 一种igbt芯片及其驱动方法、存储介质

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4745251B2 (ja) * 2004-12-22 2011-08-10 三菱電機株式会社 半導体装置
JP5028748B2 (ja) * 2005-04-15 2012-09-19 富士電機株式会社 パワー半導体デバイスの温度計測装置
US9438227B2 (en) * 2013-12-02 2016-09-06 The Hong Kong University Of Science And Technology Gate-controlled p-i-n switch with a charge trapping material in the gate dielectric and a self-depleted channel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001085629A (ja) * 1999-09-17 2001-03-30 Fuji Electric Co Ltd 半導体装置
JP2010199490A (ja) * 2009-02-27 2010-09-09 Fuji Electric Systems Co Ltd パワー半導体装置の温度測定装置およびこれを使用したパワー半導体モジュール
CN216671640U (zh) * 2022-01-26 2022-06-03 上海埃积半导体有限公司 内置温度检测模块的igbt
CN114628507A (zh) * 2022-03-11 2022-06-14 西安理工大学 具有沟槽-平面柵的发射极开关晶闸管及其制造方法
CN114937696A (zh) * 2022-04-15 2022-08-23 湖南大学 一种igbt芯片及其驱动方法、存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Investigation_on_Parameter_Extraction_for_An_Improved_Fourier-Series-Based_NPT_IGBT_Model;Yifei Ding, Xin Yang;Investigation_on_Parameter_Extraction_for_An_Improved_Fourier-Series-Based_NPT_IGBT_Model;全文 *

Also Published As

Publication number Publication date
CN116504823A (zh) 2023-07-28

Similar Documents

Publication Publication Date Title
JP3417336B2 (ja) 絶縁ゲート型半導体装置およびその製造方法
US20170117383A1 (en) Method for forming a semiconductor device
JP5842866B2 (ja) 半導体装置及びその製造方法
CN104332494A (zh) 一种绝缘栅双极晶体管及其制造方法
US7713794B2 (en) Manufacturing method of a semiconductor device
US8557678B2 (en) Method for manufacturing semiconductor substrate of large-power device
CN105280720A (zh) 半导体装置
CN102916042A (zh) 逆导igbt器件结构及制造方法
JPWO2021010000A1 (ja) 半導体装置
CN208422914U (zh) 过温保护电路
CN116504823B (zh) Igbt芯片及集成测温单元的igbt元胞、方法
US9558933B2 (en) Method for forming a semiconductor device
JP2010287786A (ja) 半導体装置
CN104701355B (zh) 逆导型igbt半导体器件及制造方法
CN210607264U (zh) 绝缘栅双极型晶体管
EP3842574A1 (en) Semiconductor device and production method
WO2014206196A1 (zh) 具有内置二极管的igbt及其制造方法
US11424351B2 (en) Semiconductor device and method of manufacturing semiconductor device
CN108109999A (zh) 过温保护电路、半导体器件及其制备方法
CN111430468B (zh) 双胞封装肖特基二极管芯片的双芯隔离结构及制造方法
CN102931228B (zh) 逆导igbt器件及制造方法
CN110010677B (zh) 一种改善结终端延伸结构三极管可靠性的器件结构及其制造方法
CN112259599A (zh) 一种硅片键合式igbt器件及其制作方法
CN103779416A (zh) 一种低vf的功率mosfet器件及其制造方法
CN221150008U (zh) 一种mosfet集成二极管监控芯片结温结构

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant